Multicore Triangle Computations Without Tuning

Julian Shun and Kanat Tangwongsan

Presentation is based on paper published in International Conference on Data Engineering (ICDE), 2015

Triangle Computations

- Triangle Counting

$$
\text { Count = } 3
$$

- Other variants:

- Triangle listing
- Local triangle counting/clustering coefficients
- Triangle enumeration
- Approximate counting
- Analogs on directed graphs
- Numerous applications...
- Social network analysis, Web structure, spam detection, outlier detection, dense subgraph mining, 3-way database joins, etc.

Need fast triangle computation algorithms!

Sequential Triangle Computation Algorithms

- Sequential algorithms for exact counting/listing
- Naïve algorithm of trying all triplets $\mathrm{O}\left(\mathrm{V}^{3}\right)$ work
- Node-iterator algorithm [Schank]

O(VE) work

- Edge-iterator algorithm [Itai-Rodeh]

O(VE) work

- Tree-lister [ltai-Rodeh], forward/compact-forward [Schank-Wagner, Lapaty]
$O\left(E^{1.5}\right)$ work
- Sequential algorithms via matrix multiplication
- $\mathrm{O}\left(\mathrm{V}^{2.37}\right)$ work compute A^{3}, where A is the adjacency matrix
- O(E ${ }^{1.41}$) work [Alon-Yuster-Zwick]
- These require superlinear space

Algorithms

Sequential Triangle Computation
Source: "Algorithmic Aspects of Triangle-Based Network Analysis", Dissertation by Thomas Schank

What about parallel algorithms?

Parallel Triangle Computation Algorithms

- Most designed for distributed memory
- MapReduce algorithms [Cohen '09, Suri-Vassilvitskii '11, ParkChung '13, Park et al. '14]
- MPI algorithms [Arifuzzaman et al. '13, Graphlab]
- What about shared-memory multicore?
- Multicores are everywhere!
- Node-iterator algorithm [Green et al. '14]
- O(VE) work in worst case
- Can we obtain an $O\left(E^{1.5}\right)$ work shared-memory multicore algorithm?

Triangle Computation: Challenges for Shared Memory Machines

Deep memory hierarchy

External-Memory and Cache-Oblivious Triangle Computation

- All previous algorithms are sequential
- External-memory (cache-aware) algorithms
- Natural-join
- Node-iterator [Dementiev '06]
- Compact-forward [Menegola '10] O(E + E ${ }^{1.5 / B) ~ I / O ' s ~}$
- [Chu-Cheng '11, Hu et al. '13] O(E²/(MB) + \#triangles/B) I/O's
- External-memory and cache-oblivious
- [Pagh-Silvestri ‘14]

- Parallel cache-oblivious algorithms?

Our Contributions

1
 Parallel Cache-Oblivious Triangle Counting Algs

V = \# vertices
E = \# edges
$\alpha=$ arboricity (at most $E^{0.5}$)
M = cache size
B = line size
$\operatorname{sort}(n)=(n / B) \log _{M / B}(n / B)$

2 Extensions to Other Triangle Computations:
Enumeration, Listing, Local Counting/Clustering Coefficients, Approx. Counting, Variants on Directed Graphs
3 Extensive Experimental Study

Sequential Triangle Counting (Exact)

(Forward/compact-forward algorithm)

Rank vertices by degree (sorting) Return $\mathrm{A}[\mathrm{v}]$ for all v storing higher ranked neighbors
for each vertex v:
for each w in $A[v]$:
2

$$
\text { count }+=\text { intersect(A[v], A[w]) }
$$

Gives all triangles ($\mathrm{v}, \mathrm{w}, \mathrm{x}$) where $\operatorname{rank}(\mathrm{v})<\operatorname{rank}(\mathrm{w})<\operatorname{rank}(\mathrm{x})$
Work $=O\left(E^{1.5}\right)$
[Schank-Wagner ‘05, Latapy ‘08]

Proof of $O\left(E^{1.5}\right)$ work bound when intersect

 uses merging Rank vertices by degree (sorting)

