Greedy Sequential Maximal Independent Set and Matching are Parallel on Average

Julian Shun

Joint work with
Guy Blelloch and Jeremy Fineman
(Paper in SPAA 2012)
Outline

• Introduction
 – Definitions and sequential algorithm for Maximal Independent Set
• Luby’s Algorithm
• Parallel Greedy algorithm
• Analysis of Parallel Greedy algorithm
• Experiments
Maximal Independent Set (MIS)

• Undirected graph $G = (V, E)$

• Return a subset $U \subseteq V$ such that

 1. $U \cap N(U) = \emptyset$ (Independent set)

 2. $\forall v \in V \setminus U, \quad N(v) \cap U \neq \emptyset$ (maximal)
Motivation

• Why do we care about maximal independent sets (MIS)?
 • Used as a subroutine in many parallel algorithms to identify “independent” parts of graph that can be processed simultaneously
 • Map/graph coloring, scheduling, computational biology, distributed computing etc.
Sequential greedy algorithm

- MIS corresponding sequentially processing the vertices in order
 - This has been called the lexicographically first ordering
Outline

• Introduction
 – Definitions and sequential algorithm for Maximal Independent Set

• Luby’s Algorithm

• Parallel Greedy algorithm

• Analysis of Parallel Greedy algorithm

• Experiments
Luby’s algorithm

• Each round:
 • assign random priorities to all vertices
 • vertices with a priority greater than all of its neighbors’ priorities join the MIS
 • remove vertices in MIS and all of their neighbors
• Repeat this process until no vertices remain
Luby’s algorithm

• Each round:
 • assign random priorities to all vertices
 • vertices with a priority higher than all of its neighbors’ priorities join the MIS (*smaller number → higher priority!*)
 • remove vertices in MIS and all of their neighbors
• Repeat this process until no vertices remain
Luby’s algorithm

• Requires $O(\log m)$ depth and $O(m \log m)$ work
• Can be made to run in $O(\log^2 m)$ depth and $O(m)$ work
 • Pack vertices/edges each iteration
Luby vs. Sequential greedy

- Since sequential greedy implementation is so simple, it is hard for a parallel implementation to beat it
- Luby wins after 16 threads
- Note: Luby does not return the same answer as sequential

(a) Running time vs. number of threads on a random graph \((n = 10^7, m = 5 \times 10^7)\) in log-log scale
Outline

• Introduction
 – Definitions and sequential algorithm for Maximal Independent Set
• Luby’s Algorithm
• Parallel Greedy algorithm
• Analysis of Parallel Greedy algorithm
• Experiments
Sequential greedy algorithm

- MIS corresponding sequentially processing the vertices in order
 - This has been called the lexicographically first ordering
“Sequential” greedy algorithm

• Note that some vertices may be processed in parallel
Parallel-Greedy vs. Luby’s algorithm

Parallel-Greedy

• Randomly order the vertices

• While vertices remain:
 • In parallel: vertices with higher priority than all of their neighbors join the MIS
 • Remove vertices in MIS and all of their neighbors from the graph

Luby

How many iterations does Parallel-Greedy take?
Parallel-Greedy

• How many iterations does this algorithm take?
 • For an arbitrary ordering, it could take $O(n)$ iterations
 • Example: A → B → C → D → E
 • What about for a random ordering?
 • This talk: we show that the number of iterations is polylogarithmic
Related Work for Parallel-Greedy

• For **arbitrary graphs** and **arbitrary orderings**, this problem was proved to be P-complete (Cook ‘85)
• For uniform **random graphs**, this problem was shown to have polylog depth (Coppersmith et al. ’89 showed a depth of $O(\log^2 n)$; Calkin and Frieze ‘90 improved the depth to $O(\log n)$)
• **This talk**: for **arbitrary graphs** and **random orderings**, this problem has $O(\log^2 n)$ depth
• Depth recently improved to $\Theta(\log n)$ [Fischer and Noever, SODA 2018]
Practical Benefits

