Parallel Local Graph Clustering

Julian Shun

Joint work with Farbod Roosta-Khorasani, Kimon Fountoulakis, and Michael W. Mahoney

Work appeared in VLDB 2016
Metric for Cluster Quality

Conductance = \frac{\text{Number of edges leaving cluster}}{\text{Sum of degrees of vertices in cluster}}*

Conductance = \frac{2}{2+2} = 0.5

Conductance = \frac{1}{2+2+3} = 0.14

Low conductance \rightarrow \text{“better” cluster}

*Consider the smaller of the two sides
Clustering Algorithms

• Finding minimum conductance cluster is NP-hard
• Many approximation algorithms and heuristic algorithms exist
 • Spectral partitioning, METIS (recursive bisection), maximum flow-based algorithms, etc.
• All algorithms are global, i.e., they need to touch the whole graph at least once requiring at least $|V|+|E|$ work
 • Can be very expensive for billion-scale graphs

1.4 billion vertices
6.6 billion edges

3.5 billion vertices
128 billion edges

1.4 billion vertices
1 trillion edges
Local Clustering Algorithms

• Does work proportional to only the size of the output cluster (can be much less than $|V|+|E|$)

• Take as input a “seed” set of vertices and find good cluster close to “seed” set
Local Clustering Algorithms

- Many meaningful clusters in real-world networks are relatively small [Leskovec et al. 2008, 2010, Jeub et al. 2015]

Some existing local algorithms
- Spielman and Teng 2004
- Andersen, Chung, and Lang 2006
- Andersen and Peres 2009
- Gharan and Trevisan 2012
- Kloster and Gleich 2014
- Chung and Simpson 2015

All existing local algorithms are sequential

Existing studies are on small to medium graphs

Goal: Develop parallel local clustering algorithms that scale to massive graphs
Parallel Local Algorithms

• We present first parallel algorithms for local graph clustering
 • Nibble [Spielman and Teng 2004]
 • PageRank-Nibble [Andersen, Chung, and Lang 2006]
 • Deterministic HeatKernel-PageRank [Kloster and Gleich 2014]
 • Randomized HeatKernel-PageRank [Chung and Simpson 2015]
 • Sweep cut

• All local algorithms take various input parameters that affect output cluster
 • Parallel Method 1: Try many different parameters independently in parallel
 • Parallel Method 2: Parallelize algorithm for individual run
 • Useful for interactive setting where data analyst tweaks parameters based on previous results
PageRank-Nibble [Andersen, Chung, and Lang 2006]

• Input: seed vertex s, error ε, teleportation α

• Maintain approximate PageRank vector p and residual vector r (represented sparsely with hash table for local running time)

• Initialize $p = {}$ (contains 0.0 everywhere implicitly)
 $r = \{(s, 1.0)\}$ (contains 0.0 everywhere except s)

• While (any vertex u satisfies $r[u]/\text{deg}(u) \geq \varepsilon$)
 1) Choose any vertex u where $r[u]/\text{deg}(u) \geq \varepsilon$
 2) $p[u] = p[u] + \alpha r[u]$
 3) For all neighbors ngh of u: $r[ngh] = r[ngh] + (1-\alpha)r[u]/(2\text{deg}(u))$
 4) $r[u] = (1-\alpha)r[u]/2$

• Apply sweep cut rounding on p to obtain cluster

Note: $|p|_1 + |r|_1 = 1.0$ (i.e., is a probability distribution)

Algorithm Idea
Iteratively spread probability mass around the graph
PR-Nibble

While (any vertex u satisfies $r[u]/\text{deg}(u) \geq \epsilon$)

1) Choose any vertex u where $r[u]/\text{deg}(u) \geq \epsilon$
2) $p[u] = p[u] + \alpha r[u]$
3) For all neighbors ngh of u: $r[\text{ngh}] = r[\text{ngh}] + (1-\alpha)r[u]/(2\text{deg}(u))$
4) $r[u] = (1-\alpha)r[u]/2$

Work is proportional to number of nonzero entries and their edges
Parallel PR-Nibble

- Input: seed vertex s, error ε, teleportation α
- Maintain approximate PageRank vector p and residual vector r (length equal to # vertices)
- Initialize $p = \{0.0, \ldots, 0.0\}$, $r = \{0.0, \ldots, 0.0\}$ and $r[s] = 1.0$