Return A[v] for all v storing higher ranked neighbors
for each vertex v :

for each w in A[v]:

count += intersect(A[v], A[w])

- Step 1: $\mathrm{O}(\mathrm{E}+\mathrm{V} \log \mathrm{V})$ work

Step 2:

- For each edge (v, w), intersect does $\mathrm{O}\left(\mathrm{d}^{+}(\mathrm{v})+\mathrm{d}^{+}(\mathrm{w})\right)$ work
- For all $\mathrm{v}, \mathrm{d}^{+}(\mathrm{v}) \leq \mathrm{E}^{0.5}$
- If $\mathrm{d}^{+}(\mathrm{v})>\mathrm{E}^{0.5}$, each of its higher degree neighbors also have degree $>\mathrm{E}^{0.5}$ and total number of directed edges $>\mathrm{E}$, a contradiction
- Total work $=\mathrm{E} * \mathrm{O}\left(\mathrm{E}^{0.5}\right)=\mathrm{O}\left(\mathrm{E}^{1.5}\right)$

Parallel Triangle Counting (Exact)

```
Step 1
Work = O(E+V log V)
Depth = O(log}\mp@subsup{}{}{2}\textrm{V}
Cache = O(E+sort(V))
```

Parallel sort and filter

Rank vertices by degree (sorting)
Return A[v] for all v storing higher ranked neighbors
parallel_for each vertex v: parallel_for each w in A[v]:
Parallel reduction \longrightarrow count $+=$ intersect(A[v], A[w])

TC-Merge and TC-Hash Details

parallel_for each vertex v :
parallel_for each w in A[v]:
2
Parallel reduction
count += intersect(A[v], A[w])

Step 2: TC-Merge
Work $=\mathrm{O}\left(\mathrm{E}^{1.5}\right)$
Depth $=\mathrm{O}\left(\log ^{2} \mathrm{E}\right)$
Cache $=\mathrm{O}\left(\mathrm{E}+\mathrm{E}^{1.5 / B}\right)$

- TC-Merge
- Preprocessing: sort adjacency lists
- Intersect: use a parallel and cache-oblivious merge based on divide-and-conquer [Blelloch et al. '10, Blelloch et al. '11]
- TC-Hash
- Preprocessing: for each vertex, create parallel hash table storing edges [Shun-Blelloch '14]
- Intersect: scan smaller list, querying hash table of larger list in parallel

Comparison of Complexity Bounds

Algorithm	Work	Depth	Cache Complexity
TC-Merge	$\mathrm{O}\left(\mathrm{E}^{1.5}\right)$	$\mathrm{O}\left(\log ^{2} \mathrm{E}\right)$	$\mathrm{O}\left(\mathrm{E}+\mathrm{E}^{1.5 / B}\right)$ (oblivious)
TC-Hash	$O(V \log V+\alpha E)$	$\mathrm{O}\left(\log ^{2} \mathrm{E}\right)$	$\mathrm{O}($ sort(V) $+\alpha \mathrm{E})$ (oblivious)
Par. Pagh-Silvestri	$\mathrm{O}\left(\mathrm{E}^{1.5}\right)$	$\mathrm{O}\left(\log ^{3} \mathrm{E}\right)$	$\mathrm{O}\left(\mathrm{E}^{1.5 /(M 0}{ }^{0.5} \mathrm{~B}\right)$) (oblivious)
Chu-Cheng ' 11 , Hu et al. '13	$\begin{aligned} & \mathrm{O}\left(\mathrm{E} \log \mathrm{E}+\mathrm{E}^{2 /} / \mathrm{M}\right. \\ & +\alpha \mathrm{E}) \end{aligned}$		$\begin{aligned} & \mathrm{O}\left(\mathrm{E}^{2} /(\mathrm{MB})+\right.\text { \#triangles/B) } \\ & \text { (aware) } \end{aligned}$
Pagh-Silvestri '14	$\mathrm{O}\left(\mathrm{E}^{1.5}\right)$		O(E $\left.{ }^{1.5 /(M}{ }^{0.5} \mathrm{~B}\right)$) (oblivious)
Green et al. '14	O(VE)	O(log E)	

```
V = # vertices
M = cache size
E=# edges
\alpha= arboricity (at most E E.5)
sort(n) = (n/B) 知m/B (n/B)
```


