A Simple and Practical Linear-Work Parallel Algorithm for Connectivity

Julian Shun, Laxman Dhulipala, and Guy Blelloch

Presentation based on publication in Symposium on Parallelism in Algorithms and Architectures (SPAA), 2014
Connected Component Labeling

![Graph with labeled components]

- Connected components labeled as 0, 1, and 2.
Connected Component Labeling

• What are some simple algorithms?
 – Depth-first search
 • Linear work/depth
 • Versions of DFS that are parallel are not work-efficient
 – Breadth-first search
 • Linear work
 • Parallelism limited by graph diameter
 • Polylogarithmic depth version not work-efficient
 – Spanning forest
 • Good parallelism
 • Practical implementations not linear work
Connected Component Labeling

• Parallel (polylogarithmic depth) algorithms
 – Shiloach and Vishkin, Awerbuck and Shiloach
 • Combines (contracts) vertices in each iteration
 • $O(m \log n)$ work, $O(\log n)$ depth
 – Reif, Phillips
 • Uses randomization to simplify contraction algorithms
 • $O(m \log n)$ expected work, $O(\log n)$ depth w.h.p.
 • Does not guarantee a constant fraction of edges removed

– $O(m)$ work algorithms
 • Gazit ’91, Halperin/Zwick ’96, Cole et al. ’96, Poon/Ramachandran ’97, Pettie/Ramachandran ’02
 • Quite complicated. No one has implemented these
Our Contributions

• **Practical** parallel connectivity algorithm with linear work and polylogarithmic depth

• Experimental evaluation: **competitive** with existing parallel implementations (that are not linear-work and polylogarithmic depth)
Review: Random Mate

- Idea: Form a set of non-overlapping star subgraphs and contract them
- Each vertex flips a coin. For each Heads vertex, pick an arbitrary Tails neighbor (if there is one) and point to it

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs
Review: Random Mate

Repeat until each component has a single vertex

Expand vertices back in reverse order with label of neighbor

Source: “Parallel Algorithms” by Guy E. Blelloch and Bruce M. Maggs
Review: Random Mate Algorithm

CC_Random_Mate(L, E)
if(|E| = 0) Return L //base case
else
 1. Flip coins for all vertices
 2. For v where coin(v)=Heads, hook to arbitrary Tails neighbor w and set
 L(v) = w
 3. E’ = { (L(u),L(v)) | (u,v) ∈ E and L(u) ≠ L(v) }
 4. L’ = CC_Random_Mate(L, E’)
 5. For v where coin(v)=Heads, set L'(v) = L'(w) where w is the Tails neighbor
 that v hooked to in Step 2
 6. Return L’

• Each iteration requires O(m+n) work and O(1) depth
 • Assumes we do not pack vertices and edges
• Each iteration eliminates 1/4 of the vertices in
 expectation → O(log n) rounds w.h.p.

W = O((m+n)log n) expected D = O(log n) w.h.p.
Low diameter decomposition
Low diameter decomposition

• (β, d)-decomposition $(0 < \beta < 1)$ partitions V into V_1, \ldots, V_k such that
 – The shortest path between any two vertices in a partition is at most d
 – The number of inter-partition edges is at most βm

• Used in linear system solvers and metric embeddings
Low diameter decomposition

- A \((\beta, O(\log n / \beta))\)-decomposition can be computed in \(O(m)\) expected work and \(O(\log^2 n / \beta)\) depth w.h.p. [Miller et al. 2013]
 - Start breadth-first searches from vertices with exponentially-distributed (parameter \(\beta\)) start times
 - All vertices will have started by time \(O(\log n / \beta)\)
 - BFS’s are work-efficient and terminate in \(O(\log n / \beta)\) iterations.
 - Each iteration requires \(O(\log n)\) depth.
Low diameter decomposition example
Our Connectivity Algorithm

• Compute a \((\beta, O(\log n / \beta))\)-decomposition
• Contract each partition into a single vertex
• Recurse
Our Connectivity Algorithm

• Compute a $(\beta, \Theta(\log n / \beta))$-decomposition
• Contract each partition into a single vertex
• Recurse

Analysis for $\beta=1/2$

• Assume contraction can be done in linear work and in $O(\log n)$ depth
• $m/2$ edges remain after each round in expectation
 – Work = $O(m) + O(m/2) + \ldots = O(m)$ in expectation
• $O(\log n)$ levels of recursion suffice w.h.p.
 – Depth = $O(\log n) \cdot O(\log^2 n / \beta) = O(\log^3 n)$ w.h.p.
Contraction

• Contraction can be done in $O(\log n)$ depth with bookkeeping and parallel prefix sums
 – Intra-partition edges are packed out in $O(m)$ work and $O(\log n)$ depth
 – Prefix sums: relabel vertices to smaller range
 – Duplicate edges removed using parallel hashing in $O(m)$ work and $O(\log n)$ depth
 • Not needed theoretically
Improving depth

• Each round of BFS can be implemented in $O(\log^* n)$ depth w.h.p. using approximate prefix sum and compaction [Gil-Matias-Vishkin ‘91, Goodrich-Matias-Vishkin ‘94]
 – Improves depth of low diameter decomposition to $O(\log n \log^* n)$

• Recurse for $O(\log \log n)$ rounds
 – Left with $O(m/\log n)$ edges
 – Switch to $O(m \log n)$ work, $O(\log n)$ depth algorithm

• Result: Linear work algorithm with $O(\log n \log \log n \log^* n)$ depth w.h.p.
Low diameter decomposition variants

• Resolving conflicts among BFS’s
 – Decomp-min: breaks ties deterministically
 • Miller et al. showed this produces \((\beta, O(\log n/\beta))\)-decomposition
 • Uses write-with-min (via compare-and-swap)
 • Requires two phases
 – Decomp-arb: breaks ties arbitrarily
 • We prove \((2\beta, O(\log n/\beta))\)-decomposition
 • Uses compare-and-swap
 • Requires just a single phase
 – Decomp-arb-hybrid: uses direction-optimizing BFS
 • This is the fastest one and used in the following experimental results
Experiments

• 40-core (with 2-way hyper-threading) Intel Nehalem machine
• Implemented in Cilk Plus
• 3 different implementations, but only showing best one
• Real-world and artificial graphs
Compare to existing implementations

- Existing implementations
 - Sequential spanning forest
 - Parallel spanning forest (Problem Based Benchmark Suite)
 - Parallel spanning forest (Patwary et al.)
 - Parallel BFS (Ligra)
 - Parallel BFS + Label propagation (Slota et al.)

- None provably linear work and polylog depth
3D grid graph \((n = 10^8, m = 3 \times 10^8)\)

- Competitive with other implementations
com-Orkut graph (n ≈ 3x10^6, m ≈ 10^8)

- Fastest implementation uses single BFS
Line graph (n = 5×10^8, m = 5×10^8)

- Algorithms based on single BFS do poorly
Our algorithm is competitive

• No “worst-case” inputs
• Performance always close to the fastest implementation for any graph
 – Only at most 70% slower than spanning forest algorithms, and usually much less
 – Can be faster or slower than BFS, depending on graph diameter
• Up to 13x speedup on 40 cores relative to sequential
• 18—39x self-relative speedup
Conclusion

• Simple and practical linear-work, polylog-depth connectivity algorithm
 – Can be easily modified to compute spanning forest

• As far as we know, first to be both practical and have linear work and polylog depth

• Implementations competitive with existing parallel implementations

• Future direction: Can similar ideas give us linear-work parallel algorithms for minimum spanning forest?