Multicore Triangle Computations Without Tuning

Julian Shun and Kanat Tangwongsan

Presentation is based on paper published in International Conference on Data Engineering (ICDE), 2015
Triangle Computations

- Triangle Counting
 - Count = 3

- Other variants:
 - Triangle listing
 - Local triangle counting/clustering coefficients
 - Triangle enumeration
 - Approximate counting
 - Analogs on directed graphs

- Numerous applications…
 - Social network analysis, Web structure, spam detection, outlier detection, dense subgraph mining, 3-way database joins, etc.

Need fast triangle computation algorithms!
Sequential Triangle Computation Algorithms

V = # vertices E = # edges

- Sequential algorithms for exact counting/listing
 - Naïve algorithm of trying all triplets
 \(O(V^3)\) work
 - Node-iterator algorithm [Schank]
 \(O(VE)\) work
 - Edge-iterator algorithm [Itai-Rodeh]
 \(O(VE)\) work
 - Tree-lister [Itai-Rodeh], forward/compact-forward [Schank-Wagner, Lapaty]
 \(O(E^{1.5})\) work
- Sequential algorithms via matrix multiplication
 - \(O(V^{2.37})\) work compute \(A^3\), where \(A\) is the adjacency matrix
 - \(O(E^{1.41})\) work [Alon-Yuster-Zwick]
 - These require superlinear space
Sequential Triangle Computation Algorithms

Source: “Algorithmic Aspects of Triangle-Based Network Analysis”, Dissertation by Thomas Schank

What about parallel algorithms?
Parallel Triangle Computation Algorithms

• Most designed for distributed memory
 • MapReduce algorithms [Cohen ’09, Suri-Vassilvitskii ‘11, Park-Chung ‘13, Park et al. ‘14]
 • MPI algorithms [Arifuzzaman et al. ‘13, Graphlab]

• What about shared-memory multicore?
 • Multicores are everywhere!
 • Node-iterator algorithm [Green et al. ‘14]
 • $O(VE)$ work in worst case

• Can we obtain an $O(E^{1.5})$ work shared-memory multicore algorithm?
Triangle Computation: Challenges for Shared Memory Machines

1. Irregular computation

2. Deep memory hierarchy
Cache Complexity Model

Complexity = \# cache misses \# disk accesses

Cache-aware (external-memory) algorithms: have knowledge of M and B
Cache-oblivious algorithms: no knowledge of parameters
Cache Oblivious Model [Frigo et al. ‘99]

- Algorithm works well regardless of cache parameters
- Works well on multi-level hierarchies
- Parallel Cache Oblivious Model for hierarchies of shared and private caches [Blelloch et al. ‘11]

![Diagram of cache hierarchy]

Table: Cache Complexity

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Work</th>
<th>Depth</th>
<th>Cache Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan/filter/merge</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(n/B)</td>
</tr>
<tr>
<td>Sort</td>
<td>O(n log n)</td>
<td>O(log^2 n)</td>
<td>O((n/B)log(M/B)(n/B))</td>
</tr>
</tbody>
</table>
External-Memory and Cache-Oblivious Triangle Computation

- All previous algorithms are sequential
- External-memory (cache-aware) algorithms
 - Natural-join \[O(E^3/(M^2 B))\] I/O’s
 - Node-iterator [Dementiev ’06] \[O((E^{1.5}/B) \log_{M/B}(E/B))\] I/O’s
 - Compact-forward [Menegola ‘10] \[O(E + E^{1.5}/B)\] I/O’s
 - [Chu-Cheng ’11, Hu et al. ‘13] \[O(E^2/(MB) + \#triangles/B)\] I/O’s
- External-memory and cache-oblivious
 - [Pagh-Silvestri ‘14] \[O(E^{1.5}/(M^{0.5} B))\] I/O’s or cache misses

