A Simple Parallel Cartesian Tree Algorithm and its Application to Parallel Suffix Tree Construction

Julian Shun
Motivation for Suffix Trees

• To efficiently search for patterns in large texts
 – Example: Bioinformatic applications

• Suffix trees allow us to do this
 – $O(N)$ work for construction with $O(M)$ work for search, where N is the text size and M is the pattern size
 • In contrast, Knuth-Morris-Pratt’s algorithm takes $O(M)$ work for construction and $O(N)$ work for search
 – Other supported operations: longest common substring, maximal repeats, longest palindrome, etc.
 – There are sequential implementations but no parallel ones that are both theoretically and practically efficient

• We developed a new (practical) linear-work parallel algorithm and analyzed it experimentally
Outline: Suffix Array to Suffix Tree (in parallel)

- Suffix array + Longest Common Prefixes

 (interleave SA and LCPs)

 Multiway Cartesian tree

 (label edges, insert into hash table)

- Suffix tree

• There are standard techniques to perform all of these steps in parallel, except for building the multiway Cartesian Tree
Suffix Arrays and Longest-common-prefixes (LCPs)

Original String	Suffixes	Suffix array	LCPs
mississippi$ | mississippi$ ississippi$ ssissippi$ ssissippi$ ississippi$ ississippi$ sipi$ ippi$ ppi$ pi$ i$ $ | $ i$ ippi$ issippi$ ississippi$ mississippi$ ppi$ sipi$ sissippi$ sissippi$ ssissippi$ ssissippi$ | 0 1 1 4 0 0 0 2 3

Sort suffixes
Suffix Trees

- String = mississippi$
- Store suffixes in a patricia tree (trie with one-child nodes collapsed)
Multiway Cartesian Tree

- Maintains heap property
- Components of same value treated as one “cluster”
- Inorder traversal gives back the sequence

Sequence = 1 2 0 4 1 1 3 1 2
Suffix Tree History

• Sequential O(n) work algorithms based on incrementally adding suffixes [Weiner ‘73, McCreight ‘76, Ukkonen ‘95]

• Parallel O(n) work algorithms very complicated, no implementations [Sahinalp-Vishkin ‘94, Hariharan ‘94, Farach-Muthukrishnan ‘96]

• Parallel algorithms used in practice are not linear-work

• Practical linear-work parallel algorithm?
 • Simple O(n) work parallel algorithm
 • Fastest algorithm in practice
More Related Work

• Cartesian trees
 – Sequential O(n) work stack-based algorithm
 – Work-optimal parallel algorithm for Cartesian tree on distinct values (Berkman, Schieber and Vishkin 1993)

• Suffix arrays to suffix trees
 – Sequential O(n) work algorithms
 – Two parallel algorithms for converting a suffix array into a suffix tree (Iliopoulos and Rytter 2004)
 • Both require O(n log n) work

• Our contributions
 – A parallel algorithm for the same task which requires only O(n) work and is based on multiway Cartesian trees
 – This is used to obtain a O(n) work parallel suffix tree algorithm
Suffix Array/LCPs \rightarrow Suffix Tree

- Interleave suffix lengths and LCP values
- Build a multiway Cartesian tree on that
- This returns the suffix tree!

<table>
<thead>
<tr>
<th>Suffix lengths</th>
<th>1, 2, 5, 8, 11, 12, 3, 4, 6, 9, 7, 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCP values</td>
<td>0, 1, 1, 4, 0, 0, 1, 0, 2, 1, 3,</td>
</tr>
</tbody>
</table>

Interleaved
String = mississippi$

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10 (interleaved)
Suffix Array to Suffix Tree (in parallel)

- **Suffix array + Longest Common Prefixes**
 - (interleave SA and LCPs)

- **Multiway Cartesian tree**
 - (label edges, insert into hash table)

- **Suffix tree**

Karkkainen and Sander’s algorithm
- $O(n)$ work and $O(\log^2 n)$ span
Cartesian Tree (in parallel)

- Divide-and-conquer approach
- Merge spines of subtrees (represented as lists) together using standard techniques

\[
SA + LCPs = 1, 0, 2, 0, 5, 1, 8, 1, 11, 4, 12, 0, 3, 0, 4, 1, 6, 0, 9, 2, 8, 1, 7, 3, 10
\]

Left subtree Merged tree Right subtree
Cartesian Tree (in parallel)
Cartesian Tree (in parallel)

• Input: Array A[1...N]

Build(A[1...n]){
 if n < 2 return;
 else in parallel do:
 t1 = Build(A[1...n/2]);
 t2 = Build(A[(n/2)+1...n]);
 Merge(t1, t2);
}

