A Simple and Practical Linear-Work Parallel Algorithm for Connectivity

Julian Shun, Laxman Dhulipala, and Guy Blelloch
Given an undirected graph, label all vertices such that $L(u) = L(v)$ if and only if there is a path between u and v
Connected Component Labeling

• What are some simple algorithms?
 – Depth-first search
 • Linear work/span
 • Versions of DFS that are parallel are not work-efficient
 – Breadth-first search
 • Linear work
 • Parallelism limited by graph diameter
 • Polylogarithmic span version not work-efficient
 – Spanning forest
 • Good parallelism
 • Practical parallel implementations not linear work
Connected Component Labeling

• Parallel (polylogarithmic span) algorithms
 – Shiloach and Vishkin, Awerbuck and Shiloach
 • Combines (contracts) vertices in each iteration
 • $O(m \log n)$ work, $O(\log n)$ span
 – Reif, Phillips
 • Uses randomization to simplify contraction algorithms
 • $O(m \log n)$ work and $O(\log n)$ span w.h.p.
 • $O(\log n)$ rounds but don’t guarantee a constant fraction of edges removed
 – $O(m)$ work algorithms
 • Gazit ’91, Halperin/Zwick ’96, Cole et al. ‘96, Poon/Ramachandran ‘97, Pettie/Ramachandran ’02
 • Quite complicated. No one has implemented these
Our Contributions

• Practical parallel connectivity algorithm with linear work and polylogarithmic span
• Experimental evaluation: competitive with existing parallel implementations (that are not linear-work and polylogarithmic span)
Previous Work: Random Mate

- Idea: Form a set of non-overlapping star subgraphs and contract them
- Each vertex flips a coin. For each Heads vertex, pick an arbitrary Tails neighbor (if there is one) and point to it

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs
Previous Work: Random Mate

Repeat until each component has a single vertex

Expand vertices back in reverse order with label of neighbor

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs
Previous Work: Random Mate

CC_Random_Mate(L, E)
if(|E| = 0) Return L // base case
else
1. Flip coins for all vertices
2. For v where coin(v)=Heads, hook to arbitrary Tails neighbor w and set L(v) = L(w)
3. E' = \{ (L(u),L(v)) | (u,v) ∈ E and L(u) ≠ L(v) \}
4. L' = CC_Random_Mate(L, E')
5. For v where coin(v)=Heads, set L'(v) = L'(w) where w is the Tails neighbor that v hooked to in Step 2
6. Return L'

• Each iteration requires O(m+n) work and O(1) span
 • Assumes we do not pack vertices and edges
• Each iteration eliminates at least 1/4 of the vertices in expectation → O(log n) rounds w.h.p.

W = O(m log n) w.h.p. S = O(log n) w.h.p.
Low diameter decomposition
Low diameter decomposition

• \((\beta,d)\)-decomposition \((0 < \beta < 1)\) partitions \(V\) into \(V_1,\ldots,V_k\) such that
 – The shortest path between any two vertices in a partition is at most \(d\)
 – The number of inter-partition edges is at most \(\beta m\)

• Used in linear system solvers and metric embeddings
Low diameter decomposition

• A $(\beta, O(\log n / \beta))$-decomposition can be computed in $O(m)$ expected work and $O(\log^2 n / \beta)$ span w.h.p. [Miller et al. 2013]
 – Start breadth-first searches from vertices with exponentially-distributed (parameter β) start times
 • Each BFS creates a partition containing the source and all vertices explored
 • A BFS does not explore vertices already visited by another BFS
 • All vertices will have started BFS or been explored by time $O(\log n / \beta)$
 – BFS’s are work-efficient and terminate in $O(\log n / \beta)$ iterations.
 • Each iteration requires $O(\log n)$ span.
 – Bounding number of inter-partition edges:
 • An edge is inter-partition if the first two BFS’s that reach it do so within a one time step of each other
 • Probability that this happens is at most β due to properties of exponential distribution
 • Linearity of expectations gives at most βm edges cut
Low diameter decomposition example
Our Connectivity Algorithm

