Distributed Evaluation of Subgraph Queries Using Worst-Case Optimal Low-Memory Dataflows

Khaled Ammar, Frank McSherry, Semih Salihoglu, Manas Joglekar

Presented by: Ramya Nagarajan
Spring 2019
Agenda

- Motivation
- Existing Approaches
- Dataflow Primitive
- Contributions
- Implementation
- Evaluation
- Further Work
Motivation

○ Subgraph queries are a fundamental computation performed by many applications
 □ Clique-finding for related page detection
 □ Diamond-finding for social network recommendation systems
○ Efficiency and scalability as primary goals
○ Linear use of memory, worst-case optimal computation and communication costs
Contributions

- **BigJoin**
 - Distributed algorithm for static graphs
 - Achieves a subset of theoretical guarantees
- **Delta-BiGJoin:**
 - Distributed algorithm for dynamic graphs
 - Achieves same theoretical guarantees in insertion-only workloads
- **BigJoin-S:**
 - Distributed algorithm for static graphs
 - Achieves all theoretical guarantees
 - Notable theoretical guarantee: balances work-load across distributed workers on arbitrary inputs instances
Existing Approaches

○ Distributed Approaches:
 □ Edge-at-a-time
 □ Variants of Shares or Hypercube

○ Serial Approaches:
 □ Vertex-at-a-time
Edge-at-a Time Approaches

- Treat query subgraph as a relational query
- Execute series binary joins to determine result
- Provably worst suboptimal:
 - Worst-case $O(IN^2)$ computations

```plaintext
open-tri(a_1,a_2,a_3):=edge(a_1,a_2),edge(a_2,a_3)
tri(a_1,a_2,a_3):=open-tri(a_1,a_2,a_3),edge(a_3,a_1)
```
Shares Algorithm

- Given a distributed cluster with w workers, n relations, m attributes (i.e. n edges, m vertices)
- Divides the output space equally over w workers
- Replicates edge tuples and distributes each tuple to every worker that can produce an output depending on tuple
- Workers run local join algorithm on received input
- Improved communication and computation costs
- Super-linear cumulative memory growth
Vertex-at-a-Time Approaches

○ Generic Join:
 □ Starts by finding all a_1 vertices that will end up in output
 □ Then (a_1, a_2), etc.
Generic Join Algorithm

○ Global Attribute Ordering
○ Extension Indices
 □ $a_1...a_m$ subsets in queries
 □ Maps to $j_1...j_m$ subset
○ Prefix Extension Stages
 □ Iteratively compute result of Q when each relation is restricted to the first j attributes in common global order
Dataflow Primitive

- Starts with a collection of P_j tuples stored across w workers
- Produces the P_{j+1} tuples across the same workers
- 4 steps:
 - Initialization
 - Count Minimization
 - Candidate Proposal
 - Intersection
Dataflow Primitive

- **Initialization:**
 - Tuples of P_j are distributed amongst workers arbitrarily
 - Each prefix transformed into a triple:
 - (prefix, smallest candidate set size, index of relation with that number of candidates)
○ **Count Minimization:**
 □ Workers exchange triples
 □ Place each triple at the worker with access to the corresponding extension set
 □ Each triple per worker updates its extension set
 □ Final result if collection of triples indicating the prefix relations with the fewest extensions
Dataflow Primitive

- Candidate Proposal
 - Produce triple (p, min-c, min-i)
 - Each extension e of P
- Intersection
 - Workers exchange candidate tuples for each relation
Contributions

- BigJoin: distributed algorithm for static graphs
 - Achieves a subset of theoretical guarantees
- Delta-BiGJoin:
 - Distributed algorithm for dynamic graphs
 - Achieves same theoretical guarantees in insertion-only workloads
- BigJoin-S:
 - Distributed algorithm for static graphs
 - Achieves all theoretical guarantees
 - Notable theoretical guarantee: balances work-load across distributed workers on arbitrary inputs instances
BiGJoin: Joins on Static Relations

- Used for evaluating queries on static graphs
- Steps:
 - Arbitrarily order attributes
 - Build indices over each relation for each prefix in global order
 - Assemble dataflows for extending each P_j to P_{j+1} for each attribute a_i
BiGJoin Analysis

- $O(mnMaxOut_Q)$ communication and computation costs
 - Equal to GJ
- Cumulative Memory Required:
 - $O(m\text{IN} + mB)$
- Good work-load balance across workers
- No guaranteed workload balance on adversarial inputs
Delta-BiGJoin: Joins on Dynamic Relations

○ Delta-GJ Algorithm
 □ Query Q
 □ For each relation R, have some change to the deletion or addition of records in that relation
 □ New delta query for each relation
 ○ Assume that tuples in record are labeled s.t can tell inserted records apart from existing records
 □ Union of delta queries results in correct output query
Consider the following n delta queries:

\[
\begin{align*}
 dQ_1 &:= \Delta R_1, R_2, R_3, \ldots, R_n \\
 dQ_2 &:= R'_1, \Delta R_2, R_3, \ldots, R_n \\
 dQ_3 &:= R'_1, R'_2, \Delta R_3, \ldots, R_n \\
 \vdots \\
 dQ_n &:= R'_1, R'_2, R'_3, \ldots, \Delta R_n
\end{align*}
\]
Delta-BiGJoin Analysis

