Ch. 14: Link Analysis and Web Search

Bishesh Khadka
Search “MIT” ---> How do we get to www.mit.edu?
Problem of Ranking

- **Search is hard**
 - Information retrieval systems
 - Keywords
 - Synonymy
 - Polysemy
- **Ranking on web is harder**
 - Abundance of information
 - Content credibility
Link Analysis: Voting by In-Links

- No intrinsic “rank” value in web pages
- Aggregate the number of In-Links
 - In-Links = Endorsements
- Algorithm:
 1. Find “sample” of “relevant” pages
 2. Aggregate In-Links
 3. Rank based on In-Link counts
Figure 14.1: Counting in-links to pages for the query “newspapers.”
Link Analysis: List-Finding Technique

- In-Link voting isn’t perfect
 - Skewed to pages with most In-Links
 - Even irrelevant ones
Figure 14.1: Counting in-links to pages for the query “newspapers.”
Link Analysis: List-Finding Technique

- In-Link voting isn’t perfect
 - Skewed to pages with most In-Links
 - Even irrelevant ones
- “Hub” pages
- “score” is sum of votes for pages it points to
Figure 14.2: Finding good lists for the query "newspapers": each page's value as a list is written as a number inside it.
Link Analysis: Repeated Improvement

- Intuition: Lists with links to “good” sites are credible
- Pages with list compilations are “hubs”
- Pages these hubs point to are “authorities”
- Algorithm:
 1. All hubs and auths have score 1
 2. For k iterations:
 - \(\forall \text{ auth page } p: \text{auth}(p) = \sum \text{ hub}(j) \forall j \text{ hubs that have voted for } p \)
 - \(\forall \text{ hub page } p: \text{hub}(p) = \sum \text{ auth}(j) \forall j \text{ auths that } p \text{ has voted for } \)
Figure 14.3: Re-weighting votes for the query “newspapers”: each of the labeled page’s new score is equal to the sum of the values of all lists that point to it.
Link Analysis: Repeated Improvement

- Hub and auth scores normalized between each set of pages
- Scores stabilize as k gets large
Figure 14.5: Limiting hub and authority values for the query "newspapers."
PageRank

- Intuition: a page is important if it is cited by other important pages
- Algorithm:
 1. ∀ page i PageRank$_i$ = 1
 2. For k iterations:
 - ∀ page i send PageRank$_i$ / (# outgoing edges in i) to every outgoing edge
 - Update all PageRank values to be \sum received
Figure 14.7: Equilibrium PageRank values for the network of eight Web pages from Figure 14.6.
PageRank: Scaled

- Invalid nodes can end up with all the PageRank
Figure 14.8: The same collection of eight pages, but F and G have changed their links to point to each other instead of to A. Without a smoothing effect, all the PageRank would go to F and G.
PageRank: Scaled

- Invalid nodes can end up with all the PageRank
- Intuition: all water going to deepest point
- Scaled Algorithm:
 1. \forall page i PageRank$_i = 1$
 2. For k iterations:
 - Perform normal PageRank updates
 - Scale all PageRanks by factor s
 - Add $(1-s)/n$ PageRanks to all nodes

$S = 0.8 - 0.9$ in practice
PageRank: Random Walk Definition

- The probability of being at a page X after k steps of random walk is precisely the PageRank of X after k applications of the Basic PageRank Update Rule.
- Scaled: with probability s the traveler follows random edge as before, but with probability $1 - s$ the traveler jumps to any random node.
- Proof in 14.6
Link Analysis: Beyond Web

- Authority in network structures
- Publications
- Supreme Court Cases

Figure 14.10: *Roe v. Wade* and *Brown v. Board of Education* acquired authority at very different speeds. (Image from [166].)
References