Cache-Oblivious Algorithms

Matteo Frigo, Charles Leiserson, Harald Prokop, Sridhar Ramachandran

Slides Written and Presented by William Kuszmaul
The Disk Access Model

Three Parameters:

- B: Block Size in Words
- M: Internal Memory Size in Words
- P: Number of Concurrent Accesses Allowed

(P is not considered in this paper)

Memory

\[\frac{M}{B} \text{ blocks} \]

Disk

Blocks of size B

Time is measured in *disk operations*.
Fast Algorithms in the Disk Access Model

\[\text{Matrix Multiplication: } O \left(\frac{n^3}{B\sqrt{M}} \right) \]

\[\text{Sorting: } O(n/B \cdot \log_M n) \]

\[\text{Fast Fourier Transform: } O(n/B \cdot \log_M n) \]

(Running times given for \(n \gg M \gg B \))
The Setup:
- Algorithm *oblivious* to M and B
- Still evaluated in Disk Access Model

Question: Can we still get good running times?
Why Cache-Oblivious Algorithms?

Advantages:
- Don’t need to be tuned to specific machine
- Can interact well with *multiple caches* concurrently
- Algorithmically cool

Disadvantages:
- Are they practical? (Actually they often are!)
Algorithms in This Paper

$n \times n$ Matrix Multiplication: $O\left(\frac{n^3}{B \sqrt{M}}\right)$

Sorting: $O(n/B \cdot \log_M n)$

Fast Fourier Transform: $O(n/B \cdot \log_M n)$

(Running times given for $n \gg M \gg B$)
Part 1: Matrix Multiplication
THE SETUP: MULTIPLYING TWO $n \times n$ MATRICES

Simplifying Assumptions:

- $n \gg M \gg B$
- n is a power of two
The Algorithm:

- **Step 1:** Break matrices into tiles of size $\Theta(M)$
- **Step 2:** Treat each tile as a “number” and do normal matrix multiplication
Non-Oblivious Tiling Algorithm

\[\Theta(\sqrt{M}) \{ \begin{array}{cccc} _ & _ & _ & _ \\ _ & _ & _ & _ \\ _ & _ & _ & _ \\ _ & _ & _ & _ \end{array} \times \begin{array}{cccc} _ & _ & _ & _ \\ _ & _ & _ & _ \\ _ & _ & _ & _ \\ _ & _ & _ & _ \end{array} \]

Running Time:
- Multiplying two tiles takes time:

\[O(M/B) \] instead of \[O(\sqrt{M^3}) \].
Non-Oblivious Tiling Algorithm

\[\Theta(\sqrt{M}) \{ \begin{array}{cc} \times & \end{array} \} \]

Running Time:

- Multiplying two tiles takes time:
 \[O(M/B) \text{ instead of } O(\sqrt{M}^3). \]
- Total running time:
 \[O\left(\frac{n^3}{B\sqrt{M}}\right). \]
Cache-Oblivious Matrix Multiplication

The Algorithm:

- **Step 1:** Tile each matrix into fourths
- **Step 2:** Treat each tile as a “number” and multiply the 2×2 matrices.
- **Recursion:** When multiplying each A_i and B_j, recursively repeat entire procedure.
Cache-Oblivious Matrix Multiplication

\[
\begin{array}{c|c}
A & B \\
\hline
A_1 & A_2 \\
\hline
A_3 & A_4 \\
\end{array}
\times
\begin{array}{c|c}
B & \\
\hline
B_1 & B_2 \\
\hline
B_3 & B_4 \\
\end{array}
\]

Running Time:

- **Simulates Standard Tiling:** Once recursive tile-size becomes \(\leq M \), the multiplications will be done in memory
- **Total running time:**

\[
O\left(\frac{n^3}{B\sqrt{M}}\right).
\]
Handling Non-Square Matrices

Key Idea: Split long direction in two and recurse.
Real-World Comparison to Naive n^3 Algorithm

- Average time taken to multiply two $N \times N$ matrices, divided by N^3.

- How does this compare to tiled algorithm? They don’t say.
Why do we need $M \gg B$?

- Tiling algorithms require $M \geq B^2$.
- Known as the *tall cache assumption* because means:
 Number of blocks in cache \geq Size of each block
Why do we need \(M \gg B ? \)

- Tiling algorithms require \(M \geq B^2 \).
- Known as the *tall cache assumption* because means:
 Number of blocks in cache \(\geq \) Size of each block

Why we need it:

\[
\Theta(\sqrt{M}) \left\{ \begin{array}{c}
\vdots \\
\vdots
\end{array} \right.
\]

\[\text{Need this to be } \Omega(B)\]
Eliminating the Tall Cache Assumption

The Key Idea: Change how we store matrices!