Merge(t1, t2){
 R-spine = rightmost branch of t1;
 L-spine = leftmost branch of t2;
 use a parallel merge algorithm on R-spine and L-spine;
}

String = mississippi$

= Leaf node with suffix length

= Internal node with LCP value

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
String = mississippi$

○ = Leaf node with suffix length
○ = Internal node with LCP value

\(SA + LCPs \) = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10 (interleaved)
String = mississippi$

= Leaf node with suffix length = Internal node with LCP value

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
String = mississippi$

= Leaf node with suffix length

= Internal node with LCP value

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
String = mississippi$

= Leaf node with suffix length

= Internal node with LCP value

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
String = mississippi$

Leaf node with suffix length
Internal node with LCP value

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10 (interleaved)
String = mississippi$

$ = Leaf node with suffix length

= Contracted internal node with LCP value

Leaf node with suffix length

Internal node with LCP value

\[SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10\] (interleaved)
Cartesian Tree (in parallel)

- Almost all merged nodes will never be processed again (they are “protected”)
- Analysis shows that this leads to $O(n)$ work

- Almost all merged nodes will never be processed again (they are “protected”)
- Analysis shows that this leads to $O(n)$ work
Cartesian Tree - Complexity bounds

• Observation: All nodes touched, except for two, become protected during a merge.

• Charge the processing of those two nodes to the merge itself (there are only $2n-1$ merges). Other nodes pay for themselves and then get protected.
 – It is important that when one spine has been completely processed, the merge does not process the rest of the other spine, otherwise we get $O(n \log n)$ work

• Therefore, the merges contribute a total of $O(n)$ work to the algorithm
Cartesian Tree - Complexity bounds

- Maintain binary search trees for each spine so that the endpoint of the merge can be found efficiently (in $O(\log n)$ work and span)
- A parallel merge takes $O(\log n)$ span
- Merges contribute $O(n)$ work, and searches in the spine cost $O(\log n)$ work per merge, so $W(n) = 2W(n/2) + O(\log n) = O(n)$
- Span: Recursion is $O(\log n)$ deep and merges + binary search tree operations take $O(\log n)$ span, so the overall span is $S(n) = O(\log^2 n)$
Multiway Cartesian Tree - Complexity bounds

- To obtain multiway Cartesian tree, use parallel tree contraction to compress adjacent nodes with the same value.
- This can be done in $O(n)$ work and $O(\log n)$ span, which is within our bounds.
- We have a $O(n)$ work and $O(\log^2 n)$ span algorithm for constructing a multiway Cartesian tree.
Parallel Cartesian Tree Implementation

```c
struct node { node* parent; int value; }; 

void merge(node* left, node* right) {
    node* head;
    if (left -> value > right -> value) {
        head = left; left = left -> parent;
    } else {head = right; right= right -> parent;}

    while(1) {
        if (left == NULL) {head->parent = right; break;}
        if (right == NULL) {head->parent = left; break;}
        if (left -> value > right -> value) {
            head->parent = left; left = left -> parent;
        } else {head->parent = right; right = right -> parent;}
        head = head->parent;}
}

void cartesianTree(node* Nodes, int n) {
    if (n < 2) return;
    cilk_spawn cartesianTree(Nodes, n/2);
    cartesianTree(Nodes+n/2,n-n/2);
    cilk_sync;
    merge(Nodes+n/2-1,Nodes+n/2);}
```
Suffix Array to Suffix Tree (in parallel)

1. Suffix array + Longest Common Prefixes
2. (interleave SA and LCPs)
3. Multiway Cartesian tree
4. (label edges, insert into hash table)
5. Suffix tree

- Karkkainen and Sander’s algorithm
 - O(n) work and O(log^2 n) span
- Our parallel merging algorithm
 - O(n) work and O(log^2 n) span
- Parallel hash table
 - O(n) work and O(log n) span
Experimental Setup

- Implementations in Cilk Plus
- 40-core Intel Nehalem machine
- Inputs: real-world and artificial texts
Suffix Tree Experiments

- Compared to best sequential algorithm [Kurtz ‘99]

 - Speedup varies from 5.4x to 50x on 40 cores
 - Self-relative speedup 23x to 26x on 40 cores
Suffix Tree on Human Genome (≈3 GB)

- Differences due to various factors
 - Shared memory vs. distributed memory
 - Algorithmic differences

Not linear-work
Conclusions

• Developed an $O(n)$ work and $O(\log^2 n)$ span algorithm for parallel multiway Cartesian Tree construction
• This allows us to transform a suffix array into a suffix tree in parallel
• Experiments show that our implementations outperform existing ones and achieve good speedup