GraphChi: Large-Scale Graph Computation on Just a PC

By: Aapo Kyrola (Carnegie Mellon University), Guy Blelloch (Carnegie Mellon University), Carlos Guestrin (University of Washington)

Presentation by: Jessica Zhu
Motivations

• Real-world graphs are huge
• Computation on these graphs is very expensive and time-consuming
• Distributed graph algorithms are hard to understand
Contributions

• Parallel Sliding Windows (PSW)
 • Small number of non-sequential accesses to disk
 • Implements asynchronous model of computation
 • Processes large graphs from disk with theoretical guarantees
• GraphChi
 • Design, evaluation, and implementation in C++
 • Able to solve problems previously only solvable on cluster computing
Disk-Based Graph Computation

• Existing models are vertex-centric

Algorithm 1: Typical vertex update-function

1. `Update(vertex) begin`
2. `x[] ← read values of in- and out-edges of vertex ;`
3. `vertex.value ← f(x[]) ;`
4. `foreach edge of vertex do`
5. `edge.value ← g(vertex.value, edge.value);`
6. `end`
7. `end`
Disk-Based Graph Computation

• Existing models use the Bulk-Synchronous Parallel (BSP) model
 • Update functions use values from previous iteration
 • Simple to implement, allows maximum parallelization
 • Synchronization steps (after each iteration) are expensive

• Asynchronous model
 • Update functions use most recent values of edges and vertices
 • Ordering of updates is dynamic
 • Converges in situations where BSP does not
Disk-Based Graph Computation

• Compressed Sparse Row and Compressed Sparse Column storage

• Modifying the value of a vertex
 • New value must be read from set of out-edges (random read) OR
 • New value is written to in-edge list (random write)

• Possible Solutions
 • SSD as a memory extension: can’t handle accessing millions of edges per second
 • Exploiting locality: unpredictable, depends highly on structure of graph
 • Graph compression: doesn’t work if data is stored with the nodes and edges
Parallel Sliding Windows (PSW)

- Loads subgraph from disk
- Updates vertices and edges
- Writes updated values to disk
PSW: Loading subgraph from disk

- Vertices V are split into P disjoint intervals
- Each interval has a shard that stores all edges going into the interval
- Edges are stored in order of their source
- Intervals balances number of edges in each shard
- Does graph computation in execution intervals
- First load shard(p) into memory, call it memory-shard
- Out-edges are stored in consecutive chunks in the other shards, requiring P-1 block reads
- Edges for interval(p+1) are stored immediately after interval(p)
- When PSW moves onto the next interval, it slides over window, other shards are called sliding shards
- Window length is variable if degree distribution is not uniform
Figure 1: The vertices of graph (V, E) are divided into P intervals. Each interval is associated with a shard, which stores all edges that have destination vertex in that interval.
PSW: Updating vertices and edges

- Subgraph for interval p has been loaded to disk
- Call update-function for each vertex in parallel
- External determinism prevents race conditions (accessing edges concurrently), guarantees each run of PSW produces same result
 - To implement: vertices with end-points of edges in the same interval are marked as critical and executed sequentially (in line with the asynchronous model)
PSW: Updating vertices and edges

Figure 2: Visualization of the stages of one iteration of the Parallel Sliding Windows method. In this example, vertices are divided into four intervals, each associated with a shard. The computation proceeds by constructing a subgraph of vertices one interval at a time. In-edges for the vertices are read from the memory-shard (in dark color) while out-edges are read from each of the sliding shards. The current sliding window is pictured on top of each shard.
Algorithm 2: Parallel Sliding Windows (PSW)

1. foreach iteration do
2. shards[] ← InitializeShards (P)
3. for interval ← 1 to P do
4. /* Load subgraph for interval, using Alg. 3. Note, that the edge values are stored as pointers to the loaded file blocks. */
5. subgraph ← LoadSubgraph (interval)
6. parallel foreach vertex ∈ subgraph.vertex do
7. /* Execute user-defined update function, which can modify the values of the edges */
8. UDF.updateVertex (vertex)
9. end
10. /* Update memory-shard to disk */
11. shards[interval].UpdateFully()
12. /* Update sliding windows on disk */ for
13. s ∈ 1, ..., P, s ≠ interval do
14. shards[s].UpdateLastWindowToDisk()
15. end
16. end
17. end