Our Contributions

1
 Parallel Cache-Oblivious Triangle Counting Algs

V = \# vertices
E = \# edges
$\alpha=$ arboricity (at most $E^{0.5}$)
M = cache size
B = line size
$\operatorname{sort}(n)=(n / B) \log _{M / B}(n / B)$
(2) Extensions Other-Triancle Computations: Enumeration, Listing, Local Counting/Clustering Coefficientes, Approx. Counting, Variants on Directed Graphs
3 Extensive Experimental Study

Extensions of Exact Counting Algorithms

- Triangle enumeration
- Call emit function whenever triangle is found
- Listing: add to hash table to list; return contents at the end
- Local counting/clustering coefficients: atomically increment count of three triangle endpoints
- Directed triangle counting/enumeration
- Keep separate counts for different types of triangles
- Approximate counting
- Use colorful triangle sampling scheme to create smaller sub-graph [Pagh-Tsourakakis '12]
- Run TC-Merge or TC-Hash on sub-graph with pE edges ($0<p<1$) and return \#triangles $/ \mathrm{p}^{2}$ as estimate

Approximate Counting

Expected \# edges = pE

- Colorful triangle counting [Pagh-Tsourakakis '12]

Sampling rate: $0<p<1$
Assign random color in $\{1, \ldots, 1 / p\}$
Parallel scan to each vertex

Parallel filter
Sampling: Keep edges whose endpoints have the same color

Run exact triangle counting on sampled graph, return $\Delta_{\text {sampled }} / \mathrm{p}^{2}$

Steps 1 \& 2
Work = O(E)
Depth $=O(\log E)$
Cache $=O(E / B)$
3

Use TC-Merge or TC-Hash

Steps $1 \& 2$
Work $=O(E)$
Depth $=O(\log E)$
Cache $=O(E / B)$

Step 3: TC-Merge
Work $=\mathrm{O}\left((\mathrm{pE})^{1.5}\right)$
Depth $=O\left(\log ^{2} E\right)$
Cache $=\mathrm{O}\left(\mathrm{pE}+(\mathrm{pE})^{1.5 / B}\right)$

Step 3: TC-Hash
Work $=O(V \log V+\alpha p E)$
Depth $=O(\log E)$
Cache $=\mathrm{O}(\operatorname{sort}(\mathrm{V})+\mathrm{paE})$

Our Contributions

Parallel Cache-Oblivious Triangle Counting Algs

Algorithm	Work	Depth	Cache Complexity
TC-Merge	$\mathrm{O}\left(\mathrm{E}^{1.5}\right)$	$\mathrm{O}\left(\log ^{2} \mathrm{E}\right)$	$\mathrm{O}\left(\mathrm{E}+\mathrm{E}^{1.5 / B}\right)$
TC-Hash	$\mathrm{O}(\mathrm{V} \log \mathrm{V}+\alpha \mathrm{E})$	$\mathrm{O}\left(\log ^{2} \mathrm{E}\right)$	$\mathrm{O}($ sort $(\mathrm{V})+\alpha \mathrm{E})$
Par. Pagh-Silvestri	$\mathrm{O}\left(\mathrm{E}^{1.5}\right)$	$\mathrm{O}\left(\log ^{3} \mathrm{E}\right)$	$\mathrm{O}\left(\mathrm{E}^{1.5} /\left(\mathrm{M}^{0.5} \mathrm{~B}\right)\right)$

V = \# vertices
E = \# edges
$\alpha=$ arboricity (at most $E^{0.5}$)
M = cache size
B = line size
$\operatorname{sort}(n)=(n / B) \log _{\text {m/B }}(n / B)$

