Sub-millisecond Stateful Stream Querying over Fast-evolving Linked Data

6.886
Joana M. F. da Trindade
Apr 24th 2018
Motivation

Several data sources generate streaming data continuously
- Sensors, financial markets, social networks, urban sensing, server logs

Some data analytics applications on top of it have near real-time use cases
- Fraud detection, abuse detection, other monitoring use cases, etc

How can we provide support for efficient streaming graph analytics use cases?
- Supporting efficient streaming queries -- instead of just computation?
- Supporting both fast updates and fresh data views w/o consistency issues?
How does this paper differ from previous work?

Prior graph streaming systems focused on computations instead of queries:

- PageRanking, Naiad, Spark Streaming, TimeStream

Stream graph computation vs stream graph querying, according to authors

- First favors serialized computation over large portion of streaming data
- Latter focuses on concurrent queries over specific set of both streaming and stored data

Prior systems were also stateless: no integration between streaming data for concurrent queries or no querying of persistent store to base knowledge

Stream processing engines: not applicable, as they use relational model; authors also claim that their performance is significantly lower than their system’s
What do authors mean by “stateful” querying?

Fig. 1: A sample of streaming and stored data in social networking.
What do authors mean by “stateful” querying?

(a) One-shot Query

(b) Continuous Query

Fig. 2: A sample of one-shot \(Q_S \) and continuous \(Q_C \) queries.
What do authors mean by “stateful” querying?

(a) One-shot Query

```
SELECT ?X
FROM X-Lab
WHERE {
    Logan po ?X
    ?X ht #sosp17
    Erik li ?X
}
```

(b) Continuous Query

```
REGISTER QUERY Qc
SELECT ?X ?Y ?Z
FROM Tweet_Stream [RANGE 10s STEP 1s]
FROM Like_Stream [RANGE 5s STEP 1s]
FROM X-Lab
WHERE {
    GRAPH Tweet_Stream { ?X po ?Z } 
    GRAPH X-Lab { ?X fo ?Y } 
    GRAPH Like_Stream { ?Y li ?Z } 
}
```

Join between 3 graph streams

Fig. 2: A sample of one-shot (Q_S) and continuous (Q_C) queries.
Conventional approach vs authors approach

Goal: support near real-time stateful streaming queries over linked data, where each query may access partial data from different streams.

"conventional" approach, AKA "composite" design

Authors's approach AKA "integrated" design
Drawbacks of conventional approach

Cross-system Cost -> ~40% execution time wasted due to data transformation and transmission

Inefficient Query Plan -> Semantic gap between the two systems impair query optimization

Limited Scalability -> Stream processing systems dedicate all resources to the improve performance of a single job

In summary -> high latency, low throughput
Advantages of authors’s approach over conventional approach (“composite” design)

Eliminates cross-system cost -> no data transformation needed across stores

More efficient query optimization -> no semantic gap across different systems, single global optimizer

Better Scalability -> shares data across multiple queries, can leverage that for better scalability (though you’d have more chances here for inconsistencies, but authors deal with that)

In summary -> lower latency, higher throughput than existing systems
Challenges when implementing “integrated” design

Hybrid Store
- efficiently handle streaming data and fast-evolving stored data

Indexing
- fast path to access streaming data in a certain time interval

Consistency
- system provides consistent data views through decentralized vector timestamps and bounded snapshot scalarization
Authors’s approach: “integrated” design (Wukong+S)
Hybrid store: persistent vs transient

Different data doesn’t interfere with each other

Each optimized for different access patterns

Timeless data: continuous persistent store

Temporal data: time-based transient store
How does it provide consistency across views?

Consistent views over dynamic data AND with memory efficiency:

Streaming data contains order information

Early output from a stream source should always be visible before later output

No order relation across data sources

Key intuition: use vector clocks for decentralized vector timestamps across data partitions
Decentralized vector timestamps in Wukong+S
Snapshot Scalarization in Wukong+S

Server0

Key

[4, 1 2]
[4, 1 1]
[4, 1 2]
[5, 1 3]

Encoded in Key

One-shot Query

SN: Snapshot Number
VTS: Vector Timestamp

SN-VTS Plan

SN=2: [4, 10]
SN=3: [5, 12]
SN=4: [7, 14]

Visible snapshot
Consistency Model

Provides “prefix integrity” for both continuous and one-shot queries
- Same consistency model as Structured Streaming and Apache Spark Streaming
- “at any time, the output of the application is equivalent to executing a batch job on a prefix of the data” (databricks blog post on structured streaming, July 2016)
- Output tables are always consistent with all the records in a prefix of the data

Continuous queries
- Uses distributed vector timestamps to ensure ordering of streaming data arrival equals order of visibility to queries

One-shot queries
- Mapping from VTS to SN (snapshot scalarization) preserves order of VTS
- Assumes timestamps in each stream arrive in monotonically non-decreasing order, and hence doesn’t need to handle out-of-order issues in input streams
Fault Tolerance

Provides at-least-once semantics for continuous queries, e.g., 2 executions on the same window of streams are possible in case of failure (can be addressed by client)

Query engine layer -> logs all messages to persistent storage

Data store layer -> incremental checkpointing by periodic logging on the background

Recovery -> uses stream index to locate data since last checkpoint; local and stable VTS are also stored, and this is used to notify stream sources to flush data accordingly
Leveraging RDMA (Wukong)

Stream index -> treated as location cache, providing another layer of indirection to fast access streaming data

Normal remote access to KV pair requires at least two RDMA reads: read key (lookup) and read value

Wukong+S accumulates stream index for each stream within one machine
- Query only needs to use one RDMA read to retrieve KV pair since stream index is already locally accessible
- Assumption: stream index is usually much smaller than data -> feasible to accumulate all stream indexes for one stream in one machine
Evaluation

Baseline: 6 state-of-the-art systems -> CSPARQL-engine, Heron+Wukong, Storm+Wukong, Spark Streaming, Spark Structured Streaming, Wukong/ext

Platforms: a rack-scale 8-machine cluster, each with 2 12-core Intel Xeon, 128GB DRAM, w/ RDMA Mellanox 56Gbps InfiniBand NIC, 40Gbps IB Switch

Benchmarks

- LSBench: Social Networking Benchmark w/ 3.75B initial stored data & 5 streams totally 134K tuple/second stream
- CityBench: Smart City Benchmark w/ 11 real-world data streams
Evaluation: single query latency
Evaluation: throughput
Evaluation: other experiments in the paper

Influence of different stream rate
Data insertion latency
Performance of one-shot queries
Memory consumption
Fault-tolerance overhead
Conclusion

Authors propose and implement a new design for a distributed stream query engine that supports stateful queries over graph streams.

Design primarily relies on a hybrid graph store engine different stores for continuous persistent graphs and time-based transient graphs.

Addresses consistency across data views using vector timestamp and snapshot scalarization.

Lower latency and higher throughput than state-of-the-art systems for streaming computation.