PSW: Updating vertices and edges
PSW: Writing updated values to disk

• Edges are loaded from disk in large blocks which are cached in memory
• Modifications directly modify blocks themselves, PSW overwrites old data when it updates
• Active sliding window is rewritten to disk
• Number of non-sequential writes for an execution interval is P
Algorithm 3: Function LoadSubGraph(p)

Input: Interval index number p

Result: Subgraph of vertices in the interval p

1 /* Initialization */
2 $a \leftarrow$ interval[p].start
3 $b \leftarrow$ interval[p].end
4 $G \leftarrow$ InitializeSubgraph (a, b)

5 /* Load edges in memory-shard. */
6 $edgesM \leftarrow$ shard[p].readFully()
7 /* Evolving graphs: Add edges from buffers. */
8 $edgesM \leftarrow edgesM \cup$ shard[p].edgebuffer[1..P]
9 foreach $e \in edgesM$ do
10 /* Note: edge values are stored as pointers. */
11 G.vertex[edge.dest].addInEdge(e.source, &e.val)
12 if e.source $\in [a, b]$ then
13 G.vertex[edge.source].addOutEdge(e.dest, &e.val)
14 end
15 end

16 /* Load out-edges in sliding shards. */
17 for $s \in 1, \ldots, P, s \neq p$ do
18 $edgesS \leftarrow$ shard[s].readNextWindow(a, b)
19 /* Evolving graphs: Add edges from shard’s buffer p */
20 $edgesS \leftarrow edgesS \cup$ shard[s].edgebuffer[p]
21 foreach $e \in edgesS$ do
22 G.vertex[e.src].addOutEdge(e.dest, &e.val)
23 end
24 end
25 return G
Figure 3: Illustration of the operation of the PSW method on a toy graph (See the text for description).
Evolving Graphs

• Support changes in graph structure
 • Allow adding edges to graphs
 • Allows removal of edges (flag them, delete when shard is rewritten to disk)

• Divide shard into P logical parts: part j contains edges with source in the interval j
 • Edge-buffer(p, j) is in-memory
 • When edge is added to graph, add it to corresponding edge-buffer
 • When interval is loaded from disk, edges from edge-buffers are added to in-memory graph
 • If number of edges in edge-buffers exceeds limit, write edges to disk
Evolving Graphs

Figure 4: A shard can be split into P logical parts corresponding to the vertex intervals. Each part is associated with an in-memory edge-buffer, which stores the inserted edges that have not yet been merged into the shard.
I/O Complexity

- Cost = number of block transfers from disk to main memory
- B: size of block transfer
- Total data size = $|E|$, as each edge is stored once
- Shards have sizes $|E|/P$
- Each edge is accessed twice (once in each direction)
- Each edge is written once or twice (once if both endpoints of edge belong to same vertex interval)
- Often PSW requires P non-sequential disk seeks to load edges from the $P-1$ sliding shards for an execution interval

$$\frac{2|E|}{B} \leq Q_B(E) \leq \frac{4|E|}{B} + \Theta(P^2)$$
GraphChi System Design

• Shard Data Format
 • Fast to generate and read
 • Adjacency shard stores an edge array for each vertex in order
 • Edge shard data is a flat array of edge values in user defined type
GraphChi System Design: Preprocessing

• Sharder
 • Counts the in-degree of each vertex, computes prefix sum to divide graph into equal intervals (one pass)
 • Write each edge to a temporary file of the owning shard (one pass)
 • Process each temporary file to sort the edges and compress them
 • Compute a binary degree file with in and out degree of each vertex

• P is chosen so that the largest shard is at most ¼ size of available memory (other memory needed to store pointers, buffers, auxiliary data structures)

• Total cost: $\frac{5|E|}{B} + \frac{|V|}{B}$
GraphChi Implementation

• Efficient subgraph construction
 • Calculates the exact amount of memory needed to store and perform computation on an execution interval
 • Can do this using degreefile, which stores all in and out degrees of each vertex (using prefix sum, can calculate exactly how many edges they need to store)
 • I/O cost: $2[|V|/B]$

• Selective scheduling
 • Update can flag a neighboring vertex to be updated, typically if edge value changes significantly
 • Can be used to implement incremental computation: when an edge is created, its source or destination vertex is added to the schedule
GraphChi: Programming Model

