A Simple Parallel Cartesian Tree Algorithm and its Application to Parallel Suffix Tree Construction

Julian Shun and Guy Blelloch
Motivation for Suffix Trees

• To efficiently search for patterns in large texts
 – Example: Bioinformatic applications

• Suffix trees allow us to do this
 – $O(N)$ work for construction with $O(M)$ work for search, where N is the text size and M is the pattern size
 • In contrast, Knuth-Morris-Pratt’s algorithm takes $O(M)$ work for construction and $O(N)$ work for search
 – Other supported operations: longest common substring, maximal repeats, longest palindrome, etc.
 – There are sequential implementations but no parallel ones that are both theoretically and practically efficient

• We developed a new (practical) linear-work parallel algorithm and analyzed it experimentally
Outline: Suffix Array to Suffix Tree (in parallel)

- Suffix array + Longest Common Prefixes
 (interleave SA and LCPs)

- Multiway Cartesian tree
 (label edges, insert into hash table)

- Suffix tree

• There are standard techniques to perform all of these steps in parallel, except for building the multiway Cartesian Tree
Suffix Arrays and Longest-common-prefixes (LCPs)

<table>
<thead>
<tr>
<th>Original String</th>
<th>Suffixes</th>
<th>Suffix array</th>
<th>LCPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>mississippi$</td>
<td>mississippi$</td>
<td>$</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ississippi$</td>
<td>i$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ssississippi$</td>
<td>ippi$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>sississippi$</td>
<td>issippi$</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>issippi$</td>
<td>sissippi$</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>sissippi$</td>
<td>issippi$</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ppi$</td>
<td>ppi$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>pi$</td>
<td>sippi$</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>i$</td>
<td>sissippi$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>ssissippi$</td>
<td>3</td>
</tr>
</tbody>
</table>

Sort suffixes
Suffix Trees

- String = mississippi$
- Store suffixes in a patricia tree (trie with one-child nodes collapsed)
Multiway Cartesian Tree

- Maintains heap property
- Components of same value treated as one “cluster”
- Inorder traversal gives back the sequence

Sequence = 1 2 0 4 1 1 3 1 2
Suffix Tree History

• Sequential O(n) work algorithms based on incrementally adding suffixes [Weiner ‘73, McCreight ‘76, Ukkonen ‘95]

• Parallel O(n) work algorithms very complicated, no implementations [Sahinalp-Vishkin ‘94, Hariharan ‘94, Farach-Muthukrishnan ‘96]

• Parallel algorithms used in practice are not linear-work

• Practical linear-work parallel algorithm?
 • Simple O(n) work parallel algorithm
 • Fastest algorithm in practice
More Related Work

• Cartesian trees
 – Sequential O(n) work stack-based algorithm
 – Work-optimal parallel algorithm for Cartesian tree on distinct values (Berkman, Schieber and Vishkin 1993)

• Suffix arrays to suffix trees
 – Sequential O(n) work algorithms
 – Two parallel algorithms for converting a suffix array into a suffix tree (Iliopoulos and Rytter 2004)
 • Both require O(n log n) work

• Our contributions
 – A parallel algorithm for converting suffix arrays to suffix trees, which requires only O(n) work and is based on multiway Cartesian trees
Suffix Array/LCPs \rightarrow Suffix Tree

- Interleave suffix lengths and LCP values
- Build a multiway Cartesian tree on that
- This returns the suffix tree!

| Suffix lengths | 1, 2, 5, 8, 11, 12, 3, 4, 6, 9, 7, 10 |
| LCP values | 0, 1, 1, 4, 0, 0, 1, 0, 2, 1, 3, |

Interleaved
Multiway Cartesian Tree = Suffix Tree

<table>
<thead>
<tr>
<th>Suffix array</th>
<th>Lengths</th>
<th>LCPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>i$</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>ippi$</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>issippi$</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>ississippi$</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>mississippi$</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>pi$</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ppi$</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>sippi$</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>sissippi$</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>ssippi$</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>ssissippi$</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
String = mississippi$

= Leaf node with suffix length

= Contracted internal node with LCP value

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
Suffix Array to Suffix Tree (in parallel)

- Suffix array + Longest Common Prefixes
- Karkkainen and Sander’s algorithm
 - $O(n)$ work and $O(\log^2 n)$ span
- (interleave SA and LCPs)
- Multiway Cartesian tree
- (label edges, insert into hash table)
- Suffix tree
Cartesian Tree (in parallel)

• Divide-and-conquer approach
• Merge spines of subtrees (represented as lists) together using standard techniques

\[
\text{SA} + \text{LCPs} = 1, 0, 2, 0, 5, 1, 8, 1, 11, 4, 12, 0, 3, 0, 4, 1, 6, 0, 9, 2, 8, 1, 7, 3, 10
\]
Cartesian Tree (in parallel)