- Parallel cache-oblivious algorithms?
Our Contributions

1 Parallel Cache-Oblivious Triangle Counting Algs

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Work</th>
<th>Depth</th>
<th>Cache Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-Merge</td>
<td>$O(E^{1.5})$</td>
<td>$O(\log^2 E)$</td>
<td>$O(E + E^{1.5}/B)$</td>
</tr>
<tr>
<td>TC-Hash</td>
<td>$O(V \log V + \alpha E)$</td>
<td>$O(\log^2 E)$</td>
<td>$O(\text{sort}(V) + \alpha E)$</td>
</tr>
<tr>
<td>Par. Pagh-Silvestri</td>
<td>$O(E^{1.5})$</td>
<td>$O(\log^3 E)$</td>
<td>$O(E^{1.5}/(M^{0.5}B))$</td>
</tr>
</tbody>
</table>

$V = \# \text{ vertices}$
$E = \# \text{ edges}$
$\alpha = \text{arboricity (at most } E^{0.5})$
$M = \text{cache size}$
$B = \text{line size}$
$\text{sort}(n) = (n/B) \log_{M/B}(n/B)$

2 Extensions to Other Triangle Computations:

- Enumeration, Listing, Local Counting/Clustering Coefficients, Approx. Counting, Variants on Directed Graphs

3 Extensive Experimental Study
Sequential Triangle Counting (Exact)

(Forward/compact-forward algorithm)

Rank vertices by degree (sorting)
Return \(A[v] \) for all \(v \) storing higher ranked neighbors

for each vertex \(v \):
 for each \(w \) in \(A[v] \):
 count += \(\text{intersect}(A[v], A[w]) \)

Gives all triangles \((v, w, x)\) where \(\text{rank}(v) < \text{rank}(w) < \text{rank}(x) \)

Work = \(O(E^{1.5}) \)

[Schank-Wagner ‘05, Latapy ‘08]
Proof of $O(E^{1.5})$ work bound when intersect uses merging

1. Rank vertices by degree (sorting)
 Return $A[v]$ for all v storing higher ranked neighbors

2. for each vertex v:
 for each w in $A[v]$:
 count += intersect($A[v], A[w]$)

- Step 1: $O(E + V \log V)$ work
- Step 2:
 - For each edge (v,w), intersect does $O(d^+(v) + d^+(w))$ work
 - For all v, $d^+(v) \leq E^{0.5}$
 - If $d^+(v) > E^{0.5}$, each of its higher degree neighbors also have degree $> E^{0.5}$ and total number of directed edges $> E$, a contradiction
 - Total work = $E \times O(E^{0.5}) = O(E^{1.5})$
Parallel Triangle Counting (Exact)

Step 1
Work = O(E + V \log V)
Depth = O(\log^2 V)
Cache = O(E + \text{sort}(V))

Parallel sort and filter

Rank vertices by degree (sorting)
Return $A[v]$ for all v storing higher ranked neighbors

parallel_for each vertex v:

Parallel reduction

Safe to run all in parallel

Parallel merge (TC-Merge)

Parallel hash table (TC-Hash)
TC-Merge and TC-Hash Details

Parallel reduction

for each vertex \(v \):

for each \(w \) in \(A[v] \):

\[
\text{count} += \text{intersect}(A[v], A[w])
\]

Step 2: TC-Merge

\[
\text{Work} = O(E^{1.5}) \\
\text{Depth} = O(\log^2 E) \\
\text{Cache} = O(E + E^{1.5}/B)
\]

- **TC-Merge**
 - Preprocessing: sort adjacency lists
 - Intersect: use a parallel and cache-oblivious merge based on divide-and-conquer [Blelloch et al. ‘11]

Step 2: TC-Hash

\[
\text{Work} = O(\alpha E) \\
\text{Depth} = O(\log E) \\
\text{Cache} = O(\alpha E)
\]

- **TC-Hash**
 - Preprocessing: for each vertex, create parallel hash table storing edges [Shun-Blelloch ‘14]
 - Intersect: scan smaller list, querying hash table of larger list in parallel

Parallel merge (TC-Merge) or Parallel hash table (TC-Hash)
Comparison of Complexity Bounds