• Adjacency shard: stores edge array for each vertex in order
• Edge data shard: flat array of edge values

• Sharder: handles preprocessing, which is I/O efficient and can be done with limited memory
 • Counts the in-degree of each vertex and calculates prefix sum to divide the graph into P equal intervals (one pass)
 • Write each edge to temporary file of owning shard (one pass)
 • Process each of these files to sort edges and write in compact format
 • Compute binary degree file (both in and out edges) for every vertex
GraphChi: Execution

- Efficient subgraph construction
 - Calculate exact memory needed for an execution interval using degreefile
 - Use multithreading to access the vertices needed

- Sub intervals
 - Divide execution interval into sub intervals (some intervals may have lots of edges that don’t fit into memory)
 - Allows same shard files to be used with different amounts of memory, I/O costs not affected

- Evolving graphs
 - Keep track of changing degreefiles, vertex interval sizes

- Selective scheduling
 - Updates flag neighboring vertices to also be updated
GraphChi Implementation

Figure 5: **Main execution flow.** Sequence of operations for processing one execution interval with GraphChi.
GraphChi: Programming Model

• Similar to programs for Pregel or GraphLab
 • Pregel uses messaging, GraphChi directly modifies vertices and edges
 • GraphLab directly reads and modifies neighboring vertices, GraphChi does not
GraphChi Implementation

1. **typedef** VertexType float
2. Update(vertex) **begin**
 3. \hspace{1em} var sum ← 0
 4. \hspace{1em} for e in vertex.inEdges() do
 5. \hspace{2em} sum += e.weight * neighborRank(e)
 6. \hspace{1em} end
 7. vertex.setValue(0.15 + 0.85 * sum)
 8. broadcast(vertex)
 9. **end**
Algorithm 5: Type definitions, and implementations of neighborRank() and broadcast() in the standard model.

```plaintext
typedef: EdgeType { float weight, neighbor_rank; }
neighborRank(edge) begin
  return edge.weight * edge.neighbor_rank
end
broadcast(vertex) begin
  for e in vertex.outEdges() do
    e.neighbor_rank = vertex.getValue()
  end
end
```
Algorithm 6: Datatypes and implementations of neighborRank() and broadcast() in the alternative model.

```
1  typedef: EdgeType { float weight; }
2  float[] in_mem_vert
3  neighborRank(edge) begin
4      return edge.weight * in_mem_vert[edge.vertex_id]
5  end
6  broadcast(vertex) /* No-op */
```
GraphChi Applications

• SpMV Kernels, PageRank
• Graph Mining
• Collaborative Filtering
• Probabilistic Graphical Model
Experimental Setup

• Test Setup: Mac Mini with 8GB of main memory, 256GB SSD drive, 750GB hard drive + 8 core server with 64GB RAM

<table>
<thead>
<tr>
<th>Graph name</th>
<th>Vertices</th>
<th>Edges</th>
<th>P</th>
<th>Preproc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>live-journal [3]</td>
<td>4.8M</td>
<td>69M</td>
<td>3</td>
<td>0.5 min</td>
</tr>
<tr>
<td>netflix [6]</td>
<td>0.5M</td>
<td>99M</td>
<td>20</td>
<td>1 min</td>
</tr>
<tr>
<td>domain [44]</td>
<td>26M</td>
<td>0.37B</td>
<td>20</td>
<td>2 min</td>
</tr>
<tr>
<td>twitter-2010 [26]</td>
<td>42M</td>
<td>1.5B</td>
<td>20</td>
<td>10 min</td>
</tr>
<tr>
<td>uk-union [11]</td>
<td>133M</td>
<td>5.4B</td>
<td>50</td>
<td>33 min</td>
</tr>
<tr>
<td>yahoo-web [44]</td>
<td>1.4B</td>
<td>6.6B</td>
<td>50</td>
<td>37 min</td>
</tr>
</tbody>
</table>

Table 1: Experiment graphs. Preprocessing (conversion to shards) was done on Mac Mini.
Experimental Results

• No direct models to compare against
• Runtimes are within a constant factor when compared to other distributed systems with more cores
• PowerGraph is a distributed version of GraphChi, can perform one iteration of PageRank on twitter-2010 in 5 seconds (GraphChi: 158s)
Experimental Results