• Performance, fast runtime (by using prefixes)
• Guarantees the same result as the sequential algorithm’s output every time
 • Such determinism allows for ease of debugging, verification of correctness, reasoning about code, etc.
Outline

• Introduction
 – Definitions and sequential algorithm for Maximal Independent Set
• Luby’s Algorithm
• Parallel Greedy algorithm
• Analysis of Parallel Greedy algorithm
• Experiments
Analysis

Luby’s MIS Algorithm	Parallel-Greedy Algorithm
Work | **Work** | **Depth** | **Depth**
$O(m \log m)$ | $O(m \log^2 m)$ | $O(\log m)$ | $O(\log^2 m)$
$O(m)$ | $O(m)$ | $O(\log^2 m)$ | $O(\log^3 m)$

- Luby’s analysis relies on the iterations being independent since ordering is regenerated per iteration.
- For Parallel-Greedy, ordering is generated just once!
 - Requires other analysis techniques
Priority-Directed Acyclic Graph (pDAG)

• For some set of vertices V, the priority-DAG is the vertex-induced subgraph of V, where each edge is directed from its higher priority endpoint to its lower priority endpoint.

• The dependence length of a pDAG is the number of steps of Parallel-Greedy required to process the graph to completion.
 • This is also the depth of a call to Parallel-Greedy.
Priority-Directed Acyclic Graph (pDAG)

• Another way to view parallel algorithm is to repeat the following until no vertices remain:
 • Put all “roots” in MIS, remove roots, all neighbors of roots, and any incident edges.
Priority-Directed Acyclic Graph (pDAG)
Priority-Directed Acyclic Graph (pDAG)
Priority-Directed Acyclic Graph (pDAG)

• The dependence length is upper bounded by the longest directed path in the pDAG, but could be much less
 • Ex: A complete graph has a directed path of length $O(n)$ but the dependence length is $O(1)$
Prefix-based MIS algorithm

• Need to show:
 • Longest path in prefixes’ pDAGs is small
 • Number of prefixes required is small

\[
\text{Path length} = O(n) \quad \text{Path length} = O(\log n)
\]

• To get low dependence lengths, we must analyze a prefix-based version of Parallel-Greedy
 • Only slower than fully parallel version
Prefix-based MIS algorithm

- Randomly order the vertices
- While vertices remain:
 - Choose a prefix parameter δ (a fraction)
 - Take the δn highest priority vertices in prefix
 - Run Parallel-Greedy until completion on induced subgraph of prefix vertices
 - Remove prefix vertices and neighbors of MIS from graph
Number of rounds is small

- Randomly order the vertices
- While vertices remain:
 - Choose a prefix parameter δ
 - Take the $\delta|V|$ highest priority vertices in prefix
 - Run Parallel-Greedy until completion on induced subgraph of prefix vertices
 - Remove prefix vertices and neighbors of MIS from graph

Proof: Consider sequential process of randomly picking a vertex, adding it to MIS and removing its neighbors.
- Probability a vertex of degree d is still around after δn steps is at most
 \[
 \left(1 - \frac{d}{n}\right)^{\delta n} < e^{-c \ln n} = \frac{1}{n^c}
 \]
- We only need to pick prefixes for $\log \Delta$ rounds, where Δ is the maximum degree in original graphing vertices after the i'th round have degree at most $\Delta/2^i$ with high probability.
- Take union bound over all vertices
pDAG of each prefix is shallow

• **Theorem:** For a δ-prefix where $\delta = O(2^i \log(n)/\Delta)$, longest path in pDAG is length $O(\log n)$ w.h.p.

• **Proof (sketch):**

 • Number of possible k-length paths is at most d^k.

 • Probability of the path existing entirely in the prefix is δ^k.