2 Extensims to H her Timigle Computions: Enumeration, Listing, Local Counting/Clustering Coefficients,, Approx. Counting, Variants on Directed Graphs \qquad
Extensive Experimental Study

Experimental Setup

- Implementations using Intel Cilk Plus
- 40-core Intel Nehalem machine (with 2-way hyper-threading)
- 4 sockets, each with 30MB shared L3 cache, 256KB private L2 caches
- Sequential TC-Merge as baseline (faster than existing sequential implementations)
- Other multicore implementations: Green et al. and GraphLab
- Our parallel Pagh-Silvestri algorithm was not competitive
- Variety of real-world and artificial graphs

Both TC-Merge and TC-Hash scale well with \# of cores:

4M vtxes, 34.6M edges

Orkut
3M vtxes, 117M edges

40-core (with hyper-threading) Performance

- TC-Merge always faster than TC-Hash (by 1.3-2.5x)
- TC-Merge always faster than Green et al. or GraphLab (by 2.1-5.2x)

Why is TC-Merge faster than TC-Hash?

soc-LJ

Orkut

Comparison to existing counting algs.

Twitter graph (41M vertices, 1.2B undirected edges, 34.8B triangles)

- Yahoo graph (1.4B vertices, 6.4B edges, 85.8 B triangles) on 40 cores: TC-Merge takes 78 seconds
- Approximate counting algorithm achieves 99.6% accuracy in 9.1 seconds

Shared vs. distributed memory costs

- Amazon EC2 pricing

- Captures purchasing costs, maintenance/operating costs, energy costs

Triangle Counting (Twitter)	Our algorithm	GraphLab	GraphLab
Running Time	0.932 min	3 min	1.5 min
Machine	40-core $(256$ GB memory)	40-core $(256$ GB memory)	64×16-core
Approx. EC2 pricing	$<\$ 4 /$ hour	$<\$ 4 /$ hour	$64 \times \$ 0.928 /$ hour
Overall cost	$<\$ 0.062$	$<\$ 0.2$	$\$ 1.49$

Approximate counting

$\boldsymbol{p}=\mathbf{1 / 2 5}$	Accuracy	$\mathbf{T}_{\text {approx }}$	$\mathbf{T}_{\text {approx }} / T_{\text {exact }}$
Orkut (V=3M, E=117M)	99.8%	0.067 sec	0.035
Twitter (V=41M, E=1.2B)	99.9%	2.4 sec	0.043
Yahoo (V=1.4B, E=6.4B)	99.6%	9.1 sec	0.117

Conclusion

Algorithm	Work	Depth	Cache Complexity
TC-Merge	$\mathrm{O}\left(\mathrm{E}^{1.5}\right)$	$\mathrm{O}\left(\log ^{2} \mathrm{E}\right)$	$\mathrm{O}\left(\mathrm{E}+\mathrm{E}^{1.5 / B}\right)$
TC-Hash	$\mathrm{O}(\mathrm{V} \log \mathrm{V}+\alpha \mathrm{E})$	$\mathrm{O}\left(\log ^{2} \mathrm{E}\right)$	$\mathrm{O}($ sort $(\mathrm{V})+\alpha \mathrm{E})$
Par. Pagh-Silvestri	$\mathrm{O}\left(\mathrm{E}^{1.5}\right)$	$\mathrm{O}\left(\log ^{3} \mathrm{E}\right)$	$\left.\mathrm{O}\left(\mathrm{E}^{1.5 /\left(M M^{0.5}\right.} \mathrm{B}\right)\right)$

- Simple multicore algorithms for triangle computations are provably work-efficient, low-depth, and cache-efficient
- Implementations require no load-balancing or tuning for cache
- Experimentally outperforms existing multicore and distributed algorithms
- Future work: Design a practical parallel algorithm achieving $\mathrm{O}\left(\mathrm{E}^{\left.1.5 /\left(\mathrm{M}^{0.5} \mathrm{~B}\right)\right) \text { cache complexity }}\right.$