<table>
<thead>
<tr>
<th>Application & Graph</th>
<th>Iter.</th>
<th>Comparative result</th>
<th>GraphChi (Mac Mini)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pagerank & domain</td>
<td>3</td>
<td>GraphLab[30] on AMD server (8 CPUs) 87 s</td>
<td>132 s</td>
<td>-</td>
</tr>
<tr>
<td>Pagerank & twitter-2010</td>
<td>5</td>
<td>Spark [45] with 50 nodes (100 CPUs): 486.6 s</td>
<td>790 s</td>
<td>[38]</td>
</tr>
<tr>
<td>Pagerank & V=105M, E=3.7B</td>
<td>100</td>
<td>Stanford GPS, 30 EC2 nodes (60 virt. cores), 144 min</td>
<td>approx. 581 min</td>
<td>[37]</td>
</tr>
<tr>
<td>Pagerank & V=1.0B, E=18.5B</td>
<td>1</td>
<td>Piccolo, 100 EC2 instances (200 cores) 70 s</td>
<td>approx. 26 min</td>
<td>[36]</td>
</tr>
<tr>
<td>Webgraph-BP & yahoo-web</td>
<td>1</td>
<td>Pegasus (Hadoop) on 100 machines: 22 min</td>
<td>27 min</td>
<td>[22]</td>
</tr>
<tr>
<td>ALS & netflix-mm, D=20</td>
<td>10</td>
<td>GraphLab on AMD server: 4.7 min</td>
<td>9.8 min (in-mem)</td>
<td>[30]</td>
</tr>
<tr>
<td>Triangle-count & twitter-2010</td>
<td>-</td>
<td>Hadoop, 1636 nodes: 423 min</td>
<td>60 min</td>
<td>[39]</td>
</tr>
<tr>
<td>Pagerank & twitter-2010</td>
<td>1</td>
<td>PowerGraph, 64 x 8 cores: 3.6 s</td>
<td>158 s</td>
<td>[20]</td>
</tr>
<tr>
<td>Triange-count & twitter- 2010</td>
<td>-</td>
<td>PowerGraph, 64 x 8 cores: 1.5 min</td>
<td>60 min</td>
<td>[20]</td>
</tr>
</tbody>
</table>

Table 2: **Comparative performance.** Table shows a selection of recent running time reports from the literature.
Scalability and Performance

- Performance measured as throughput (number of edges processed in a second)
 - GraphChi can process 5-20 million edges/s on Mac Mini
 - Using a hard drive for memory is sufficient, can be improved by adding more hard drives
 - Using different block sizes can change efficiency
Scalability and Performance

<table>
<thead>
<tr>
<th>Application</th>
<th>SSD</th>
<th>In-mem</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected components</td>
<td>45 s</td>
<td>18 s</td>
<td>2.5x</td>
</tr>
<tr>
<td>Community detection</td>
<td>110 s</td>
<td>46 s</td>
<td>2.4x</td>
</tr>
<tr>
<td>Matrix fact. (D=5, 5 iter)</td>
<td>114 s</td>
<td>65 s</td>
<td>1.8x</td>
</tr>
<tr>
<td>Matrix fact. (D=20, 5 iter.)</td>
<td>560 s</td>
<td>500 s</td>
<td>1.1x</td>
</tr>
</tbody>
</table>

Table 3: Relative performance of an in-memory version of GraphChi compared to the default SSD-based implementation on a selected set of applications, on a Mac Mini. Timings include the time to load the input from disk and write the output into a file.

Figure 6: Relative runtime when varying the number of threads used by GraphChi. Experiment was done on a MacBook Pro (mid-2012) with four cores.
Strengths and Weaknesses

• Paper was well organized and pseudocode helped with overall understanding of the content

• Some parts were repetitive, like the description of how the algorithm was the same as the description of GraphChi

• Results are promising, but no real benchmark to how “good” they are
Discussion Questions

• GraphChi is designed for sparse real-world graphs. Does it perform as well on dense graphs?
• How well does GraphChi perform with different graph algorithms (e.g. Bellman-Ford, Dijkstra’s, etc.)?
• How does the number of computations/iterations necessary to run GraphChi compare with other graph computation algorithms?