Multicore Triangle Computations Without Tuning

Julian Shun and Kanat Tangwongsan

Presentation is based on paper published in International Conference on Data Engineering (ICDE), 2015
Triangle Computations

• Triangle Counting
 Count = 3

• Other variants:
 • Triangle listing
 • Local triangle counting/clustering coefficients
 • Triangle enumeration
 • Approximate counting
 • Analogs on directed graphs

• Numerous applications…
 • Social network analysis, Web structure, spam detection, outlier detection, dense subgraph mining, 3-way database joins, etc.

Need fast triangle computation algorithms!
Sequential Triangle Computation Algorithms

V = # vertices E = # edges

- Sequential algorithms for exact counting/listing
 - Naïve algorithm of trying all triplets
 \(O(V^3)\) work
 - Node-iterator algorithm [Schank]
 \(O(VE)\) work
 - Edge-iterator algorithm [Itai-Rodeh]
 \(O(VE)\) work
 - Tree-lister [Itai-Rodeh], forward/compact-forward [Schank-Wagner, Lapaty]
 \(O(E^{1.5})\) work

- Sequential algorithms via matrix multiplication
 - \(O(V^{2.37})\) work compute \(A^3\), where \(A\) is the adjacency matrix
 - \(O(E^{1.41})\) work [Alon-Yuster-Zwick]
 - These require superlinear space
Sequential Triangle Computation Algorithms

Source: “Algorithmic Aspects of Triangle-Based Network Analysis”, Dissertation by Thomas Schank

What about parallel algorithms?
Parallel Triangle Computation Algorithms

• Most designed for distributed memory
 • MapReduce algorithms [Cohen ’09, Suri-Vassilvitskii ‘11, Park-Chung ‘13, Park et al. ‘14]
 • MPI algorithms [Arifuzzaman et al. ‘13, Graphlab]

• What about shared-memory multicore?
 • Multicores are everywhere!
 • Node-iterator algorithm [Green et al. ‘14]
 • $O(VE)$ work in worst case

• Can we obtain an $O(E^{1.5})$ work shared-memory multicore algorithm?
Triangle Computation: Challenges for Shared Memory Machines

1. Irregular computation

2. Deep memory hierarchy
External-Memory and Cache-Oblivious Triangle Computation

- All previous algorithms are sequential
- External-memory (cache-aware) algorithms
 - Natural-join \(\Theta(E^3/(M^2 B)) \) I/O’s
 - Node-iterator [Dementiev ’06] \(\Theta((E^{1.5}/B) \log_{M/B}(E/B)) \) I/O’s
 - Compact-forward [Menegola ‘10] \(\Theta(E + E^{1.5}/B) \) I/O’s
 - [Chu-Cheng ‘11, Hu et al. ‘13] \(\Theta(E^2/(MB) + \#\text{triangles}/B) \) I/O’s
- External-memory and cache-oblivious
 - [Pagh-Silvestri ‘14] \(\Theta(E^{1.5}/(M^{0.5} B)) \) I/O’s or cache misses

- Parallel cache-oblivious algorithms?
Our Contributions

1. **Parallel Cache-Oblivious Triangle Counting Algs**

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Work</th>
<th>Depth</th>
<th>Cache Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-Merge</td>
<td>$O(E^{1.5})$</td>
<td>$O(\log^2 E)$</td>
<td>$O(E + E^{1.5}/B)$</td>
</tr>
<tr>
<td>TC-Hash</td>
<td>$O(V \log V + \alpha E)$</td>
<td>$O(\log^2 E)$</td>
<td>$O(sort(V) + \alpha E)$</td>
</tr>
<tr>
<td>Par. Pagh-Silvestri</td>
<td>$O(E^{1.5})$</td>
<td>$O(\log^3 E)$</td>
<td>$O(E^{1.5}/(M^{0.5} B))$</td>
</tr>
</tbody>
</table>

$V = \# \text{ vertices}$
$E = \# \text{ edges}$
$\alpha = \text{ arboricity (at most } E^{0.5})$
$M = \text{ cache size}$
$B = \text{ line size}$
$\text{sort}(n) = (n/B) \log_{M/B}(n/B)$

2. **Extensions to Other Triangle Computations:**
 - Enumeration, Listing, Local Counting/Clustering Coefficients, Approx. Counting, Variants on Directed Graphs