 • Probability that the path is directed is $1/k!$

 • Union bound: $n \left(\frac{d^k \delta^k}{k!} \right) \leq n \left(\frac{ed\delta}{k} \right)^k = n \left(\frac{e \log n}{k} \right)^k = \frac{1}{n^c}$

 • Plug in $\delta=O(2^i \log(n)/\Delta)$ and $d = \Delta/2^i$ from before and $k = O(\log n)$ yields high probability.
Prefix-based MIS algorithm

• We showed that the dependence length of the prefix’s pDAG is small $O(\log n)$ w.h.p.
• We also showed that the number of prefixes taken until all vertices are removed is small $O(\log \Delta)$ w.h.p.
• Hence the depth of the whole algorithm is small $O(\log n) \times O(\log \Delta) = O(\log^2 n)$ w.h.p.
Achieving linear work

• Straightforward implementation will require $O(m)$ work per layer of each pDAG, giving $O(m \log^2 n)$ total work

• Linear-work implementation: For each pDAG, keep an array of roots
 • Each vertex has incoming edges in an array, and a pointer initially to the start of the array
 • In any round if a vertex has an edge deleted, it checks whether all of its incoming edges are deleted (and if so it becomes a root)
Achieving linear work

• 1) For each pDAG, keep an array of roots
• 2) Checking
 • In any round if a vertex has an edge deleted, it marks all deleted edges, and checks whether all of its incoming edges are deleted
 • We examine edges in powers of 2: first examine one parent, then two, then four...
 • If we see an incoming edge not deleted, we stop and charge the work of checking to all previous edges (within a factor of 2)
Achieving linear work

3) When a vertex is added to MIS it deletes all neighbors and checks all neighbors’ neighbors, adding them to array of roots if necessary

- Eliminate duplicates by using concurrent writes and packing

- Total cost of checks is $O(m)$. Checking and packing requires $O(\log m)$ additional depth.

- This gives $O(m)$ work and $O(\log^3 m)$ depth overall
Maximal Matching (MM)

• Given an undirected graph $G = (V, E)$, return a subset $E' \subseteq E$ such that no edges in E' share an endpoint and all edges in $E \setminus E'$ have a neighboring edge in E'
Maximal Matching

- By using same analysis as MIS, implicitly processing the line graph, we get a depth of $O(\log^2 m)$ w.h.p.
 - Line graph G': vertices in G' correspond to edges in G, and an edge exists between two vertices in G' if and only if the corresponding edges in G share an endpoint
- We can achieve linear work with an extra factor of $O(\log m)$ in the depth.
- This gives $O(m)$ work and $O(\log^3 m)$ depth overall.
Outline

• Introduction
 – Definitions and sequential algorithm for Maximal Independent Set
• Luby’s Algorithm
• Parallel Greedy algorithm
• Analysis of Parallel Greedy algorithm
• Experiments
Implementations

• Implemented using a fixed prefix size
 • Motivated theoretically
 • Reduces redundant work and improves running time
• Technique of using prefixes also applied to other deterministic algorithms [Blelloch, Fineman, Gibbons, Shun, PPoPP 2012]
Experiments (MIS)

(a) Running time vs. number of threads on a random graph \((n = 10^7, m = 5 \times 10^7)\) in log-log scale
(b) Running time vs. number of threads on a rMat graph \((n = 2^{24}, m = 5 \times 10^7)\) in log-log scale

- 32-core Intel Nehalem with hyperthreading
- Used an “optimal” prefix size
- Prefix-based MIS 3x to 8x faster than Luby’s MIS
Experiments (MIS)

- Work increases with larger prefix size (more redundant work)
- Number of rounds decreases with larger prefix size (more parallelism)
- There is some optimal prefix size which results in the lowest running time

(d) Total work done vs. prefix size on a rMat graph \((n = 2^{24}, m = 5 \times 10^7)\)

(e) Number of rounds vs. prefix size on a rMat graph \((n = 2^{24}, m = 5 \times 10^7)\) in log-log scale

(f) Running time (32 processors) vs. prefix size on a rMat graph \((n = 2^{24}, m = 5 \times 10^7)\) in log-log scale
Conclusions

• Sequential greedy MIS algorithm on arbitrary graphs for random orderings is actually parallel
• With some modification we obtain similar results for greedy maximal matching
• Has practical implications such as giving faster implementations and guaranteeing determinism (same solution as sequential)