Parallel graph decompositions using random shifts

Gary L. Miller, Richard Peng, Shen Chen Xu

Presenter: Jessica Shi

6.886 Algorithm Engineering
Spring 2019, MIT
Introduction
Graph decomposition

- **Graph decomposition**: Partition vertices of a graph such that:
 - Subsets satisfy some connectivity property
 - There are few edges between subsets
- **Diameter**: Maximum length of a shortest path between any two vertices
- **Low diameter graph decomposition**
Motivation

- Key subroutine in many (distributed) algorithms:
 - Low-stretch embedding of graphs into trees [1]
 - Shortest path approximations [2]
 - Symmetric diagonally dominant (SDD) linear system solvers [3]
 - Applications: Max flow, negative-length shortest path [4]
 - Issue: Polylog ($\log^O(1) n$) work factor b/c of low diameter decomposition alg to generate tree embeddings

Aside: Diameter

- **Strong diameter**: Diameter of the induced subgraph on the subset S
- **Weak diameter**: Diameter of the subset S where shortest paths may use vertices outside of S
 - Quadratic work factor for parallel low diameter decompositions $[5]$
- **Note**: Take “diameter” to mean “strong diameter”

![Figure: The strong diameter of the blue vertices is 3, but the weak diameter is 2.](image)

Main results
Main results

Main problem

- A \((\beta, d)\) decomposition is a partition of \(V\) into subsets \(S_i\) such that
 - Each \(S_i\) has diameter \(\leq d\)
 - Number of edges between subsets \(\leq \beta m\).
- **Note:** Usually (optimally), \(d = O\left(\log \frac{n}{\beta}\right)\)
Main results

Related work

- **Sequential**: $(\beta, O(\log n/\beta))$ decomposition:
 - $O(m)$ time
- **Previous** [6]: $(\beta, O(\log^4 n/\beta))$ decomposition:
 - Expected $O(\log^3 n/\beta)$ depth, $O(m \log^2 n)$ work
- **This work**: $(\beta, O(\log n/\beta))$ decomposition $(\beta \leq 1/2)$:
 - Expected $O(\log^2 n/\beta)$ depth, $O(m)$ work
 - Work-efficient!

Sequential (ball-growing) algorithm ($\beta = 1/2$)
Sequential (ball-growing) algorithm \((\beta = 1/2)\)
Sequential algorithm (overview)

- Choose a vertex v and start a subset ("ball") $S_v = \{v\}$
- Use BFS to add vertices to S_v
- Stop when ($\#$ edges on the boundary of $S_v) < \beta \cdot (\#$ of edges in S_v)
- Delete all vertices in S_v
- Repeat until all vertices have been deleted (partitioned)
Sequential algorithm (crossing edge analysis)

- All subsets S_v satisfy $(\# \text{ edges on the boundary of } S_v) < \beta \cdot (\# \text{ of edges in } S_v)$ upon creation
- \therefore only βm edges total cross subsets
Sequential algorithm (diameter analysis)

- Let i denote BFS iterations
- Let m_i denote # edges in S_v after step i
- At step i:
 - Increase diameter by at most 2
 - Must have added all vertices from step $(i - 1)$:
 - # edges on frontier at start of step $(i - 1) \geq \beta m_{i-2}$
 - $m_{i-1} \geq (1 + \beta) \cdot m_{i-2}$
- Since diameter increases at most linearly with i, the diameter of a subset is bounded by $O\left(\log n / \beta\right)$
Main results

Blelloch et al.’s algorithm (sketch)

- Randomly sample a subset of vertices to be “centers”
- Grow balls starting from the centers in parallel
- If two balls overlap, choose which ball to place overlapping vertices based off of distance to center (with an additive random shift factor)
- Repeat until all vertices have been partitioned
This algorithm

- Each \(u \in V \) picks \(\delta_u \) indep. from an exp. distr. w/mean \(1/\beta \)
- Let \(\delta_{\text{max}} \) denote the max \(\delta_u \)
- Start an instance of parallel BFS, with \(v \) s.t. \(\delta_{\text{max}} = \delta_v \)
- When the vertex at the head of the queue has dist > \(\delta_{\text{max}} - \delta_u \), start parallel BFS with \(u \) (add to queue) if it has not yet been visited (as a center)
- Assign each vertex \(u \) to the center that visited it in the BFS
- Note: Think of \(\delta_u \) as randomized start times for \(u \) to begin its own ball
Preliminaries
Simplification: Take diameter to be the max distance from a designated center u of subset S_u to any $v \in S_u$

- Bounds diameter up to factor of 2

Shifted distance: Define $\text{dist}_{\delta}(u, v) = \text{dist}(u, v) - \delta_u$
Preliminaries

