Julienne: A Framework for Parallel Graph Algorithms using Work-efficient Bucketing

Laxman Dhulipala

Joint work with Guy Blelloch and Julian Shun

SPAA 2017
Giant graph datasets

| Graph | \(|V|\) | \(|E|\) (symmetrized) |
|-----------------------|--------|----------------------|
| com-Orkut | 3M | 234M |
| Twitter | 41M | 1.46B |
| Friendster | 124M | 3.61B |
| Hyperlink2012-Host | 101M | 2.04B |
| Facebook (2011) | 721M | 68.4B |
| Hyperlink2014 | 1.7B | 124B |
| Hyperlink2012 | 3.5B | 225B |
| Facebook (2017) | > 2B | > 300B |
| Google (2017) | ? | ? |

- Green circle: Publicly available graphs used in our experiments
- Red circle: Private graph datasets
Traditional approaches

One possible way to solve large graph problems:

• Hand-write MPI/OpenMP/Cilk codes
• Run a powerful machine or a large cluster
Traditional approaches

One possible way to solve large graph problems:

- Hand-write MPI/OpenMP/Cilk codes
- Run a powerful machine or a large cluster

Benefits

- Good performance
- Can hand-code custom optimizations
Traditional approaches

One possible way to solve large graph problems:

• Hand-write MPI/OpenMP/Cilk codes
• Run a powerful machine or a large cluster

Benefits

• Good performance
• Can hand-code custom optimizations

Downsides

• Usually require a lot of code
• Need lots of expertise to write and understand codes
• Not everyone has a supercomputer
Graph processing frameworks

High level goals

- Simple set of primitives (interface)
- Implementations easy to write and understand
- Algorithms can handle very large graphs
Graph processing frameworks

High level goals

- Simple set of primitives (interface)
- Implementations easy to write and understand
- Algorithms can handle very large graphs

Ex: Pregel, GraphLab, Ligra, GraphX, GraphChi…
Graph processing frameworks

High level goals

- Simple set of primitives (interface)
- Implementations easy to write and understand
- Algorithms can handle very large graphs

Ex: Pregel, GraphLab, Ligra, GraphX, GraphChi…

Additional goals:

- Primitives have theoretical guarantees
- Support common optimizations “under the hood”
- Implementations competitive with non-framework codes
Graph processing frameworks

High level goals

- Simple set of primitives (interface)
- Implementations easy to write and understand
- Algorithms can handle very large graphs

Ex: Pregel, GraphLab, Ligra, GraphX, GraphChi…

Additional goals:

- Primitives have theoretical guarantees
- Support common optimizations “under the hood”
- Implementations competitive with non-framework codes

Our goals:

- All of the above on a single affordable shared memory machine
An “affordable” machine
An “affordable” machine

Dell PowerEdge R930

- 72-cores (4 x 2.4GHz 18-core E7-8867 v4 Xeon processors)
- 1TB of main memory
- Costs less than a mid-range BMW
An “affordable” machine

Dell PowerEdge R930

• 72-cores (4 x 2.4GHz 18-core E7-8867 v4 Xeon processors)
• 1TB of main memory
• Costs less than a mid-range BMW
Ligra

Shared memory graph processing framework [1]

Ligra

Shared memory graph processing framework [1]

Benefits

- Designed to express frontier-based algorithms
- Primitives and implementations have theoretical guarantees
- Optimizations (direction-optimizing, compression [2])
- Implementations are simple to write and understand
 - Competitive with hand-tuned codes

[1] Shun and Blelloch, 2013, Ligra: A Lightweight Graph Processing Framework for Shared Memory
Ligra

Shared memory graph processing framework [1]

Benefits

• Designed to express frontier-based algorithms
• Primitives and implementations have theoretical guarantees
• Optimizations (direction-optimizing, compression [2])
• Implementations are simple to write and understand
 • Competitive with hand-tuned codes

Downsides

• Some algorithms may not be efficiently implementable

[1] Shun and Blelloch, 2013, Ligra: A Lightweight Graph Processing Framework for Shared Memory
Ligra

Shared memory graph processing framework [1]

Benefits

• Designed to express frontier-based algorithms
• Primitives and implementations have theoretical guarantees
• Optimizations (direction-optimizing, compression [2])
• Implementations are simple to write and understand
 • Competitive with hand-tuned codes