3. **Extensive Experimental Study**
Sequential Triangle Counting (Exact)

(Formal/compact-forward algorithm)

1. Rank vertices by degree (sorting)
 Return $A[v]$ for all v storing higher ranked neighbors

2. for each vertex v:
 for each w in $A[v]$:
 count += intersect($A[v], A[w]$)

Gives all triangles (v, w, x) where
rank(v) < rank(w) < rank(x)

Work = $O(E^{1.5})$

[Schank-Wagner '05, Latapy '08]
Proof of $O(E^{1.5})$ work bound when intersect uses merging

1. Rank vertices by degree (sorting)
 - Return $A[v]$ for all v storing higher ranked neighbors

2. for each vertex v:
 - for each w in $A[v]$:
 - count += intersect($A[v], A[w]$)

- Step 1: $O(E+V \log V)$ work
- Step 2:
 - For each edge (v,w), intersect does $O(d^+(v) + d^+(w))$ work
 - For all v, $d^+(v) \leq 2E^{0.5}$
 - If $d^+(v) > 2E^{0.5}$, each of its higher ranked neighbors also have degree $> 2E^{0.5}$ and total number of directed edges $> 4E$, a contradiction
 - Total work = $E \times O(E^{0.5}) = O(E^{1.5})$
Parallel Triangle Counting (Exact)

Step 1
- Work = \(O(E + V \log V)\)
- Depth = \(O(\log^2 V)\)
- Cache = \(O(E + \text{sort}(V))\)

Parallel sort and filter

Rank vertices by degree (sorting)
Return \(A[v]\) for all \(v\) storing higher ranked neighbors

Parallel reduce

parallel_for each vertex \(v\):

parallel_for each \(w\) in \(A[v]\):

\[
\text{count} += \text{intersect}(A[v], A[w])
\]

Parallel merge (TC-Merge)
Parallel hash table (TC-Hash)

Safe to run all in parallel
TC-Merge and TC-Hash Details

parallel_for each vertex \(v \):

parallel_for each \(w \) in \(A[v] \):

Parallel reduction

\[
\text{count} += \text{intersect}(A[v], A[w])
\]

Step 2: TC-Merge
Work = \(O(E^{1.5}) \)
Depth = \(O(\log^2 E) \)
Cache = \(O(E+E^{1.5}/B) \)

• TC-Merge
 • Preprocessing: sort adjacency lists
 • Intersect: use a parallel and cache-oblivious merge based on divide-and-conquer [Blelloch et al. ‘10, Blelloch et al. ‘11]

Step 2: TC-Hash
Work = \(O(\alpha E) \)
Depth = \(O(\log E) \)
Cache = \(O(\alpha E) \)

(\(\alpha = \) arboricity (at most \(E^{0.5} \)))

Parallel merge (TC-Merge) or
Parallel hash table (TC-Hash)

• TC-Hash
 • Preprocessing: for each vertex, create parallel hash table storing edges [Shun-Blelloch ‘14]
 • Intersect: scan smaller list, querying hash table of larger list in parallel
Comparison of Complexity Bounds

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Work</th>
<th>Depth</th>
<th>Cache Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-Merge</td>
<td>$O(E^{1.5})$</td>
<td>$O(\log^2 E)$</td>
<td>$O(E + E^{1.5}/B)$ (oblivious)</td>
</tr>
<tr>
<td>TC-Hash</td>
<td>$O(V \log V + \alpha E)$</td>
<td>$O(\log^2 E)$</td>
<td>$O(\text{sort}(V) + \alpha E)$ (oblivious)</td>
</tr>
<tr>
<td>Par. Pagh-Silvestri</td>
<td>$O(E^{1.5})$</td>
<td>$O(\log^3 E)$</td>
<td>$O(E^{1.5}/(M^{0.5}B))$ (oblivious)</td>
</tr>
<tr>
<td>Chu-Cheng ‘11, Hu et al. ‘13</td>
<td>$O(E \log E + E^2/M + \alpha E)$</td>
<td></td>
<td>$O(E^2/(MB) + #\text{triangles}/B)$ (aware)</td>
</tr>
<tr>
<td>Pagh-Silvestri ‘14</td>
<td>$O(E^{1.5})$</td>
<td></td>
<td>$O(E^{1.5}/(M^{0.5}B))$ (oblivious)</td>
</tr>
<tr>
<td>Green et al. ’14</td>
<td>$O(VE)$</td>
<td>$O(\log E)$</td>
<td></td>
</tr>
</tbody>
</table>