- Compute a $(\beta, O(\log n / \beta))$-decomposition
- Contract each partition into a single vertex
- Recurse
Our Connectivity Algorithm

- Compute a $(\beta, O(\log n / \beta))$-decomposition
- Contract each partition into a single vertex
- Recurse

Analysis for $\beta=1/2$

- Assume contraction can be done in linear work and in $O(\log n)$ span
- $m/2$ edges remain after each round in expectation
 - $\text{Work} = O(m) + O(m/2) + \ldots = O(m)$ in expectation
- $O(\log n)$ levels of recursion suffice w.h.p.
 - $\text{Span} = O(\log n) \times O(\log^2 n / \beta) = O(\log^3 n)$ w.h.p.
Contraction

• Contraction can be done in $O(\log n)$ span with bookkeeping and parallel prefix sums
 – Intra-partition edges are filtered out in $O(m)$ work and $O(\log n)$ span
 – Prefix sums: relabel vertices to smaller range
 – Duplicate edges removed using parallel hashing in $O(m)$ work and $O(\log n)$ span
 • Not needed theoretically
Improving span

• Each round of BFS can be implemented in $O(\log^* n)$ span w.h.p. using approximate prefix sum and compaction [Gil-Matias-Vishkin ‘91, Goodrich-Matias-Vishkin ‘94]
 – Improves span of low diameter decomposition to $O(\log n \log^* n)$

• Recurse for $O(\log \log n)$ rounds
 – Left with $O(m/\log n)$ edges
 – Switch to $O(m \log n)$ work, $O(\log n)$ span algorithm

• Result: Linear work algorithm with $O(\log n \log \log n \log^* n)$ span w.h.p.
Low diameter decomposition variants

- Resolving conflicts among BFS’s
 - Decomp-min: breaks ties deterministically
 - Miller et al. showed this produces $(\beta, O(\log n/\beta))$-decomposition
 - Uses write-with-min (via compare-and-swap)
 - Requires two phases
 - Decomp-arb: breaks ties arbitrarily
 - We prove $(2\beta, O(\log n/\beta))$-decomposition
 - Uses compare-and-swap
 - Requires just a single phase
 - Decomp-arb-hybrid: uses direction-optimizing BFS
 - This is the fastest one and used in the following experimental results
Experiments

- 40-core (with 2-way hyper-threading) Intel Nehalem machine
- Implemented in Cilk Plus
- 3 different implementations, but only showing best one
- Real-world and artificial graphs
Compare to existing implementations

• Existing implementations
 – Sequential spanning forest
 – Parallel spanning forest (Problem Based Benchmark Suite)
 – Parallel spanning forest (Patwary et al.)
 – Parallel BFS (Ligra)
 – Parallel BFS + Label propagation (Slota et al.)

• None provably linear work and polylog span
3D grid graph \((n = 10^8, m = 3 \times 10^8)\)

- Competitive with other implementations
com-Orkut graph \((n \approx 3 \times 10^6, m \approx 10^8)\)

- Fastest implementation uses single BFS

![Graph showing running time vs. threads for different algorithms.](image-url)
• Algorithms based on single BFS do poorly
Our algorithm is competitive

- No “worst-case” inputs
- Performance always close to the fastest implementation for any graph
 - Only at most 70% slower than spanning forest algorithms, and usually much less
 - Can be faster or slower than BFS, depending on graph diameter
- Up to 13x speedup on 40 cores relative to sequential
- 18—39x self-relative speedup
Conclusion

• Simple and practical linear-work, polylog-span connectivity algorithm
 – Can be easily modified to compute spanning forest
• As far as we know, first to be both practical and have linear work and polylog span
• Implementations competitive with existing parallel implementations
• Future direction: Can similar ideas give us a practical linear-work parallel algorithm for minimum spanning forest?
Extra Slides
3D grid graph

- serial-SF
- decomp-arb-CC
- decomp-arb-hybrid-CC
- decomp-min-CC
- parallel-SF-PBBS
- parallel-SF-PRM
- hybrid-BFS-CC
- multistep-CC

Number of threads vs. Running time (seconds)
com-Orkut graph
Running time vs β

- Running time is similar across wide range of β