Downsides

• Some algorithms may not be efficiently implementable

This work: Made Ligra codes run on the largest publicly available graphs on a single machine

[1] Shun and Blelloch, 2013, Ligra: A Lightweight Graph Processing Framework for Shared Memory
Ligra: Frontier-based algorithms

Primitives

• Frontier data-structure (vertexSubset)
• Map over vertices in a frontier
• Map over out-edges of a frontier
Ligra: Frontier-based algorithms

Primitives

• Frontier data-structure (vertexSubset)
• Map over vertices in a frontier
• Map over out-edges of a frontier

Example: Breadth-First Search
Ligra: Frontier-based algorithms

Primitives

- Frontier data-structure (vertexSubset)
- Map over vertices in a frontier
- Map over out-edges of a frontier

Example: Breadth-First Search

Round 1

- Green circle: in frontier
- Gray circle: unvisited
- Black circle: visited
Ligra: Frontier-based algorithms

Primitives

- Frontier data-structure (vertexSubset)
- Map over vertices in a frontier
- Map over out-edges of a frontier

Example: Breadth-First Search

Round 1

Round 2

• : in frontier
• : unvisited
• : visited
Ligra: Frontier-based algorithms

Primitives

- Frontier data-structure (vertexSubset)
- Map over vertices in a frontier
- Map over out-edges of a frontier

Example: Breadth-First Search

Round 1

Round 2

Round 3

- : in frontier
- : unvisited
- : visited
Ligra: Frontier-based algorithms

Primitives

- Frontier data-structure (vertexSubset)
- Map over vertices in a frontier
- Map over out-edges of a frontier

Example: Breadth-First Search

Round 1

Round 2

Round 3

Round 4

• in frontier

• unvisited

• visited
Ligra: Frontier-based algorithms

Primitives

- Frontier data-structure (vertexSubset)
- Map over vertices in a frontier
- Map over out-edges of a frontier

Example: Breadth-First Search

Round 1

Round 2

Round 3

Round 4

- : in frontier
- : unvisited
- : visited

Some useful graph algorithms cannot be efficiently implemented in frontier-based frameworks
Example: Weighted Breadth-First Search

Given: $G = (V, E, w)$ with positive integer edge weights, $s \subseteq V$

Problem: Compute the shortest path distances from s
Example: Weighted Breadth-First Search

Given: $G = (V, E, w)$ with positive integer edge weights, $s \subseteq V$

Problem: Compute the shortest path distances from s

Frontier-based: On each step, visit all neighbors that had their distance decrease
Example: Weighted Breadth-First Search

Frontier: s

Round 1
Example: Weighted Breadth-First Search

Frontier: s

Round 1
Example: Weighted Breadth-First Search

Frontier: 1, 4

Round 2
Example: Weighted Breadth-First Search

Frontier: 1 4

Round 2
Example: Weighted Breadth-First Search

Round 3

Frontier: 2 4 5 6
Example: Weighted Breadth-First Search

Frontier: 2 4 5 6

Round 3
Example: Weighted Breadth-First Search

Round 3

Frontier:

Not work-efficient!
Sequential Weighted Breadth-First Search

Idea:

- Run Dijkstra’s algorithm, but use *buckets* instead of a PQ
- Represent buckets using dynamic arrays
- Simple, efficient implementation running in $O(D + |E|)$ work
Sequential Weighted Breadth-First Search

Round 1

1. s
2. 0
3. 1
4. 2
5. 3
6. 4
7. 5
8. 6
9. 7
10. 8
Sequential Weighted Breadth-First Search

Round 1
Sequential Weighted Breadth-First Search

Round 1
Sequential Weighted Breadth-First Search

Round 1
Sequential Weighted Breadth-First Search

Round 2
Sequential Weighted Breadth-First Search

Round 2

0 1 2 3 4 5
Sequential Weighted Breadth-First Search

Round 2

0 1 2 3 4 5
Sequential Weighted Breadth-First Search

Round 2

0 1 2 3 4 5
Sequential Weighted Breadth-First Search

Round 3

0 1 2 3 4 5
Sequential Weighted Breadth-First Search

Round 3

0 1 2 3 4 5
Sequential Weighted Breadth-First Search

\[O(D + |E|) \] work where D is the graph diameter
Bucketing

The algorithm uses buckets to *organize work* for future iterations.
Bucketing

The algorithm uses buckets to *organize work* for future iterations.
Bucketing

The algorithm uses buckets to *organize work* for future iterations.

