Practical Parallel Hypergraph Algorithms

Julian Shun
Graphs

- **Vertices** model objects
- **Edges** model relationships between objects
- Applications: social networks, biological networks, Web, scientific computing, etc.
- Lots of research on high-performance parallel graph algorithms, frameworks, and libraries
Some graph processing solutions

Pregel, Giraph, GPS, GraphLab, PowerGraph, PRISM, Pegasus, Knowledge Discovery Toolbox, CombBLAS, GraphChi, GraphX, Galois, X-Stream, Gunrock, GraphMat, Ringo, TurboGraph, TurboGraph++, FlashGraph, Grace, PathGraph, Polymer, GPSA, GoFFish, Blogel, LightGraph, MapGraph, PowerLyra, Graphine, PowerSwitch, Imitator, XDGP, Signal/Collect, PrefEdge, EmptyHeaded, Gemini, Wukong, Parallel BGL, KLA, Grappa, Chronos, Green-Marl, GraphHP, P++, LLAMA, Venus, Cyclops, Medusa, NScale, Neo4J, Trinity, GBase, RADAR, HyperGraphDB, Horton, GSPARQL, Titan, ZipG, Cagra, Milk, Ligra, Ligra+, Lux, Julienne, GraphPad, Mosaic, GraFBoost, Graphene, Mizan, Green-Marl, PGX, PGX.D, Wukong+S, Stinger, cuStinger, Disterger, Hornet, GraphIn, Tornado, Bagel, KickStarter, Naiad, Kineograph, GraphMap, Presto, Cube, Giraph++, HATS, Photon, TuX2, GRAPE, GraM, Congra, MTGL, GridGraph, NXgraph, Chaos, Mmap, Clip, Floe, GraphGrind, DualSim, ScaleMine, Arabesque, GraMi, SAHAD, TAO, Weaver, G-SQL, G-SPARQL, gStore, Horton+, S2RDF, Qegel, EAGRE, Shape, RDF-3X, CuSha, Garaph, Totem, GTS, Frog, GBTL-CUDA, Graphulo, Zorro, Coral, CellIQ, GraphTau, Wonderland, GraphP, SAGE, Laika, nvGRAPH, cuGraph, GraphIt, GraPu, GraphJet, ImmortalGraph, LA3, Kaskade, AsyncStripe, Cgraph, GraphD, GraphH, ASAP, RStream, Automine, GraphOne, Aspen, GBBS, Gluon, Gswitch, SEP-Graph, SIMD-X, PnP, GraphA, Phoenix, Pregelix, ShenTu, Nepal, GraphSSD, LCC-Graph, RealGraph, Sedge, GraphMP, Tigr, PartitionedVC, DiGraph, Abelian, faimGraph, Falcon, Puffin, GraphBolt, GPOP, Omega, Slim graph, Log(Graph), RADS, CECI, BENU, GraphM, LIGHT, Pragh, Helios, GraphRex, Graphflow, MAGiQ, GAPBS, Wukong+G, GraphFrames, G-CORE, gRouting, Groute, TripleBit, SQLGraph, Graphphi, TuFast, Kaskade, etc.
Hypergraphs

- **Hyperedges** can connect more than two vertices
- Captures more information than a graph representation
- Some applications:
 - Improved accuracy in image segmentation and spectral clustering [Zhou et al. 2006, Ducournau and Bretto 2014, Ding and Yilmaz 2008]
 - Better community detection [Bothorel and Bouklit 2011, Roy and Ravindran 2015]
 - Designing lookup tables, low-density parity-check codes [Jiang et al. 2017]
 - Satisfiability of Boolean formulas [Karp et al. 1988]
 - Protein network analysis [Ritz et al. 2017]
Parallel Hypergraph Processing

• Only two existing systems: HyperX [Jiang et al. 2019] and MESH [Heintz et al. 2019]
 • Both implemented on top of Apache Spark

• This paper:
 • A collection of theoretically-efficient parallel hypergraph algorithms for shared-memory multicores
 • Implemented using Hygra, a simple extension of the Ligra graph processing framework to support hypergraphs
 • Takes advantage of existing graph optimizations: direction-optimization, load-balancing, compression
Performance Comparison

