DualSim: Parallel Subgraph Enumeration in a Massive Graph on a Single Machine

Hyeonji Kim, Juneyoung Lee, Sourav S. Bhowmick, Wook-Shin Han, JeongHoon Lee, Seongyun Ko, Moath H.A. Jarrah

Presented by: Bishesh Khadka
MIT 6.886 - Graph Analytics
Motivation

- Subgraph enumeration
 - Network motif discovery
 - Graphlet kernel computation
 - Subgraph frequency
Existing Work

- MapReduce & Distributed Graph Engines
 - Redundant work-- duplicated edges
 - Multiway join memory intensive
- Shao et al.
 - PSGL
 - No multiway join
- All approaches have serious performance issues
Problem Statement

- Can subgraph enumeration be done disk-based, on a single machine in a way that is scalable and efficient?

Motivating Principles
- Existing methods fail due to exponential partial solutions
- Disk access one of costliest bottlenecks
- CPU stall also notable bottleneck
Key Contributions

- DualSim does not maintain explosive partials
- Dual Approach
 - V-group sequence
 - V-group forest
 - Further optimizations
- Red Black Ivory query graph transformation
- Evaluation vs. state-of-the-art subgraph enumeration techniques
Dual Approach

- Given query graph q, data graph g, page graph p
(a) Data graph g, query graph q, and page graph p_g.

Partial order: $u_2 < u_1$
Buffer frames
Dual Approach

- Given query graph q, data graph g, page graph p
- Enumerate all possible query sequences
- Full-order query sequences
 - Each matches an ordered data seq. \Rightarrow fixes data seq.
(b) Full-order query sequences and \(v \)-group sequences.
Dual Approach

- Given query graph q, data graph g, page graph p
- Enumerate all possible query sequences
- Full-order query sequences
 - Each matches an ordered data seq. \Rightarrow fixes data seq.
- Prune FOQS with given partial orders
- Group FOQS into v-group sequences based on topology
(b) Full-order query sequences and v-group sequences.
Dual Approach

- Given query graph q, data graph g, page graph p
- Enumerate all possible query sequences
- Full-order query sequences
 - Each matches an ordered data seq. \(\Rightarrow\) fixes data seq.
- Prune FOQS with given partial orders
- Group FOQS into v-group sequences based on topology
- Traverse graph stored in pages based on v-group sequences
(a) Data graph g, query graph q, and page graph p_g.

(b) Matching v-group sequences:

<table>
<thead>
<tr>
<th>Page sequences</th>
<th>Matching v-group sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (p_0, p_1, p_1)</td>
<td>vgs_2</td>
</tr>
<tr>
<td>2. (p_0, p_1, p_2)</td>
<td>vgs_1, vgs_2</td>
</tr>
<tr>
<td>3. (p_0, p_1, p_3)</td>
<td>vgs_1</td>
</tr>
<tr>
<td>4. (p_0, p_2, p_2)</td>
<td>vgs_2</td>
</tr>
<tr>
<td>5. (p_0, p_2, p_3)</td>
<td>vgs_1</td>
</tr>
<tr>
<td>6. (p_1, p_2, p_2)</td>
<td>vgs_2</td>
</tr>
<tr>
<td>7. (p_1, p_2, p_3)</td>
<td>vgs_1, vgs_2</td>
</tr>
<tr>
<td>8. (p_1, p_3, p_3)</td>
<td>vgs_2</td>
</tr>
<tr>
<td>9. (p_2, p_3, p_3)</td>
<td>vgs_1, vgs_2</td>
</tr>
<tr>
<td>10. (p_3, p_3, p_3)</td>
<td>vgs_2</td>
</tr>
</tbody>
</table>

(c) A page mapping example.
Dual Approach cont’d

- For each valid mapping
 - enumerate all FOQS in v-group sequence
 - Generate data mappings
 - Vertex level match: (v1, v3, v5)
 - For Vgs1: only 1 FOQS: (u3, u2, u1)
 - Solution: {(u3, v1), (u2, v3), (u1, v5)}
 - (v2, v3, v5) also valid match
(d) A vertex mapping example for the page sequence \((p_0, p_1, p_2)\).
RBI Graph

- Idea: Disk reads minimized if we use minimum number of query vertices during graph traversal
- Colored vertices:
 - Red: Data must retrieve adj. List
 - Ivory:
 - Is adj to $m > 1$ reds
 - m-way intersection
 - Black:
 - Is adj to $m = 1$ red
 - Scan red's adj list
- MCVC is colored red
 - Reachability
 - NP hard but $|Vq|$ small enough for approx.
DualSim Algorithm

Algorithm 1. DUALSIM

Input: A data graph g, A query graph q

1. Preparation step

 /\ 1.

 $PO \leftarrow$ FINDPARTIALORDERS(q);

 $(q_{RB1}, q_R) \leftarrow$ GENERATERB1QUERYGRAPH(q, PO);

 $\{vgs_i\} \leftarrow$ FINDVGROUPSEQUENCES(q_R, PO);

 $mo_g \leftarrow$ FINDGLOBALMATCHINGORDER($\{vgs_i\}$);

 $\{vgf_i\} \leftarrow$ BUILDVGROUPFORESTS($\{vgs_i\}, mo_g$);

2. Execution step

 /\ 2.

 INITIALIZECANDIDATESEQUENCES(\text{root nodes in } \{vgf_i\});

 foreach (merged vertex/page window (mvw_1, mpw_1) from $\{vgf_i[1]\}$) do

 foreach (page id $pid \in mpw_1$) do

 | AsyncRead(pid, COMPUTECANDIDATESEQUENCES(pid, \n
 | \{cvw_{1,1}\}, all child nodes of $\{vgf_i[1]\}$));

 end

 wait until COMPUTECANDIDATESEQUENCES executions are finished

 level \leftarrow 2;

 DELEGATEEXTERNALSUBGRAPHENUMERATION($level, q_{RB1}$, \n
 \{vgs_i\}, $\{vgf_i\}$, $\{mvw_j\}$, $\{mpw_j\}$);

 INTERNALSUBGRAPHENUMERATION(mvw_1, mpw_1);

 UNPINPAGES(mpw_1);

 CLEARCANDIDATESEQUENCES(\text{the children of } $\{vgf_i[1]\}$);

end
Evaluation - Single Machine

(a) Query q_1.
(b) Query q_4.

Figure 10: Varying datasets in a single machine.

(c) Query q_3.
(d) Query q_4.

Figure 12: Varying graph size in a single machine.

(a) Query q_1.
(b) Query q_2.
(c) Query q_3.
(d) Query q_4.
(e) Query q_5.

Figure 11: Varying queries in a single machine.
Evaluation - Cluster

Figure 13: Varying datasets in a cluster.

Figure 14: Varying queries in a cluster.

Figure 15: Varying graph size in a cluster.
Conclusion

- Significant CPU processing reduction due to dual approach’s traversal
- Disk I/O reduction
- DualSim outperforms existing solutions in both single machine and distributed environment for subgraph enumeration
References

- Hyeonji Kim, Juneyoung Lee, Sourav S. Bhowmick, Wook-Shin Han, JeongHoon Lee, Seongyun Ko, Moath H.A. Jarrah
 DualSim: Parallel Subgraph Enumeration in a Massive Graph on a Single Machine