This algorithms is actually parallelizable:

- In each step:
 1. Process all vertices in the next bucket in parallel
 2. Update buckets of neighbors in parallel
Sequential Weighted Breadth-First Search

Sequential: process vertices one by one

Round 3
Parallel Weighted Breadth-First Search

(1) Process vertices in the same bucket in parallel
Parallel Weighted Breadth-First Search

Round 3

(2) Insert neighbors into buckets in parallel
Parallel Weighted Breadth-First Search

Resulting algorithm performs:

\[O(D + |E|) \] work
\[O(D \log |V|) \] depth

(assuming efficient bucketing)

(2) Insert neighbors into buckets in parallel

Round 3
Parallel bucketing

Bucketing is useful for more than just wBFS

• k-core (coreness)
• Delta-Stepping
• Parallel Approximate Set Cover
Parallel bucketing

Bucketing is useful for more than just wBFS

- k-core (coreness)
- Delta-Stepping
- Parallel Approximate Set Cover

Goals

- Simplify expressing algorithms using an interface
- Theoretically efficient, reusable implementation
Parallel bucketing

Bucketing is useful for more than just wBFS
- k-core (coreness)
- Delta-Stepping
- Parallel Approximate Set Cover

Goals
- Simplify expressing algorithms using an interface
- Theoretically efficient, reusable implementation

Difficulties
1. Multiple vertices insert into the same bucket in parallel
2. Possible to make work-efficient parallel implementations?
Results: Julienne

Shared memory framework for *bucketing-based algorithms*
Results: Julienne

Shared memory framework for *bucketing-based algorithms*

Extend Ligra with an interface for bucketing

- Theoretical bounds for primitives
- Fast implementations of primitives
Results: Julienne

Shared memory framework for *bucketing-based algorithms*

Extend Ligra with an interface for bucketing

- Theoretical bounds for primitives
- Fast implementations of primitives

Can implement a bucketing algorithm with

- \(n \) vertices
- \(T \) total buckets
- \(U \) updates

over \(K \) Update calls, and \(L \) calls to NextBucket

\[O(n + T + U) \] expected work and

\[O((K + L) \log n) \] depth w.h.p.
Results: Julienne

Shared memory framework for *bucketing-based algorithms*

Extend Ligra with an interface for bucketing

- Theoretical bounds for primitives
- Fast implementations of primitives

Can implement a bucketing algorithm with

- n vertices
- T total buckets
- U updates

over K Update calls, and L calls to NextBucket

Bucketing implementation is work-efficient
Results: Julienne

Work-efficient implementations of 4 bucketing-based algorithms:

- k-core (coreness)
- Weighted Breadth-First Search
- Delta-Stepping
- Parallel Approximate Set Cover
Results: Julienne

Work-efficient implementations of 4 bucketing-based algorithms:

- k-core (coreness)
- Weighted Breadth-First Search
- Delta-Stepping
- Parallel Approximate Set Cover

Codes are simple

- All implementations < 100 LoC
Results: Julienne

Work-efficient implementations of 4 bucketing-based algorithms:

- k-core (coreness)
- Weighted Breadth-First Search
- Delta-Stepping
- Parallel Approximate Set Cover

Codes are simple

- All implementations < 100 LoC

Codes competitive with, or outperform existing implementations
Results: Julienne

Work-efficient implementations of 4 bucketing-based algorithms:
- k-core (coreness)
- Weighted Breadth-First Search
- Delta-Stepping
- Parallel Approximate Set Cover

Codes are simple
- All implementations < 100 LoC

Codes competitive with, or outperform existing implementations

First work-efficient k-core algorithm with non-trivial parallelism
Results: Julienne

Work-efficient implementations of 4 bucketing-based algorithms:
 • k-core (coreness)
 • Weighted Breadth-First Search
 • Delta-Stepping
 • Parallel Approximate Set Cover

Codes are simple
 • All implementations < 100 LoC

Codes competitive with, or outperform existing implementations

First work-efficient k-core algorithm with non-trivial parallelism

Compute k-cores of largest publicly available graph (~200B edges) in ~3 minutes and approximate set-cover in ~2 minutes
Julienne: Interface