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Work</th>
<th>Depth</th>
<th>Cache Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-Merge</td>
<td>$O(E^{1.5})$</td>
<td>$O(\log^2 E)$</td>
<td>$O(E + E^{1.5}/B)$ (oblivious)</td>
</tr>
<tr>
<td>TC-Hash</td>
<td>$O(V \log V + \alpha E)$</td>
<td>$O(\log^2 E)$</td>
<td>$O(\text{sort}(V) + \alpha E)$ (oblivious)</td>
</tr>
<tr>
<td>Par. Pagh-Silvestri</td>
<td>$O(E^{1.5})$</td>
<td>$O(\log^3 E)$</td>
<td>$O(E^{1.5}/(M^{0.5} B))$ (oblivious)</td>
</tr>
<tr>
<td>Chu-Cheng ‘11,</td>
<td>$O(E \log E + E^2/M + \alpha E)$</td>
<td></td>
<td>$O(E^2/(MB) + #\text{triangles}/B)$ (aware)</td>
</tr>
<tr>
<td>Hu et al. ‘13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pagh-Silvestri ‘14</td>
<td>$O(E^{1.5})$</td>
<td></td>
<td>$O(E^{1.5}/(M^{0.5} B))$ (oblivious)</td>
</tr>
<tr>
<td>Green et al. ’14</td>
<td>$O(VE)$</td>
<td>$O(\log E)$</td>
<td></td>
</tr>
</tbody>
</table>

$V = \#\text{ vertices} \quad E = \#\text{ edges} \quad \alpha = \text{arboricity (at most } E^{0.5})$

$M = \text{cache size} \quad B = \text{line size} \quad \text{sort}(n) = (n/B) \log_{M/B}(n/B)$
Our Contributions

1. Parallel Cache-Oblivious Triangle Counting Algs

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Work</th>
<th>Depth</th>
<th>Cache Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-Merge</td>
<td>$O(E^{1.5})$</td>
<td>$O(\log^2 E)$</td>
<td>$O(E + E^{1.5}/B)$</td>
</tr>
<tr>
<td>TC-Hash</td>
<td>$O(V \log V + \alpha E)$</td>
<td>$O(\log^2 E)$</td>
<td>$O(\text{sort}(V) + \alpha E)$</td>
</tr>
<tr>
<td>Par. Pagh-Silvestri</td>
<td>$O(E^{1.5})$</td>
<td>$O(\log^3 E)$</td>
<td>$O(E^{1.5}/(M^{0.5} B))$</td>
</tr>
</tbody>
</table>

$V = \# \text{ vertices}$
$E = \# \text{ edges}$
$\alpha = \text{arboricity (at most } E^{0.5})$
$M = \text{cache size}$
$B = \text{line size}$
$\text{sort}(n) = (n/B) \log_{M/B}(n/B)$

2. Extensions to Other Triangle Computations:
 Enumeration, Listing, Local Counting/Clustering Coefficients,
 Approx. Counting, Variants on Directed Graphs

3. Extensive Experimental Study
Extensions of Exact Counting Algorithms

- Triangle enumeration
 - Call `emit` function whenever triangle is found
 - **Listing**: add to hash table to list; return contents at the end
 - **Local counting/clustering coefficients**: atomically increment count of three triangle endpoints

- Directed triangle counting/enumeration
 - Keep separate counts for different types of triangles

- Approximate counting
 - Use colorful triangle sampling scheme to create smaller sub-graph [Pagh-Tsourakakis ‘12]
 - Run TC-Merge or TC-Hash on sub-graph with pE edges (0 < p < 1) and return \#triangles/p^2 as estimate
Approximate Counting

- Colorful triangle counting [Pagh-Tsourakakis '12]

 Sampling rate: 0 < p < 1

Parallel scan

1. Assign random color in \(\{1, \ldots, 1/p\}\) to each vertex

Parallel filter

2. Sampling: Keep edges whose endpoints have the same color

Use TC-Merge or TC-Hash

3. Run exact triangle counting on sampled graph, return \(\Delta_{\text{sampled}}/p^2\)

Steps 1 & 2

- Work = \(O(E)\)
- Depth = \(O(\log E)\)
- Cache = \(O(E/B)\)

Step 3: TC-Merge

- Work = \(O((pE)^{1.5})\)
- Depth = \(O(\log^2 E)\)
- Cache = \(O(pE+(pE)^{1.5}/B)\)

Step 3: TC-Hash

- Work = \(O(V \log V + \alpha pE)\)
- Depth = \(O(\log E)\)
- Cache = \(O(\text{sort}(V)+p\alpha E)\)
Our Contributions

