Work-efficient parallel union-find

Natcha Simsiri, Kanat Tangwongsan, Srikanta Tirthapura, Kun-Lung Wu

Presenter: Jessica Shi

6.886 Algorithm Engineering
Spring 2019, MIT
Introduction
Union-find

- **Union-find**: Maintain a collection of disjoint sets supporting:
 - `union(u, v)`: Combine sets containing `u` and `v`
 - `find(v)`: Return set containing `v`
 - If `u` and `v` are in the same set, `find(u) = find(v)`
Goal: Incremental graph connectivity

- **Incremental graph connectivity**: Graph connectivity as edges are added over time

 \[
 \text{find}(0) = 1 \implies \text{union}(0, 3) \implies \text{find}(0) = 4
 \]
Goal: Parallelization

- **Shared-memory parallelization:**
 - Communication overhead in distributed setting
 - Multicore machines can store large graphs

- **Work-efficiency:**
 - Guarantee worst-case performance
Previous work

- **McColl et al.** [1]: Parallel alg for fully dynamic connectivity
 - No theoretical bound
- **Manne and Patwary** [2]: Parallel union-find alg for distributed setting
- **Patwary et al.** [3]: Shared-memory parallel union-find alg
 - No theoretical bound
- **Shun et al.** [4] and **Gazit** [5]: Work-efficient parallel alg for connectivity
 - Only for static graphs

Main results: Union-find

- **Simple parallel algorithm**
 - b union/find: $O(b \log n)$ work, $O(\text{polylog}(n))$ depth
 - $O(n)$ memory

- **Work-efficient parallel algorithm**
 - m union, q find: $O((m + q)\alpha(m + q, n))$ total work, $O(\text{polylog}(m, n))$ depth
 - $\alpha = \text{inverse Ackermann’s function}$
 - $O(n)$ memory

- **Implementation of simple parallel algorithm**
Preliminaries
Discretized stream input: Sequence of minibatches

- Each minibatch consists of either union queries or find queries

Parallel subroutines:

- Filter, prefix sum, map, pack: $O(n)$ work, $O(\log^2 n)$ depth
- Duplicate removal: $O(n)$ work, $O(\log(2n))$ depth
- Integer sort: $a_i \in [0, O(1) \cdot n]$: $O(n)$ work, $O(\text{polylog}(n))$ depth
- Connectivity (static) \cite{ShunDB14}: $O(|V| + |E|)$ work, $O(\text{polylog}(|V|, |E|))$ depth

\cite{ShunDB14} Shun, Dhulipala, and Blelloch. 2014.
Union by size

- Always link tree with fewer vertices to tree with more vertices
 - Tree height $O(\log n)$
 - Each union/find $O(\log n)$

size 4

size 6

size 10

4

6

0

2

5

1

7

3

8

9

3

8

5

0

2

1

7

6

4

0

2

5

3

8

9

1

7
Simple parallel algorithm
Simple parallel algorithm: Find

- **Parallel find**: Perform finds in parallel
 - Read-only = no conflicts
- **Work**: $O(b \log n)$
- **Depth**: $O(\text{polylog} n)$
Simple parallel algorithm: Union

- Safe to run multiple unions in parallel if they belong to different trees
- **Worst case:** Star minibatch: \((0, 1), (0, 2), (0, 3), \ldots, (0, 7)\)
Simple parallel algorithm: Union

- **Main idea**: Doesn’t matter how we connect \{0, \ldots, 7\}
- **3 parallel rounds**:

\[(0, 1), (2, 3), (4, 5), (6, 7) \implies (0, 2), (4, 6) \implies (0, 4)\]
Simple parallel algorithm: Union

- **Parallel join**: Recursively join tree roots, so that they are all connected at the end
 - \(u \leftarrow \) parallel join on first half of roots
 - \(v \leftarrow \) parallel join on second half of roots
 - Return \(\text{union}(u, v) \)

- **Parallel union**:
 - Relabel each \((u, v)\) with the roots of \(u\) and \(v\)
 - Remove self-loops
 - Compute the connected components among our edge pairs
 - For each connected component (in parallel):
 - Parallel join the roots
Simple parallel algorithm: Union

- **Parallel join:**
 - **Work:** \(W(k) = 2W(k/2) + O(1) \Rightarrow O(k) \)
 - **Depth:** \(D(k) = D(k/2) + O(1) \Rightarrow D(k) = O(\log k) \)

- **Parallel union:** \(b \) unions:
 - **Work:** \(O(b \log n) \)
 - **Depth:** \(O(\log \max(b, n)) \)
Preliminaries 2.0
Path compression

- find(8)

- Path compression & union by size: Amortized $O(\alpha(n))$ union/find
Work-efficient algorithm
Work-efficient algorithm: Path compression

- **Parallel union**: Same as in the simple parallel algorithm
- **Parallel find**:
 - Find roots for all queries
 - **BFS**: When flows meet up, only one moves on (use remove duplicates)
 - Distribute roots back along BFS path for path compression
 - Response distributor
Response distributor

- Save all (from, to) pairs on BFS (\mathcal{F} = set of all from values)
- Must construct function that finds all pairs from f

Response distributor:

- Hash all from values to range $[3 \cdot |\mathcal{F}|]$
- Integer sort ordered pairs by hashed from value
- Create array A of length $3 \cdot |\mathcal{F}| + 1$ s.t. i^{th} entry marks beginning of pairs where hashed from value is i

- **Work:** $O(|\mathcal{F}|)$, **Depth:** $O(\text{polylog}(|\mathcal{F}|))$

Distributor function:

- Hash f and use A to find all pairs from f

- **Work:** $O(|\mathcal{F}|)$, **Depth:** $O(\log |\mathcal{F}|)$
Work-efficient algorithm: Path compression

- **Parallel find:**
 - **Work:** Given by number of nodes encountered in BFS
 - **Depth:** $O(polylog(n))$

- **Note:** There exists an ordering of find queries s.t. serial find produces the same forest as parallel find, and traversal cost is equal

- ∴ **work-efficient!**
Implementation
Implementation

- **Simple parallel algorithm:**
 - **Simple path compression:** After union minibatch, traverse tree one more time to distribute roots
 - **Note:** Does not give all benefits of path compression, esp within minibatch
 - **Connected components:** Use alg by Blelloch et al. [7] (worse theoretical bounds, good real-world perf)

Evaluation

- Amazon EC2 instance, 20 cores (40 hyperthreaded)
- Parallel overhead: 1.01x – 2.5x compared to seq w/o path compression
- Speedup: 4.6x with $b=500K$, 9.4x with $b=20M$

Figure: Average throughput (edges per second) of batch union over number of threads, of local16 (left) and rMat16 (right)
Conclusion
Conclusion

- Simple parallel algorithm
- Work-efficient parallel algorithm
- Implementation of simple parallel algorithm
- **Future work:**
 - Implementation of work-efficient parallel algorithm
 - Switch algorithms depending on batch size:
 - Linear work in \# of edges given large union batch (e.g., DFS if all edges given in one batch – our alg is superlinear)
 - Fall back to union-find algorithm for smaller minibatch
Thank you!