- Bucketing Interface
- vertexSubset
- Graph
Julienne: Interface

Bucketing Interface:

1. Create bucket structure
2. Get the next bucket (vertexSubset)
3. Update buckets of a subset of identifiers
Julienne: Interface

MakeBuckets : buckets
 n : int
 D : identifier → bucket_id
 O : bucket_order

Initialize bucket structure
Julienne: Interface

\[
D(1) = 0, D(2) = 1, D(3) = 4, \ldots
\]

\text{MakeBuckets : buckets}

\begin{align*}
\text{n : int} \\
\text{D : identifier } \rightarrow \text{ bucket_id} \\
\text{O : bucket_order}
\end{align*}

Initialize bucket structure
Julienne: Interface

\[D(1) = 0, \quad D(2) = 1, \quad D(3) = 4, \ldots \]

MakeBuckets : buckets
\[n : \text{int} \]
\[D : \text{identifier} \rightarrow \text{bucket_id} \]
\[O : \text{bucket_order} \]

Initialize bucket structure
Julienne: Interface

NextBucket : bucket

Extract identifiers in the next non-empty bucket
Julienne: Interface

Extract identifiers in the next non-empty bucket

Order: increasing

NextBucket : bucket
NextBucket : bucket

Extract identifiers in the next non-empty bucket
Julienne: Interface

Order: increasing

Extract identifiers in the next non-empty bucket

NextBucket : bucket
Update buckets for k identifiers

UpdateBuckets

\[k : \text{int} \]

\[F : \text{int} \rightarrow (\text{identifier, bucket_dest}) \]

Update buckets for k identifiers
Julienne: Interface

Update buckets for \(k \) identifiers

\[\{(1,3), (7,2), (6,2)\}\]

UpdateBuckets

\[
k : \text{int} \\
F : \text{int} \rightarrow (\text{identifier}, \text{bucket_dest})
\]

Update buckets for \(k \) identifiers
Julienne: Interface

Update buckets for k identifiers

$$[(1,3), (7,2), (6,2)]$$

UpdateBuckets

$$k : \text{int}$$

$$F : \text{int} \rightarrow (\text{identifier}, \text{bucket_dest})$$

Update buckets for k identifiers
Julienne: Interface

Update buckets for k identifiers

$\text{UpdateBuckets} \\
\quad k : \text{int} \\
\quad F : \text{int} \rightarrow (\text{identifier, bucket}_\text{dest})$

Update buckets for k identifiers
Update buckets for \(k \) identifiers

\[
[(1,3), (7,2), (6,2)]
\]

UpdateBuckets

\(k : \text{int} \)

\(F : \text{int} \rightarrow (\text{identifier, bucket}_{\text{dest}}) \)

Update buckets for \(k \) identifiers
Sequential Bucketing

Can implement sequential bucketing with:

- n identifiers
- T total buckets
- K calls to UpdateBuckets, where each updates the ids in S_i

in $O(n + T + \sum_{i=0}^{K} |S_i|)$ work
Sequential Bucketing

Can implement sequential bucketing with:

- n identifiers
- T total buckets
- K calls to UpdateBuckets, where each updates the ids in \(S_i \)

in \(O(n + T + \sum_{i=0}^{K} |S_i|) \) work

Implementation:

- Use dynamic arrays
- Update lazily
Parallel Bucketing

Can implement parallel bucketing with:

- n identifiers
- T total buckets
- K calls to UpdateBuckets, where each updates the ids in S_i
- L calls to NextBucket

in $O(n + T + \sum_{i=0}^{K} |S_i|)$ expected work and

$O((K + L) \log n)$ depth w.h.p.
Parallel Bucketing

Can implement parallel bucketing with:

- n identifiers
- T total buckets
- K calls to UpdateBuckets, where each updates the ids in S_i
- L calls to NextBucket

\[O(n + T + \sum_{i=0}^{K} |S_i|) \] expected work and

\[O((K + L) \log n) \] depth w.h.p.