1 iteration of PageRank on Orkut communities hypergraph (2.3M vertices, 15.3M hyperedges, sum of hyperedge cardinalities = 107M)

- Performance difference due to higher communication costs of distributed-memory and overheads of Spark
Algorithms and Complexity Bounds

Work = # operations

Span = longest sequential dependence

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betweenness centrality</td>
<td>$O(H)$</td>
<td>$O(D \log H)$</td>
</tr>
<tr>
<td>Maximal independent set*</td>
<td>$\text{poly}(H)$</td>
<td>$\text{polylog}(H)$</td>
</tr>
<tr>
<td>K-core decomposition</td>
<td>$O(H)$</td>
<td>$O(\rho \log(H))$</td>
</tr>
<tr>
<td>Hypertrees</td>
<td>$O(H)$</td>
<td>$O(D \log H)$</td>
</tr>
<tr>
<td>Hyperpaths</td>
<td>$O(H)$</td>
<td>$O(D \log H)$</td>
</tr>
<tr>
<td>Connected components</td>
<td>$O(DH)$</td>
<td>$O(D \log H)$</td>
</tr>
<tr>
<td>PageRank (1 iteration)</td>
<td>$O(H)$</td>
<td>$O(\log H)$</td>
</tr>
<tr>
<td>Single-source shortest paths</td>
<td>$O(VH)$</td>
<td>$O(V \log H)$</td>
</tr>
</tbody>
</table>

H = size of hypergraph

D = diameter of hypergraph

V = number of vertices

ρ = peeling complexity

- Bounds at least as good as previous implementations (if any)
Remainder of the Talk

- Hypergraph representations
- Betweenness centrality algorithm
- K-core decomposition algorithm
- Experiments
Hypergraph Representations

Original hypergraph

Hyperedge list

\((v_0, v_1, v_2)\)
\((v_1, v_2, v_3)\)
\((v_0, v_3)\)

Clique-expanded graph

Bipartite graph
Betweenness Centrality
Betweenness Centrality

- Betweenness centrality of a vertex v is the fraction of shortest paths between all pairs of vertices that pass through v.
- Brandes’ algorithm works for graphs, does a two-phase BFS-like traversal from each vertex, taking linear work per vertex.
- We present a parallel betweenness centrality algorithm for hypergraphs.
Betweenness Centrality (per source s)

- Puzis et al. present a sequential algorithm for hypergraphs
- Forward and backward phase for each vertex (BFS-like traversals)
- Forward phase:
 - Compute $\sigma_{s,v}$, number of shortest paths between source vertex s and vertex v, for all vertices v in the graph
 - Puzis et al.’s algorithm takes $O(V + \sum_{e \in E} \text{cardinality}(e)^2)$ work overall, which is super-linear in size of hypergraph
Betweenness Centrality (per source s)

- Our algorithm stores intermediate values on hyperedges, so that the total work is $O(V + \sum_{e \in E} \text{cardinality}(e)) = O(H)$

Vertex equation

$$\sigma_{s,v} = \sum_{e \in P(v)} \sigma_{s,e}$$

$P(v)$ are predecessor hyperedges of vertex v

Hyperedge equation

$$\sigma_{s,e} = \sum_{u \in P(e)} \sigma_{s,u}$$

$P(e)$ are predecessor vertices of hyperedge e
Betweenness Centrality (per source s)

- **Backward phase:**
 - Compute dependency scores $\delta_{s\bullet}(v)$ for all v, which can be used to get betweenness centrality contribution from source s

 $$\hat{\delta}_s(e) = \sum_{v : e \in P_V(v)} \frac{\delta_{s\bullet}(v)}{\sigma_{s,v}}$$

 $$\delta_{s\bullet}(v) = 1 + \sum_{e : v \in P_E(e)} (\sigma_{s,v} \cdot \hat{\delta}_s(e))$$

- Vertex and hyperedge equations are different
- Total work is also $O(V + \sum_{e \in E} \text{cardinality}(e)) = O(H)$
Aside: Hygra Interface

- Minor extension of Ligra to differentiate between processing vertices and hyperedges in bipartite representation

All operators take linear work and logarithmic span

Can use direction-optimization and graph compression from Ligra
Betweenness Centrality (per source s)