While (any vertex u satisfies $r[u]/\text{deg}(u) \geq \varepsilon$)

1. Choose any vertex u where $r[u]/\text{deg}(u) \geq \varepsilon$
2. $p[u] = p[u] + \alpha r[u]$
3. For all neighbors ngh of u: $r[\text{ngh}] = r[\text{ngh}] + (1-\alpha)r[u]/(2\text{deg}(u))$
4. $r[u] = (1-\alpha)r[u]/2$

- Apply sweep cut rounding on p to obtain cluster

Using some stale information—is that a problem?
Parallel PR-Nibble

- We prove that asymptotic work remains the same as the sequential version, $O(1/(\alpha \epsilon))$
- Guarantee on cluster quality is also maintained
- Parallel implementation:
 - Use fetch-and-add to deal with conflicts
 - Concurrent hash table to represent sparse sets (for local running time)
 - Use the Ligra graph processing framework [Shun and Blelloch 2013] to process only the “active” vertices and their edges (for local running time)
Ligra Graph Processing Framework

VertexSubset **VertexMap** **EdgeMap**

```
f(v){
    data[v] = data[v] + 1;
}
```
Ligra Graph Processing Framework

VertexSubset VertexMap EdgeMap

VertexSubset

update(u,v){...}

EdgeMap
Parallel PR-Nibble in Ligra

While (any vertex u satisfies $r[u]/\deg(u) \geq \varepsilon$)
 1) For all vertices u where $r[u]/\deg(u) \geq \varepsilon$:
 a) $p[u] = p[u] + \alpha r[u]$
 b) For all neighbors ngh of u: $r[ngh] = r[ngh] + (1-\alpha)r[u]/(2\deg(u))$
 c) $r[u] = (1-\alpha)r[u]/2$

sparseSet $p = \{\},$ sparseSet $r = \{\},$ sparseSet $r' = \{\};$ //concurrent hash tables

procedure $\text{UpdateNgh}(s, d)$:
 atomicAdd($r'[d]$, $(1-\alpha)r[s]$/2)

procedure $\text{UpdateSelf}(u)$:
 $p[u] = p[u] + \alpha r[u];$

procedure $\text{PR-Nibble}(G, \text{seed}, \alpha, \varepsilon)$:
 $r = \{(\text{seed}, 1.0)\};$
 while (true):
 active = $\{ u | r[u]/\deg(u) \geq \varepsilon \};$ //vertexSubset
 if active is empty, then break;
 VertexMap(active, UpdateSelf);
 EdgeMap(G, active, UpdateNgh);
 $r = r'$; //swap roles for next iteration
 return $p;$

Work is only done on “active” vertices and its outgoing edges
Performance of Parallel PR-Nibble
Parallel PR-Nibble in Practice

- Amount of work slightly higher than sequential
- Number of iterations until termination is much lower!
PR-Nibble Optimization

- Gives the same conductance and asymptotic work guarantees as the original algorithm
Parallel PR-Nibble Performance

- 10—22x self-relative speedup on 40 cores
- Speedup limited by small active set in some iterations and memory effects
- Running times are in seconds to sub-seconds
Sweep Cut Rounding
Sweep Cut Rounding Procedure

• What to do with the p vector?

• Sweep cut rounding procedure:
 • Sort vertices by non-increasing value of $p[v]/\text{deg}(v)$ (for non-zero entries in p)
 • Look at all possible prefixes of sorted order and choose the cut with lowest conductance

Conductance = num. edges leaving cluster / sum of degrees in cluster

Example

Sorted order = \{A, B, C, D\}

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Conductance</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>2/2 = 1</td>
</tr>
<tr>
<td>{A,B}</td>
<td>2/4 = 0.5</td>
</tr>
<tr>
<td>{A,B,C}</td>
<td>1/7 = 0.14</td>
</tr>
<tr>
<td>{A,B,C,D}</td>
<td>3/11 = 0.27</td>
</tr>
</tbody>
</table>
Sweep Cut Algorithm