Implementation:

- Use dynamic arrays
- MakeBuckets: call UpdateBuckets. NextBucket: parallel filter
Parallel Bucketing

UpdateBuckets:

- Use work-efficient semisort [Gu et al. 2015]
- Given k (key, value) pairs, semisorts in $O(k)$ expected work and $O(\log k)$ depth w.h.p.
Parallel Bucketing

UpdateBuckets:
- Use work-efficient semisort [Gu et al. 2015]
- Given \(k \) (key, value) pairs, semisorts in \(O(k) \) expected work and \(O(\log k) \) depth w.h.p.

\[(3,9), (4,7), \ldots, (2,1), (1,1)\]
Parallel Bucketing

UpdateBuckets:
- Use work-efficient semisort [Gu et al. 2015]
- Given k (key, value) pairs, semisorts in $O(k)$ expected work and $O(\log k)$ depth w.h.p.

$\{(3,9), (4,7), \ldots, (2,1), (1,1)\}$

\[\downarrow\]

$\{(2,1), (1,1), (7,1), \ldots, (4,7), (6,7), \ldots, (3,9)\}$

All ids going to bucket 1
Parallel Bucketing

UpdateBuckets:

- Use work-efficient semisort [Gu et al. 2015]
- Given \(k \) (key, value) pairs, semisorts in \(O(k) \) expected work and \(O(\log k) \) depth w.h.p.

\[
[(3,9), (4,7), \ldots, (2,1), (1,1)]
\]

\[
\downarrow
\]

\[
[(2,1), (1,1), (7,1), \ldots, (4,7), (6,7), \ldots, (3,9)]
\]

All ids going to bucket 1

- Prefix sum to compute #ids going to each bucket
- Resize buckets and inject all ids in parallel
Parallel Bucketing

UpdateBuckets:

- Use work-efficient semisort [Gu et al. 2015]
- Given k (key, value) pairs, semisorts in $O(k)$ expected work and $O(\log k)$ depth w.h.p.

\[
[(3,9), (4,7), \ldots, (2,1), (1,1)]
\]

\[
[(2,1), (1,1), (7,1), \ldots, (4,7), (6,7), \ldots, (3,9)]
\]

All ids going to bucket 1

- Prefix sum to compute #ids going to each bucket
- Resize buckets and inject all ids in parallel

Please see paper for details on practical implementation and optimizations
Example: k-core and coreness

k-core: maximal connected subgraph of G s.t. all vertices have degree $\geq k$

$\lambda(v)$: largest k-core that v participates in
Example: k-core and coreness

k-core: maximal connected subgraph of G s.t. all vertices have degree $\geq k$

$\lambda(v)$: largest k-core that v participates in
Example: k-core and coreness

k-core : maximal connected subgraph of G s.t. all vertices have degree $\geq k$

$\lambda(v)$: largest k-core that v participates in
Example: k-core and coreness

k-core : maximal connected subgraph of G s.t. all vertices have degree $\geq k$

$\lambda(v)$: largest k-core that v participates in
Example: k-core and coreness

k-core: maximal connected subgraph of G s.t. all vertices have degree ≥ k

\(\lambda(v) \): largest k-core that v participates in
Example: k-core and coreness

k-core: maximal connected subgraph of G s.t. all vertices have degree $\geq k$

$\lambda(v)$: largest k-core that v participates in

$\lambda(a) = 3$
Example: k-core and coreness

k-core: maximal connected subgraph of G s.t. all vertices have degree $\geq k$

$\lambda(v)$: largest k-core that v participates in

$\lambda(a) = 3$

Can efficiently compute k-cores after computing coreness
k-core and Coreness

Sequential Peeling:

- Bucket sort vertices by degree
- Remove the minimum degree vertex, set its core number
 - Update the buckets of its neighbors
k-core and Coreness

Sequential Peeling:

- Bucket sort vertices by degree
- Remove the minimum degree vertex, set its core number
 - Update the buckets of its neighbors

Each vertex and edge is processed exactly once:

\[W = O(|E| + |V|) \]
k-core and Coreness

Sequential Peeling:
 • Bucket sort vertices by degree
 • Remove the minimum degree vertex, set its core number
 • Update the buckets of its neighbors

Each vertex and edge is processed exactly once:

$$W = O(|E| + |V|)$$

Existing parallel algorithms:
 • Scan all remaining vertices when computing each core
k-core and Coreness