1. **Parallel Cache-Oblivious Triangle Counting Algs**

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Work</th>
<th>Depth</th>
<th>Cache Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-Merge</td>
<td>(O(E^{1.5}))</td>
<td>(O(\log^2 E))</td>
<td>(O(E + E^{1.5}/B))</td>
</tr>
<tr>
<td>TC-Hash</td>
<td>(O(V \log V + \alpha E))</td>
<td>(O(\log^2 E))</td>
<td>(O(\text{sort}(V) + \alpha E))</td>
</tr>
<tr>
<td>Par. Pagh-Silvestri</td>
<td>(O(E^{1.5}))</td>
<td>(O(\log^3 E))</td>
<td>(O(E^{1.5}/(M^{0.5} B)))</td>
</tr>
</tbody>
</table>

\(V = \# \text{ vertices}\) \hspace{1cm} \(E = \# \text{ edges}\) \hspace{1cm} \(\alpha = \text{arboricity (at most } E^{0.5})\) \hspace{1cm} \(\text{sort}(n) = (n/B) \log_{M/B}(n/B)\)

2. **Extensions to Other Triangle Computations:**
- Enumeration, Listing, Local Counting/Clustering Coefficients,
- Approx. Counting, Variants on Directed Graphs

3. **Extensive Experimental Study**
Experimental Setup

- Implementations using Intel Cilk Plus
- 40-core Intel Nehalem machine (with 2-way hyper-threading)
 - 4 sockets, each with 30MB shared L3 cache, 256KB private L2 caches
- Sequential TC-Merge as baseline (faster than existing sequential implementations)
- Other multicore implementations: Green et al. and GraphLab
- Our parallel Pagh-Silvestri algorithm was not competitive
- Variety of real-world and artificial graphs
Both TC-Merge and TC-Hash scale well with # of cores:

LiveJournal
4M vtxes, 34.6M edges

Orkut
3M vtxes, 117M edges
40-core (with hyper-threading) Performance

- TC-Merge always faster than TC-Hash (by 1.3—2.5x)
- TC-Merge always faster than Green et al. or GraphLab (by 2.1—5.2x)
Why is TC-Merge faster than TC-Hash?

- TC-Hash less cache-efficient than TC-Merge
- Running time more correlated with cache misses than work
Comparison to existing counting algs.

Twitter graph (41M vertices, 1.2B undirected edges, 34.8B triangles)

- Suri and Vassilvitskii (MapReduce, 1636 nodes) (423 minutes)
- Park and Chung (MapReduce, 47 nodes) (213 minutes)
- PATRIC (MPI, 1200 cores)
- GraphLab (MPI, 64 nodes, 1024 cores)
- GraphLab (40 cores)
- TC-Merge (40 cores)

• **Yahoo graph** (1.4B vertices, 6.4B edges, 85.8B triangles) on 40 cores: TC-Merge takes 78 seconds
 - Approximate counting algorithm achieves 99.6% accuracy in 9.1 seconds
Approximate counting

\[
\frac{T_{\text{approx}}}{T_{\text{exact}}}
\]

<table>
<thead>
<tr>
<th>$p=1/25$</th>
<th>Accuracy</th>
<th>T_{approx}</th>
<th>$\frac{T_{\text{approx}}}{T_{\text{exact}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orkut (V=3M, E=117M)</td>
<td>99.8%</td>
<td>0.067sec</td>
<td>0.035</td>
</tr>
<tr>
<td>Twitter (V=41M, E=1.2B)</td>
<td>99.9%</td>
<td>2.4sec</td>
<td>0.043</td>
</tr>
<tr>
<td>Yahoo (V=1.4B, E=6.4B)</td>
<td>99.6%</td>
<td>9.1sec</td>
<td>0.117</td>
</tr>
</tbody>
</table>
Simple multicore algorithms for triangle computations are provably work-efficient, low-depth and cache-friendly.

Implementations require no load-balancing or tuning for cache.

Experimentally outperforms existing multicore and distributed algorithms.

Future work: Design a practical parallel algorithm achieving $O(E^{1.5}/(M^{0.5} B))$ cache complexity.