- Sort vertices by non-increasing value of $p[v]/\deg(v)$ (for non-zero entries in p)
 - $O(N \log N)$ work, where N is number of non-zeros in p
- Look at all possible prefixes of sorted order and choose the cut with lowest conductance
 - Naively takes $O(N \vol(N))$ work, where $\vol(N) = \text{sum of degrees of non-zero vertices in } p$
- $O(\vol(N))$ work algorithm:

\[
\begin{align*}
\text{vol} &= 0 \\
\text{crossingEdges} &= 0 \\
S &= \{\} \\
\text{for each vertex } v \text{ in sorted order:} \\
&\quad S = S \cup \{v\} \\
&\quad \text{vol }+= \deg(v) \\
&\quad \text{for each ngh of } v:\nonumber \\
&\quad \quad \text{if ngh in } S: \text{crossingEdges}--; \\
&\quad \quad \text{else: crossingEdges}++; \\
&\quad \quad \text{conductance}(\{A,B\}) = 2/4
\end{align*}
\]
Parallel Sweep Cut

- Sort vertices by non-increasing value of $p[v]/\deg(v)$ (for non-zero entries in p)
 - $O(N \log N)$ work and $O(\log N)$ depth (parallel time), where N is number of non-zeros in p

- Look at all possible prefixes of sorted order and choose the cut with lowest conductance
 - Naively takes $O(N \text{vol}(N))$ work, where $\text{vol}(N) = \text{sum of degrees of non-zero vertices in } p$
 - This version is easily parallelizable by considering all cuts independently
 - What about parallelizing $O(\text{vol}(N))$ work algorithm?

$N << \# \text{ vertices in graph}$
O(vol(N)) work parallel algorithm

Conductance = num. edges leaving cluster / sum of degrees in cluster

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Conductance</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>2/2 = 1</td>
</tr>
<tr>
<td>{A,B}</td>
<td>2/4 = 0.5</td>
</tr>
<tr>
<td>{A,B,C}</td>
<td>1/7 = 0.14</td>
</tr>
<tr>
<td>{A,B,C,D}</td>
<td>3/11 = 0.27</td>
</tr>
</tbody>
</table>

Each vertex has rank in sorted order:
- rank(A) = 1, rank(B) = 2
- rank(C) = 3, rank(D) = 4
- rank(anything else) = 5

For each incident edge (x, y) of vertex in sorted order, where rank(x) < rank(y), create pairs (1, rank(x)) and (-1, rank(y))

[(1,1), (-1,2), (1,1), (-1,3), (1,2), (-1,3), (1,3), (-1,4), (1,4), (-1,5), (1,4), (-1,5), (1,5)]

Sort pairs by second value

[(1,1), (1,1), (-1,2), (1,2), (-1,3), (-1,3), (1,3), (0,3), (1,3)]

Prefix sum on first value

[(1,1), (2,1), (1,2), (2,2), (1,3), (0,3), (1,3), (2,4), (3,4), (2,5), (1,5), (0,5)]

Get denominator of conductance with prefix sum over degrees

Hash table insertions: O(N) work and O(log N) depth

Scan over edges: O(vol(N)) work and O(log vol(N)) depth

Integer sort: O(vol(N)) work and O(log vol(N)) depth

Prefix sum: O(vol(N)) work and O(log vol(N)) depth

If x and y both in prefix, 1 and -1 cancel out in prefix sum
If x in prefix and y is not, only 1 contributes to prefix sum
If neither x nor y in prefix, no contribution
Sweep Cut Performance

- 23—28x speedup on 40 cores
- About a 2x overhead from sequential to parallel
- Outperforms sequential with 4 or more cores

Running time (seconds)

Number of cores

parallel sweep
sequential sweep

Self-

P

soc-LJ

Patents

com-LJ

Orkut

Twitter

Friendster

Yahoo

Running time (seconds)
• Use parallel algorithms to generate plots for large graphs
• Agrees with conclusions of [Leskovec et al. 2008, 2010, Jeub et al. 2015] that good clusters tend to be relatively small
Summary of our Parallel Algorithms

- Sweep cut
- PageRank-Nibble [Andersen, Chung, and Lang 2006]
- Nibble [Spielman and Teng 2004]
- Deterministic HeatKernel-PageRank [Kloster and Gleich 2014]
- Randomized HeatKernel-PageRank [Chung and Simpson 2015]

- Based on iteratively processing sets of “active” vertices in parallel
- Use concurrent hash tables and Ligra’s functionality to get local running times
- We prove theoretically that parallel work asymptotically matches sequential work, and obtain low depth (parallel time) complexity