Sequential Peeling:
- Bucket sort vertices by degree
- Remove the minimum degree vertex, set its core number
 - Update the buckets of its neighbors

Each vertex and edge is processed exactly once:

\[W = O(|E| + |V|) \]

Existing parallel algorithms:
- Scan all remaining vertices when computing each core

\[\rho = \text{number of peeling steps done by the parallel algorithm} \]

\[W = O(|E| + \rho|V|) \]
\[D = O(\rho \log |V|) \]
Work-efficient Peeling

Insert vertices in bucket structure by degree
Work-efficient Peeling

Insert vertices in bucket structure by degree
Work-efficient Peeling

Insert vertices in bucket structure by degree

While not all vertices have been processed yet:
Work-efficient Peeling

Insert vertices in bucket structure by degree

While not all vertices have been processed yet:
 1. Extract the next bucket, set core numbers
Work-efficient Peeling

Insert vertices in bucket structure by degree

While not all vertices have been processed yet:
 1. Extract the next bucket, set core numbers
Work-efficient Peeling

Insert vertices in bucket structure by degree

While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
Work-efficient Peeling

Insert vertices in bucket structure by degree

While not all vertices have been processed yet:
 1. Extract the next bucket, set core numbers
 2. Sum edges removed from each neighbor of this frontier
Work-efficient Peeling

Insert vertices in bucket structure by degree

While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier
Work-efficient Peeling

Insert vertices in bucket structure by degree

While not all vertices have been processed yet:
1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier
3. Compute the new buckets for the neighbors
Work-efficient Peeling

Insert vertices in bucket structure by degree

While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier
3. Compute the new buckets for the neighbors
Work-efficient Peeling

Insert vertices in bucket structure by degree

While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier
3. Compute the new buckets for the neighbors
4. Update the bucket structure with the (neighbors, buckets)
Work-efficient Peeling

Insert vertices in bucket structure by degree

While not all vertices have been processed yet:
 1. Extract the next bucket, set core numbers
 2. Sum edges removed from each neighbor of this frontier
 3. Compute the new buckets for the neighbors
 4. Update the bucket structure with the (neighbors, buckets)
Work-efficient Peeling

Insert vertices in bucket structure by degree

While not all vertices have been processed yet:

1. Extract the next bucket, set core numbers
2. Sum edges removed from each neighbor of this frontier
3. Compute the new buckets for the neighbors
4. Update the bucket structure with the (neighbors, buckets)
Work-efficient Peeling

Insert vertices in bucket structure by degree

While not all vertices have been processed yet:
 1. Extract the next bucket, set core numbers
 2. Sum edges removed from each neighbor of this frontier
 3. Compute the new buckets for the neighbors
 4. Update the bucket structure with the (neighbors, buckets)
Work-efficient Peeling
Work-efficient Peeling

We process each edge at most once in each direction:
Work-efficient Peeling

We process each edge at most once in each direction:

updates = \(O(|E|) \)
Work-efficient Peeling

We process each edge at most once in each direction:

\# updates = \(O(|E|) \)

\# buckets \(\leq |V| \)
Work-efficient Peeling

We process each edge at most once in each direction:

updates $= O(|E|)$

buckets $\leq |V|$

calls to NextBucket $= \rho$
Work-efficient Peeling

We process each edge at most once in each direction:

updates = $O(|E|)$
buckets $\leq |V|$
calls to NextBucket = ρ
calls to UpdateBuckets = ρ
Work-efficient Peeling

We process each edge at most once in each direction:

updates = \(O(|E|) \)
buckets \(\leq |V| \)
calls to NextBucket = \(\rho \)
calls to UpdateBuckets = \(\rho \)

Therefore the algorithm runs in:

\[O(|E| + |V|) \] expected work
\[O(\rho \log |V|) \] depth w.h.p.
Work-efficient Peeling

We process each edge at most once in each direction:

updates = $O(|E|)$
buckets $\leq |V|$
calls to NextBucket = ρ
calls to UpdateBuckets = ρ

Therefore the algorithm runs in:

$O(|E| + |V|)$ expected work
$O(\rho \log |V|)$ depth w.h.p.