- **Exponential distribution:**

 - **PDF:** \(\text{Exp}(\gamma) = f(x, \gamma) = \begin{cases}
 \gamma e^{-\gamma x} & \text{for } x \geq 0, \\
 0 & \text{otherwise}
 \end{cases} \)

 - **CDF:** \(F(x, \gamma) = \Pr[\text{Exp}(\gamma) \leq x] = \begin{cases}
 1 - e^{-\gamma x} & \text{for } x \geq 0, \\
 0 & \text{otherwise}
 \end{cases} \)

 - **Mean:** \(1/\gamma \)

- **\(i^{th} \) order statistic** of RV \(\{X_i\}_{i\in[n]} \): \(X_{(i)}^n \) = value of \(i^{th} \) smallest \(X_{(1)}^n \) and consecutive differences \(X_{(k+1)}^n - X_{(k)}^n \) are indep.

 - **PDF of** \(X_{(1)}^n \): \(\text{Exp}(n\gamma) \)

 - **PDF of** \(X_{(k+1)}^n - X_{(k)}^n \): \(\text{Exp}((n - k)\gamma) \)
Analysis (correctness)
This algorithm

- Each $u \in V$ picks δ_u indep. from an exp. distr. w/mean $1/\beta$
- Let δ_{max} denote the max δ_u
- Start an instance of parallel BFS, with v s.t. $\delta_{\text{max}} = \delta_v$
- When the vertex at the head of the queue has dist $> \delta_{\text{max}} - \delta_u$, start parallel BFS with u (add to queue) if it has not yet been visited (as a center)
- Assign each vertex u to the center that visited it in the BFS
- **Note**: Think of δ_u as randomized start times for u to begin its own ball
Modified algorithm

- Each $u \in V$ picks δ_u indep. from $\text{Exp}(\beta)$
- Assign each vertex v to S_u where u minimizes $\text{dist}_\delta(u, v)$ (break ties lexicographically)
- These form the partitions S_u
Lemma

If \(v \in S_u \) and \(v' \) is the last vertex on the shortest path from \(u \) to \(v \), then \(v' \in S_u \) as well.

Proof.

Assume \(v' \in S_{u'} \):

- **Shortest path:** \(\text{dist}_{-\delta}(u, v) = \text{dist}_{-\delta}(u, v') + 1 \)
- **Adjacent:** \(\text{dist}_{-\delta}(u', v) \leq \text{dist}_{-\delta}(u', v') + 1 \)
- **Cases:**
 - \(v' \) closer to \(u' \) than to \(u \) \(\Rightarrow \) \(v \) is closer to \(u' \) than to \(u \), so \(v \in S_{u'} \)
 - \(v' \) is the same distance from \(u' \) and \(u \), but \(u' \) is lexicographically before \(u \) \(\Rightarrow \) \(v \) is the same distance from \(u' \) and \(u \), so \(v \in S_{u'} \)
Modified algorithm (diameter analysis)

- **Note:** Since we may have $v \in S_v$, diameter is bounded above by $\delta_{\text{max}} = \max_u \delta_u$

Lemma

The expected value of the max shift is H_n/β, where H_n is the n^{th} harmonic number. With high probability (by failure parameter d), $\delta_u \leq O(\log n/\beta)$.

Proof.

- Expected value of max shift: Sum over differences of order statistics:
 - $E[\delta_{\text{max}}] = E[\delta^n_{(n)}] = \frac{1}{\beta} \sum_{i=1}^n \frac{1}{i} = H_n/\beta$
- Bound all δ_u: Use CDF and union bound:
 - $Pr[\delta_u \geq (d + 1) \cdot \ln n/\beta] \leq n^{-(d+1)}$
Modified algorithm (crossing edge analysis)

Lemma

Let edge \((u, v)\) have midpoint \(w\). If \(u \in S_{u'}\) and \(v \in S_{v'}\) \((u' \neq v')\), then \(\text{dist}_{-\delta}(u', w)\) and \(\text{dist}_{-\delta}(v', w)\) are within 1 of the min shifted distance to \(w\).

Proof.

- Let the arg min shifted distance to \(w\) be \(w'\)
- Since \(w\) to \(u\) is \(1/2\), \(\text{dist}_{-\delta}(w', u) \leq \text{dist}_{-\delta}(w', w) + 1/2\)
- If \(\text{dist}_{-\delta}(u', w) > \text{dist}_{-\delta}(w', w) + 1\),
 \[
 \text{dist}_{-\delta}(u', u) \geq \text{dist}_{-\delta}(u', w) - 1/2 \\
 > \text{dist}_{-\delta}(w', w) + 1/2 \quad \text{(substitute)} \\
 \geq \text{dist}_{-\delta}(w', u),
 \]
 but \(u'\) minimizes shifted dist to \(u\)
Modified algorithm (crossing edge analysis)

Main idea: For every edge \((u, v)\):