$V = \#$ vertices \quad $E = \#$ edges \quad $\alpha =$ arboricity (at most $E^{0.5}$)
$M =$ cache size \quad $B =$ line size \quad $\text{sort}(n) = (n/B) \log_{M/B}(n/B)$
Our Contributions

1. Parallel Cache-Oblivious Triangle Counting Algs

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Work</th>
<th>Depth</th>
<th>Cache Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-Merge</td>
<td>$O(E^{1.5})$</td>
<td>$O(\log^2 E)$</td>
<td>$O(E + E^{1.5}/B)$</td>
</tr>
<tr>
<td>TC-Hash</td>
<td>$O(V \log V + \alpha E)$</td>
<td>$O(\log^2 E)$</td>
<td>$O(\text{sort}(V) + \alpha E)$</td>
</tr>
<tr>
<td>Par. Pagh-Silvestri</td>
<td>$O(E^{1.5})$</td>
<td>$O(\log^3 E)$</td>
<td>$O(E^{1.5}/(M^{0.5} B))$</td>
</tr>
</tbody>
</table>

V = # vertices
E = # edges
M = cache size
B = line size
α = arboricity (at most $E^{0.5}$)
$\text{sort}(n) = (n/B) \log_{M/B}(n/B)$

2. Extensions to Other Triangle Computations:
 - Enumeration, Listing, Local Counting/Clustering Coefficients
 - Approx. Counting, Variants on Directed Graphs

3. Extensive Experimental Study
Extensions of Exact Counting Algorithms

• Triangle enumeration
 • Call \texttt{emit} function whenever triangle is found
 • \textbf{Listing}: add to hash table to list; return contents at the end
 • \textbf{Local counting/clustering coefficients}: atomically increment count of three triangle endpoints

• Directed triangle counting/enumeration
 • Keep separate counts for different types of triangles

• Approximate counting
 • Use colorful triangle sampling scheme to create smaller sub-graph [Pagh-Tsourakakis ‘12]
 • Run TC-Merge or TC-Hash on sub-graph with pE edges ($0 < p < 1$) and return $\#\text{triangles}/p^2$ as estimate
Approximate Counting

- Colorful triangle counting [Pagh-Tsourakakis ’12]

 Sampling rate: 0 < p < 1

1. Assign random color in \{1, ..., 1/p\} to each vertex
2. Sampling: Keep edges whose endpoints have the same color
3. Run exact triangle counting on sampled graph, return \(\Delta_{\text{sampled}}/p^2\)

Steps 1 & 2
- Work = \(O(E)\)
- Depth = \(O(\log E)\)
- Cache = \(O(E/B)\)

Step 3: TC-Merge
- Work = \(O((pE)^{1.5})\)
- Depth = \(O(\log^2 E)\)
- Cache = \(O(pE + (pE)^{1.5}/B)\)

Step 3: TC-Hash
- Work = \(O(V \log V + \alpha pE)\)
- Depth = \(O(\log E)\)
- Cache = \(O(\text{sort}(V) + p\alpha E)\)
Our Contributions

1. Parallel Cache-Oblivious Triangle Counting Algs

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Work</th>
<th>Depth</th>
<th>Cache Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-Merge</td>
<td>$O(E^{1.5})$</td>
<td>$O(\log^2 E)$</td>
<td>$O(E + E^{1.5}/B)$</td>
</tr>
<tr>
<td>TC-Hash</td>
<td>$O(V \log V + \alpha E)$</td>
<td>$O(\log^2 E)$</td>
<td>$O(\text{sort}(V) + \alpha E)$</td>
</tr>
<tr>
<td>Par. Pagh-Silvestri</td>
<td>$O(E^{1.5})$</td>
<td>$O(\log^3 E)$</td>
<td>$O(E^{1.5}/(M^{0.5} B))$</td>
</tr>
</tbody>
</table>

$V = \# \text{ vertices}$
$E = \# \text{ edges}$
$\alpha = \text{arboricity (at most } E^{0.5})$
$M = \text{cache size}$
$B = \text{line size}$
$\text{sort}(n) = (n/B) \log_{M/B}(n/B)$