- Communication and computation cost: $O(mn^2 + \text{MaxOut}_Q)$
- Cumulative Memory: $O(m\text{NIN}(z) + mB)$
- Rounds of Computation: $O\left(\frac{(mn^2\text{MaxOut}_Q)}{B'} + zmn^2\right)$
BiGJoin-S

○ Sources of Imbalance:
 □ Sizes of extension indices
 ○ A single worker stores the entire extension set for a given prefix
 □ Number of Proposals
 ○ Imbalanced amount of candidate extensions to prefixes
 □ Number of Index Lookups
 ○ If many prefixes originate from the same relation R, there can be an imbalance in the number of prefixes and extensions each worker receives
BiGJoin-S

- Handling Skew
 - Skew-Resilient Indices
 - Modified Dataflow Primitive
 - Extension-Resolve
 - Intersect
 - Count
 - Balance
BiGJoin-S

- Skew-resilient Extension Indices
 - Split extension indices across workers
 - Count Index
 - Extension Resolver Index
 - Original Extension Index
○ Extension-Resolve
 □ In Big-Join:
 ○ Pass (p, k) pair to extension resolver
 ○ Receive candidate extension in return
 □ Skew in number of prefixes an extension has
□ Big-JoinS:
 ○ Locally aggregate extension requests made to a certain relation for a certain (p, k)
 ○ Send only one version of this request
BiGJoin-S

○ Intersect
 □ Big-Join:
 ○ Each (p, e) is routed through each of the Extension sets in order
 □ Big-JoinS:
 ○ Distributed lookup of (p, e) by sending to the worker that holds the Extension set for (p, e)
BiGJoin-S

- **Balance**
 - Skew: Imbalance in the amount of work each worker receives after count minimization
 - Each worker deterministically distributes its amount of work amongst all workers
Theorem 3.4. Suppose $B' \geq \max\{w, \log(IN \times MaxOut_Q)\}$ and let $B = wB'$. Then BiGJoin-S has the following costs:

- Cumulative computation and communication cost of $O(mn \cdot MaxOut_Q)$ and memory cost of $O(mnIN + mB)$.
- $O\left(\frac{mn \cdot MaxOut_Q}{B}\right)$ rounds of computation.
- With at least probability $1 - O\left(\frac{1}{IN}\right)$, each worker performs $O(B')$ communication and computation in each round of the algorithm. In MPC terms, the load of BiGJoin-S is $O\left(\frac{mnIN}{w} + mB'\right)$, so assuming $B' < \frac{IN}{w}$, BiGJoin-S has optimal load.
Evaluation

○ Evaluate triangle finding on standard graphs on different systems
 □ Establish a baseline for running time
○ Implementation scaling
 □ Vary number of workers across single machine and multiple machines
 □ 64 billion-edge graph
○ Evaluate BigJoin and Delta-BiGJoin
○ Batch size of 10,000
Experimental Setup

Table 1: Graph datasets used in our experiments.

<table>
<thead>
<tr>
<th>Name</th>
<th>Vertices</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiveJournal (LJ) [36]</td>
<td>4.8M</td>
<td>68.9M</td>
</tr>
<tr>
<td>Twitter (TW) [35]</td>
<td>42M</td>
<td>1.5B</td>
</tr>
<tr>
<td>UK-2007 (UK) [35]</td>
<td>106M</td>
<td>3.7B</td>
</tr>
<tr>
<td>Common Crawl (CC) [60]</td>
<td>1.7B</td>
<td>64B</td>
</tr>
</tbody>
</table>
COST

- Number of cores that the algorithm needs to outperform an optimized single-threaded version
Evaluation against Frameworks

- EmptyHeaded
 - Highly-optimized shared-memory parallel system
 - Evaluating subgraph queries on static graphs using GJ

<table>
<thead>
<tr>
<th>Query</th>
<th>EH-R</th>
<th>EH-I</th>
<th>BiGJoinT-R</th>
<th>BiGJoinT-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle-LJ</td>
<td>1.2s</td>
<td>150.3s</td>
<td>6.5s</td>
<td>1.9s</td>
</tr>
<tr>
<td>Diamond-LJ</td>
<td>31.7s</td>
<td>150.3s</td>
<td>712.3s</td>
<td>1.9s</td>
</tr>
<tr>
<td>Triangle-TW</td>
<td>213.8s</td>
<td>4155s</td>
<td>588s</td>
<td>34.4s</td>
</tr>
</tbody>
</table>
Evaluation against Frameworks

- Arabesque
 - Distributed system specialized in finding subgraphs

<table>
<thead>
<tr>
<th>Query</th>
<th>Arbsq-R</th>
<th>Arbsq-I</th>
<th>BiGJoinT-R</th>
<th>BiGJoinT-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle</td>
<td>69.0s</td>
<td>1.46B</td>
<td>3.4s</td>
<td>38M</td>
</tr>
<tr>
<td>4-clique</td>
<td>273.7s</td>
<td>18.7B</td>
<td>21.8s</td>
<td>350M</td>
</tr>
</tbody>
</table>
Future Work

- Improving skew resilience of BigJoin
- Utilizing symmetries of queries
- Practical algorithms that have better than worst-case optimality