On the largest graph we test on, $\rho = 130,728$
Work-efficient Peeling

We process each edge at most once in each direction:

- \# updates = \(O(|E|) \)
- \# buckets \(\leq |V| \)
- \# calls to NextBucket = \(\rho \)
- \# calls to UpdateBuckets = \(\rho \)

Therefore the algorithm runs in:

\[
O(|E| + |V|) \text{ expected work}
\]

\[
O(\rho \log |V|) \text{ depth w.h.p.}
\]

On the largest graph we test on, \(\rho = 130,728 \)

On 72 cores, our code finishes in a few minutes, but the work-inefficient algorithm does not terminate within 3 hours.
Work-efficient Peeling

We process each edge at most once in each direction:

\[
\text{# updates} = O(|E|)
\]

\[
\text{# buckets} \leq |V|
\]

\[
\text{# calls to NextBucket} = O(|V|)
\]

\[
\text{# calls to UpdateBuckets} = O(|V|)
\]

Therefore the algorithm runs in:

\[
\text{expected work: } O(|E| + |V|)
\]

\[
\text{depth w.h.p.: } O(\log |V|)
\]

On the largest graph we test on,

\[|E| = 130,728\]

On 72 cores, our code finishes in a few minutes, but the work-inefficient algorithm does not terminate within 3 hours.

Efficient peeling using Julienne
Summary of results

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Work</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>k-core</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>wBFS</td>
<td>$O(D +</td>
<td>E</td>
</tr>
<tr>
<td>Delta-stepping</td>
<td>$O(w_\Delta)$</td>
<td>$O(d_\Delta \log</td>
</tr>
<tr>
<td>Approx Set Cover</td>
<td>$O(M)$</td>
<td>$O(\log^3 M)$</td>
</tr>
</tbody>
</table>

ρ : number of rounds of parallel peeling
D : diameter
w_Δ, d_Δ : work and number of rounds of the delta-stepping algorithm
M : sum of sizes of sets

[2] Blelloch, Peng, Tangwongsan: **Linear-work greedy parallel approximate set cover and variants**
Experiments: k-core

Across all inputs:

- Between 4-41x speedup over sequential peeling
- Speedups are smaller on small graphs with large ρ
- 2-9x faster than work-inefficient implementation
Experiments: Delta-stepping

Across all inputs:

- 18-32x self-relative speedup, 17-30x speedup over DIMACS solver
- 1.1-1.7x faster than best existing implementation of Delta-Stepping
- 1.8-5.2x faster than (work-inefficient) Bellman-Ford

|V| = 121M

|E| = 3.6B
Experiments: Hyperlink Graphs

Hyperlink graphs extracted from Common Crawl Corpus

| Graph | |V| | |E| | |E|(symmetrized) |
|---------|----------------|------|------|----------------|
| HL2014 | 1.7B | 64B | 124B |
| HL2012 | 3.5B | 128B | 225B |

- Previous analyses use supercomputers [1] or external memory [2]
- HL2012-Sym requires ~2TB of memory uncompressed

[1] Slota et al., 2015, Supercomputing for Web Graph Analytics
[2] Zheng et al., 2015, FlashGraph: Processing Billion-Node Graphs on an Array of Commodity SSDs
Experiments: Hyperlink Graphs

<table>
<thead>
<tr>
<th>Graph</th>
<th>k-core</th>
<th>wBFS</th>
<th>Set Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL2014</td>
<td>97.2</td>
<td>9.02</td>
<td>45.1</td>
</tr>
<tr>
<td>HL2012</td>
<td>206</td>
<td>—</td>
<td>104</td>
</tr>
</tbody>
</table>

Running time in seconds on 72 cores with hyperthreading

- Able to process in main-memory of 1TB machine by compressing
- 23-43x speedup across applications
- Compression is crucial
 - Julienne/Ligra codes run without any modifications
 - Can’t run other codes on these graphs without significant effort
Conclusion

Julienne: framework for *bucketing-based algorithms*
Conclusion

Julienne: framework for *bucketing-based algorithms*

- Codes:
 - Simple (< 100 lines each)
 - Theoretically efficient
 - Good performance in practice
 - Code will be included as part of github.com/jshun/ligra

- Future work: Trusses, Nucleus Decomposition, Densest Subgraph

![Diagram of k-core, Delta-stepping wBFS, and Parallel Approximate Set Cover]
Thank you!

Please feel free to reach out to ldhulipa@cs.cmu.edu