2. Extensions to Other Triangle Computations:
 - Enumeration, Listing, Local Counting/Clustering Coefficients,
 - Approx. Counting, Variants on Directed Graphs

3. Extensive Experimental Study
Experimental Setup

• Implementations using Intel Cilk Plus
• 40-core Intel Nehalem machine (with 2-way hyper-threading)
 • 4 sockets, each with 30MB shared L3 cache, 256KB private L2 caches
• Sequential TC-Merge as baseline (faster than existing sequential implementations)
• Other multicore implementations: Green et al. and GraphLab
• Our parallel Pagh-Silvestri algorithm was not competitive
• Variety of real-world and artificial graphs
Both TC-Merge and TC-Hash scale well with # of cores:

LiveJournal
4M vtxes, 34.6M edges

Orkut
3M vtxes, 117M edges
40-core (with hyper-threading) Performance

- TC-Merge always faster than TC-Hash (by 1.3—2.5x)
- TC-Merge always faster than Green et al. or GraphLab (by 2.1—5.2x)
Why is TC-Merge faster than TC-Hash?

- TC-Hash less cache-efficient than TC-Merge
- Running time more correlated with cache misses than work
Comparison to existing counting algs.

Twitter graph (41M vertices, 1.2B undirected edges, 34.8B triangles)

- **Yahoo graph** (1.4B vertices, 6.4B edges, 85.8B triangles) on 40 cores: TC-Merge takes 78 seconds
 - Approximate counting algorithm achieves 99.6% accuracy in 9.1 seconds
Shared vs. distributed memory costs

- Amazon EC2 pricing
 - Captures purchasing costs, maintenance/operating costs, energy costs

<table>
<thead>
<tr>
<th>Triangle Counting (Twitter)</th>
<th>Our algorithm</th>
<th>GraphLab</th>
<th>GraphLab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Time</td>
<td>0.932 min</td>
<td>3 min</td>
<td>1.5 min</td>
</tr>
<tr>
<td>Machine</td>
<td>40-core (256 GB memory)</td>
<td>40-core (256 GB memory)</td>
<td>64 x 16-core</td>
</tr>
<tr>
<td>Approx. EC2 pricing</td>
<td>< $4/hour</td>
<td>< $4/hour</td>
<td>64 x $0.928/hour</td>
</tr>
<tr>
<td>Overall cost</td>
<td>< $0.062</td>
<td>< $0.2</td>
<td>$1.49</td>
</tr>
</tbody>
</table>
Approximate counting

<table>
<thead>
<tr>
<th>p=1/25</th>
<th>Accuracy</th>
<th>T_{approx}</th>
<th>$T_{\text{approx}}/T_{\text{exact}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orkut (V=3M, E=117M)</td>
<td>99.8%</td>
<td>0.067sec</td>
<td>0.035</td>
</tr>
<tr>
<td>Twitter (V=41M, E=1.2B)</td>
<td>99.9%</td>
<td>2.4sec</td>
<td>0.043</td>
</tr>
<tr>
<td>Yahoo (V=1.4B, E=6.4B)</td>
<td>99.6%</td>
<td>9.1sec</td>
<td>0.117</td>
</tr>
</tbody>
</table>
Conclusion

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Work</th>
<th>Depth</th>
<th>Cache Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-Merge</td>
<td>$O(E^{1.5})$</td>
<td>$O(\log^2 E)$</td>
<td>$O(E + E^{1.5}/B)$</td>
</tr>
<tr>
<td>TC-Hash</td>
<td>$O(V \log V + \alpha E)$</td>
<td>$O(\log^2 E)$</td>
<td>$O(\text{sort}(V) + \alpha E)$</td>
</tr>
<tr>
<td>Par. Pagh-Silvestri</td>
<td>$O(E^{1.5})$</td>
<td>$O(\log^3 E)$</td>
<td>$O(E^{1.5}/(M^{0.5} B))$</td>
</tr>
</tbody>
</table>

• Simple multicore algorithms for triangle computations are provably work-efficient, low-depth, and cache-efficient
• Implementations require no load-balancing or tuning for cache
• Experimentally outperforms existing multicore and distributed algorithms
• Future work: Design a practical parallel algorithm achieving $O(E^{1.5}/(M^{0.5} B))$ cache complexity