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Goal
1. Studying the effect of races on cache misses.
2. Studying the effect work steals have on cache 

misses.
3. Designing and implementing efficient tools to 

improve data locality while allowing work 
stealing.



Model

● Represent Graphs using DAG
○ Series-Parallel Computation
○ Nested-Parallel Computation

● Simple Cache Replacement Policy
○ Deterministic
○ Cache replacement of a 

cache line is only a function of
information after last access to line.
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General Computation Example

● Graph G4C
○ Root
○ L4C in red
○ R4C in blue
○ 4 merge nodes.

● Cache access
○ C cache access per 

node.
○ Three groups of cache

■ Root
■ L4C
■ R4C + 4 nodes



General Computation Example

● Serial Execution
○ Root
○ L4C 
○ R4C + merger nodes

● Cache misses
○ Root: C
○ L4C: C
○ R4C+ merger nodes: C
○ Total: 3C cache misses!



General Computation Example

● 2-Core Execution
○ Root (Core 0)
○ L4C (Core 0) and R4C 

(Core 1)
○ Merger nodes (Core 0)

● Problem
○ R4C and merger nodes 

are accessing same 
data but executed by 
different cores.



General Computation Example

● 2-Core Cache misses
○ Root: C
○ L4C: C
○ R4C: C
○ Merger nodes: 4C!!!
○ Total: 7C cache misses!
○ Overhead: 4C
○ Overhead is 

independent from serial 
cache misses.



Nested-Parallel 
Computations

     
     

     
     

     
          

          

     

          
     

     



Race and Caches

● Races
○ Write-Write dependency: can cause the situation in the previous slide.
○ Write-Read dependency: a thread write will invalidate the other thread’s cache.



Drifted Nodes

● Drifted Node

A node that has a different 
predecessor in the parallel 
execution than the serial execution.
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Drifted Nodes and cache

● Simple cache policy is 
function of cache state 
and cache access.

● If two execution start 
at the same node and 
perform same access, 
then, they can differ by 
at most C cache 
misses.
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Conclusions about parallel nested computation

● Total no. of cache misses overhead of a nested parallel algorithm is:
C * no. of drifted nodes.

● Total no. of drifted nodes is upper bounded by twice no. of steals.

● Expected No. of overhead cache misses on P processors is O(⌈m/s⌉ * C * P * 
span), where m is the execution time of an instruction incurring a cache miss 
and s is the steal time.



Iterative 
Data-Parallel 
Application

for(int step = 0; step < 2; step ++) {

  Parallel_for(int i =1; i < n-1; i++) {

        A[i] = (A[i-1] + A[i] + A[i+1])/3;

   }

}
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Iterative Data-Parallel Application

Problem

Same data accessed by 
different processors in 
different steps.
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Typical Work Stealing

Each process x maintains one deque (double-ended queue), such that:

● When x spawns a new independent task, it pushes it on the bottom of the deque.

● When x is done with its current task, it pops a task from the bottom of the deque.

● When a process is idle and has an empty deque, it steals a task from the top of 
another random process deque.



Prioritized Work Stealing: Mailbox

Each process x maintains a mailbox besides its regular deque such that:

● x’s mailbox is a FIFO queue containing threads with affinity to x.

● When x creates a thread, it pushes it to both the deque and the mailbox.

● When x is idle, it tries to pop a task from the mailbox first, if it failed, it tries the 
deque, if both fail, it tries stealing.

● Some mechanism is needed to maintain consistency between mailbox and 
deque.



Ropes

Each rope:

● corresponds to a subarray.
● Has an affinity to a process.
● Puts corresponding thread in the correct mailbox.
● If the corresponding thread got stolen, the robe is updated with a new process.

Take away: Ropes increase the likelihood that same data are accessed by the same 
process at each step in a dynamic fashion that does not harm load balance.



Implementations

● Static partitioning (static)
○ Bad load balancing.
○ Perfect locality.

● Work stealing (none)
○ Good load balancing.
○ Bad locality.

● Work stealing with ropes (lg)
○ Good load balancing
○ Good locality

● Work stealing with ropes 
with initial placements (ip)

○ Worse load balancing
○ Better locality



80%
Improvement over work regular work stealing



Conclusion

● Contributions
○ Theoretical

■ Lower bound on worst case cache 
overhead of general computation 
series-parallel parallelism.

■ Upper bound on worst case cache 
overhead of nested-parallel 
computations

○ Practical
■ Ropes and mailboxes to improve data 

locality of work stealing.



Thanks!
Questions?