- Consider all shifted distances to midpoint \(w\)
- If the min + second min of these aren’t within 1 of each other, then \(u\) and \(v\) must be in same subset
- Bound the probability \(p\) that min + second min are within 1 of each other

\[\therefore pm\text{ is expected number of edges across subsets}\]

- Represent shifted distances as \(d_i - \delta_i\), where \(d_i\) is arbitrary and \(\delta_i\) is from \(\text{Exp}(\beta)\)
Modified algorithm (crossing edge analysis)

Proof sketch:

- d_i indicates when a light bulb is turned on (time goes from high to low), δ_i is lifespan
- $\min(d_i - \delta_i) =$ time when last light burns out
- Want to bound diff Δ b/w when last light burns out + second last light burns out
- Exp distr is memoryless \Rightarrow last light follows exp distr after second last light burns out
- $Pr[\Delta < c]$ is bounded by CDF $1 - e^{-c\beta} \approx c\beta$ (for small $c\beta$)
- Case: If last light not on yet when second last light dies, $Pr[\Delta < c]$ can only be less than the above
Modified algorithm (crossing edge analysis)

Lemma

$$Pr[\Delta \leq c]$$ is at most $$O(\beta c)$$.

Proof.

- More convenient to consider $$-(d_i - \delta_i)$$ ⇒ let $$d'_i = -d_i$$
- Let $$X_i = d'_i + \delta_i - d'_1$$, let $$X(i)$$ be $$i^{th}$$ order stat of $$X_j$$
 - Note: $$X_i$$ follows exp distr w/mean $$1/\beta$$
- WTS: $$Pr[X(n) - X(n-1) > c] \geq e^{-\beta c}$$
- For $$S \subseteq [n]$$, let $$\varepsilon_S$$ be the event where $$X_i \geq 0$$ iff $$i \in S$$
- $$Pr[X(n) - X(n-1) > c] = \sum_S Pr[X(n) - X(n-1) > c | \varepsilon_S] Pr[\varepsilon_S]$$
Modified algorithm (crossing edge analysis)

Proof.

- Since $X_1 = \delta_1 \geq 0$, if $1 \notin S$, then $Pr[\varepsilon_S] = 0$

- Case: $|S| = 1$: $S = \{1\}$:
 - $Pr[X_1 > c] \geq e^{-\beta c}$
 - Since $X_n \geq X_1$ and $X_{n-1} < 0$, we have
 \[
 Pr[X_n - X_{n-1} > c|\varepsilon_S] \geq e^{-\beta c}
 \]

- Case: $|S| \geq 2$:
 - By order statistics, $Pr[X_n - X_{n-1} > c|\varepsilon_S] \geq e^{-\beta c}$

In total:

\[
Pr[X_n - X_{n-1} > c] \geq e^{-\beta c} \Rightarrow Pr[\Delta < c] \leq 1 - e^{-\beta c} < \beta c
\]
Analysis (work/depth)
This algorithm

- Each \(u \in V \) picks \(\delta_u \) indep. from an exp. distr. w/mean \(1/\beta \)
- Let \(\delta_{\text{max}} \) denote the max \(\delta_u \)
- Start an instance of parallel BFS, with \(v \) s.t. \(\delta_{\text{max}} = \delta_v \)
- When the vertex at the head of the queue has dist > \(\delta_{\text{max}} - \delta_u \), start parallel BFS with \(u \) (add to queue) if it has not yet been visited (as a center)
- Assign each vertex \(u \) to the center that visited it in the BFS
- **Note:** Think of \(\delta_u \) as randomized start times for \(u \) to begin its own ball
Implementation improvements

- Simulate \(-\delta_u\) shifts by using super source \(s\) with dist \(-\delta_u\) to each \(u\)
- Fix negative edge lengths by adding \(\delta_{\text{max}}\)
- Only non-integral path lengths are from \(s\)
 - Use fractional parts from \(s\) as tie-breakers
 - Can also replace these with a random permutation
- Delayed processing of edges so can use unweighted BFS
Work/depth analysis

- Generating δ_u: $O(1)$ depth and $O(n)$ work
- BFS: $O(\Delta \log n)$ depth and $O(m)$ work (where Δ is max distance) [7]
 - Each center to vert in subset has max distance $O(\log n/\beta)$
 - In total: $O(\log^2 n/\beta)$ depth and $O(m)$ work
- Verify correctness: $O(\log n)$ depth and $O(m)$ work
- In total: $O(\log^2 n/\beta)$ depth and $O(m)$ work

Conclusion
Future work

- Actual implementation?
- Weighted low diameter decomposition
 - Difficult to bound depth
- Other kinds of decompositions, e.g., low weak diameter block decomposition
 - $O(\log^2 n)$ depth and $O(n \log^2 n)$ work for $(\log n, \log n)$ decom [8]

Thank you!