- **Forward phase:**
 - Each iteration keeps vertices and hyperedges on frontier as \texttt{VertexSet} and \texttt{HyperedgeSet}
 - Each iteration:
 - \texttt{VertexProp}: Propagate path counts from \texttt{VertexSet} to incident hyperedges
 - \texttt{HyperedgeMap}: Mark hyperedges as visited
 - \texttt{HyperedgeProp}: Propagate path counts from \texttt{HyperedgeSet} to member vertices
 - \texttt{VertexMap}: Mark vertices as visited
 - All functions are completely parallel

- **Backward phase** similar but with different functions
- Total work $= O(H)$
 Total span $= O(\text{diam} \times \log H)$
K-core Decomposition
K-core Decomposition

• K-core is a maximal connected sub-hypergraph where every vertex has induced degree at least K
• Core number of a vertex is the maximum value of K for which it appears in that K-core
• Simple parallel algorithm:
 • K = 0
 • While hypergraph is not empty:
 • If any vertices have degree at most K:
 • Remove all vertices with degree at most K and their incident hyperedges, assigning them core value K
 • Else: K = K+1
K-core Decomposition

K=1

deg(v_0) = 2

deg(v_1) = 3

deg(v_2) = 3

deg(v_3) = 1
K-core Decomposition

K=1

deg(v₀) = 1

deg(v₁) = 3

deg(v₂) = 3
K-core Decomposition

- No more vertices with degree at most 1, therefore increment K

$\deg(v_1) = 2$
$\deg(v_2) = 2$

$K=2$
K-core Decomposition

\[
\begin{align*}
\text{core}(v_0) &= 1 \\
\text{core}(v_1) &= 2 \\
\text{core}(v_2) &= 2 \\
\text{core}(v_3) &= 1
\end{align*}
\]
K-Core Decomposition

- Naïve implementation would take $O(\rho V + H)$ work, where ρ is the number of rounds needed (peeling complexity)

- Use **buckets** to group vertices based on their current degree [Dhulipala et al. 2017]
- Initialize bucketing structure with **MakeBuckets**
- While hypergraph is not empty:
 - **NextBucket**: Extract next smallest non-empty bucket
 - **VertexProp**: Remove vertices in extracted bucket and their incident hyperedges
 - **HyperedgeProp**: Decrement degrees of vertices in deleted hyperedges
K-Core Decomposition

• Each vertex extracted and deleted once
• Each hyperedge deleted once, and decrements degrees of all incident vertices when deleted

• Total work is $O(V + \sum_{e \in E} \text{cardinality}(e)) = O(H)$

• Bucketing operations take $O(\log H)$ span, so total span is $O(\rho \log H)$
Experiments
Parallel Scalability

- Framework and algorithms implemented using Cilk Plus
- 72-core machine with hyper-threading

<table>
<thead>
<tr>
<th>Hypertree</th>
<th>WE</th>
<th>BC</th>
<th>CC</th>
<th>PageRank</th>
<th>SSSP</th>
<th>MIS</th>
<th>WE k-core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running time (seconds)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Speedups ranging from 8.5x to 76.5x
- Average speedup of 38.7x
- Lower speedups on K-core due to many rounds
Direction Optimization

- **Dense**: Use a pull-based traversal applied to all vertices or hyperedges
- **Sparse**: Use a push-based traversal applied to just active vertices or hyperedges
- **Hybrid**: Use **Sparse** for small active sets and **Dense** for large active sets

Orkut communities hypergraph

Threshold for switching: 1/20 of hypergraph size

Running time (seconds)

- Hypertree
- BC
- CC
- PageRank
- SSSP
- MIS
- WE k-core

11.4 seconds
Comparison with Clique-Expanded Graph

- Friendster hypergraph with 7.9M vertices, 1.6M hyperedges, and sum of hyperedge cardinalities was 23.5M
- Clique-expanded graph has 5.5B edges (235x larger)

Hygra is 2.8-30.6x faster than using clique-expanded graph in Ligra
Conclusions

• New theoretically-efficient parallel hypergraph algorithms implemented using Hygra
• Lots of interesting topics for further research
 • Locality optimizations (e.g., reordering and cache/NUMA segmentation for bipartite graphs)
 • Implement and optimize for GPUs and other architectures
• Code and datasets are publicly-available at https://github.com/jshun/ppopp20-ae