<table>
<thead>
<tr>
<th>Normal Ordering</th>
<th>Cache-Oblivious Ordering</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7</td>
<td>0 1 4 5 16 17 20 21</td>
</tr>
<tr>
<td>8 9 10 11 12 13 14 15</td>
<td>2 3 6 7 18 19 22 23</td>
</tr>
<tr>
<td>16 17 18 19 20 21 22 23</td>
<td>8 9 12 13 24 25 28 29</td>
</tr>
<tr>
<td>24 25 26 27 28 29 30 31</td>
<td>10 11 14 15 26 27 30 31</td>
</tr>
<tr>
<td>32 33 34 35 36 37 38 39</td>
<td>32 33 36 37 48 49 52 53</td>
</tr>
<tr>
<td>40 41 42 43 44 45 46 47</td>
<td>34 35 38 39 50 51 54 55</td>
</tr>
<tr>
<td>48 49 50 51 52 53 54 55</td>
<td>40 41 44 45 56 57 60 61</td>
</tr>
<tr>
<td>56 57 58 59 60 61 62 63</td>
<td>42 43 46 47 58 59 62 63</td>
</tr>
</tbody>
</table>
Part 2: Sorting
Mergesort in the Disk Access Model

Key Idea: Performing $\frac{M}{2B}$-way merges

- Assign to each input stream a buffer of size $2B$
- Read a block from input stream when buffer \leq half full
- At each step output the B smallest elements in buffers
Mergesort in the Disk Access Model

![Diagram of Mergesort](image)

Running Time:

- \(O(\log_{M/B} n)\) levels of recursion
- Each takes time \(O(n/B)\)
- **Total Running Time:** \(O\left(\frac{n}{B} \log_{M} n\right)\)

(Assuming \(n \gg M \gg B\))
This paper introduces two algorithms:

Funnel Sort: A cache-oblivious merge sort (We will focus on this one)

Modified Distribution Sort: Based on another Disk-Access-Model Algorithm.
A Failed Attempt at Cache-Oblivious Merging

Question: How do we merge k streams?

Answer: Recursively with \sqrt{k}-merges:

$$\sqrt{k} \left\{ \begin{array}{c} \cdot \\ \cdot \\ \cdot \end{array} \right\} \sqrt{k}$$

Wait a second... This reduces to normal merge sort!
A FAILED ATTEMPT AT CACHE-OBLIVIOUS MERGING

Question: How to we merge k streams?

Answer: Recursively with \sqrt{k}-merges:

\[
\sqrt{k} \quad \{ \quad \bullet \quad \bullet \quad \bullet \\
\quad \} \quad \sqrt{k}
\]

Wait a second... This reduces to normal merge sort!
k-Mergers in Funnel Sort

- **k streams**

- **Critical Caveat:** Each invocation of k-merger only outputs k^3 elements

- Full k-merge may require multiple invocations!
Recursive k-Mergers

Building k-merger out of \sqrt{k}-Mergers:

- Need to invoke R a total of $k^{1.5}$ times
- Before each invocation of R:
 - Check if any buffers less than half full
 - Invoke L_i’s to refill such buffers
SORTING WITH k-MERGERS

Break into $n^{1/3}$ parts

- **Step 1:** Break array into $n^{1/3}$ sub-arrays of size $n^{2/3}$
- **Step 2:** Recursively sort each sub-array
- **Step 3:** Perform a $n^{1/3}$-merger on the sub-arrays
HOW MUCH WORK IN RAM MODEL?

Key Insight: Essentially just merge sort with merges interleaved strangely.

Running Time in RAM Model: $O(n \log n)$

But What About in the Disk Access Model?
Key Property of k-Mergers

\sqrt{k}-mergers

L_1 Buffers (Size $2k^{1.5}$)

$L_{\sqrt{k}} \sqrt{k}$-merger

Key Property: Each invocation of a k-merger has memory footprint $O(k^3)$.

Consequence: $M^{1/3}$-mergers can be performed in memory.
Running Time in Disk Access Model

In RAM model, each $M^{1/3}$-merger takes time:

$$\Theta(M \cdot \log M).$$

In Disk Access Model, each $M^{1/3}$-merger takes time:

$$\Theta(M/B).$$

Full sorting time in disk access model:

$$\Theta\left(\left(\frac{n \log n}{B \log M}\right)\right) = \Theta\left(\frac{n}{B} \cdot \log_M n\right).$$

(Assuming $n \gg M \gg B$ and ignoring some details)
Is funnel sort practical?

See the next talk!