- Input: Array A[1...N]

Build(A[1...n])

```plaintext
if n < 2 return;
else in parallel do:
    t1 = Build(A[1...n/2]);
    t2 = Build(A[(n/2)+1...n]);
    Merge(t1, t2);
}
```

Merge(t1, t2)

```plaintext
R-spine = rightmost branch of t1;
L-spine = leftmost branch of t2;
use a parallel merge algorithm on R-spine and L-spine;
}
```
String = mississippi$

〇 = Leaf node with suffix length
〇 = Internal node with LCP value

$SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10$
(interleaved)
String = mississippi$

= Leaf node with suffix length
= Internal node with LCP value

\(SA + LCPs \) = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
String = mississippi$

○ = Leaf node with suffix length
○ = Internal node with LCP value

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
String = mississippi$

Leaf node with suffix length

Internal node with LCP value

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
String = mississippi$

- ○ = Leaf node with suffix length
- □ = Internal node with LCP value

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10 (interleaved)
String = mississippi$

= Leaf node with suffix length = Internal node with LCP value

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
String = mississippi$

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
Cartesian Tree (in parallel)

- Almost all merged nodes will never be processed again (they are “protected”)

![Cartesian Tree Diagram]
Cartesian Tree - Complexity bounds

- Observation: All nodes processed, except for two, become protected during a merge.
- Charge the processing of those two nodes to the merge itself (there are only $O(n)$ merges). Other nodes pay for themselves and then get protected.
 - It is important that when one spine has been completely processed, the merge does not process the rest of the other spine, otherwise we get $O(n \log n)$ work.
- Therefore, the merges contribute a total of $O(n)$ work to the algorithm.
Cartesian Tree - Complexity bounds

- Maintain binary search trees for each spine so that the endpoint of the merge can be found efficiently (in $O(\log n)$ work and span)
- A parallel merge takes linear work and $O(\log n)$ span
- Merges contribute $O(n)$ work, and searches and binary tree maintenance in the spine cost $O(\log n)$ work per merge
 - $W(n) = 2W(n/2) + O(\log n) = O(n)$
- Span: $O(\log n)$ levels of recursion, and merges + binary search tree operations take $O(\log n)$ span
 - $S(n) = S(n/2) + O(\log n) = O(\log^2 n)$
Multiway Cartesian Tree - Complexity bounds

- To obtain multiway Cartesian tree, use parallel tree contraction to contract adjacent nodes with the same value.
- This can be done in $O(n)$ work and $O(\log n)$ span, which is within our bounds.
- We have a $O(n)$ work and $O(\log^2 n)$ span algorithm for constructing a multiway Cartesian tree.
Suffix Array to Suffix Tree (in parallel)

- **Suffix array + Longest Common Prefixes**
 - (interleave SA and LCPs)

- **Multiway Cartesian tree**
 - (label edges, insert into hash table)

- **Suffix tree**

- Karkkainen and Sander’s algorithm
 - $O(n)$ work and $O(\log^2 n)$ span

- Our parallel merging algorithm
 - $O(n)$ work and $O(\log^2 n)$ span

- Parallel hash table
 - $O(n)$ work and $O(\log n)$ span
Experimental Setup

- Implementations in Cilk Plus
- 40-core Intel Nehalem machine
- Inputs: real-world and artificial texts
Suffix Tree Experiments

- Compared to best sequential algorithm [Kurtz ‘99]

 - Speedup varies from 5.4x to 50x on 40 cores
 - Self-relative speedup 23x to 26x on 40 cores
Suffix Tree on Human Genome (≈3 GB)

- Differences due to various factors
 - Shared memory vs. distributed memory
 - Algorithmic differences

Not linear-work
Conclusions

• Developed an $O(n)$ work and $O(\log^2 n)$ span algorithm for parallel multiway Cartesian Tree construction

• This allows us to transform a suffix array into a suffix tree in parallel

• Experiments show that our implementations outperform existing ones and achieve good speedup
Project Presentation

• Project presentations on Tuesday
 – 10 minutes per team member, and 5 minutes for Q&A
 – Problem and motivation
 – Prior work
 – Your technical contributions
 – Challenges encountered
 – Experimental results
 – Work breakdown among team members

• Project report due on Tuesday
Course Summary

• Congratulations on making it through all the lectures!
• Lots of exciting research going on in algorithm and performance engineering
• Look out for relevant seminars
 (Wednesdays 4-5pm ET via Zoom)
 – CSAIL seminars mailing list: seminars@csail.mit.edu
• Relevant conferences: SPAA, APOCS, PPoPP, ALENEX, ESA, SEA, PODC, IPDPS, SC, VLDB, SIGMOD, and more