Cache-Oblivious Algorithms

By Matteo Frigo, Charles E. Leiserson, Harald Prokop, Sridhar Ramachandran
Why Cache-Oblivious Algorithms?

- Cache misses can be expensive.
- Not easy to optimize for all cache sizes.
- Cache-oblivious algorithms provide optimal cache-complexity regardless of cache properties.
Why Cache-Oblivious Algorithms?

<table>
<thead>
<tr>
<th>Level</th>
<th>Size</th>
<th>Assoc.</th>
<th>Latency (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td>128 GB</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>LLC</td>
<td>30 MB</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>L2</td>
<td>256 KB</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>L1 –d</td>
<td>32 KB</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>L1 –i</td>
<td>32 KB</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 1: memory and cache access costs, from 6.172
Some Terminology

- Cache line: contiguous memory data imported to cache as a unit
- Cache size (Z): # cache words / cache
- Cache line size (L): # cache words / cache line
- Cache word typically 4 bytes, 8 bytes, etc.
Some Terminology

Figure 2: simple cache diagram
Ideal-Cache Model

- 1 limited-size cache, unlimited memory
- Cache fully-associative
- Optimal offline replacement strategy
- Extra Assumption: cache is tall:

\[Z = \Omega(L^2) \]
Cache-Aware Matrix Multiplication

Figure 4: row-major order

1. Let A, B, C be $n \times n$ matrices in row-major order.
2. For $i = 0$ to $n - 1$
3. For $j = 0$ to $n - 1$
4. For $k = 0$ to $n - 1$
5. $C[i \times n + j] = A[i \times n + k] \times B[k \times n + j]$

Figure 4: naive matrix multiplication
Cache-Aware Matrix Multiplication

- Cache miss on each matrix access
- Cache Complexity: $Q(n) = \Theta(n^3)$
 Where $n > \frac{cZ}{L}$ for some c.
- Can do better!

1. let A, B, C be $n \times n$ matrices in row-major order
2. for $i = 0$ to $n - 1$
3. for $j = 0$ to $n - 1$
4. for $k = 0$ to $n - 1$
5. $C[i \ast n + j] = A[i \ast n + k] \ast B[k \ast n + j]$

Figure 4: naive matrix multiplication
Cache-Aware Matrix Multiplication

- Choose s s.t. $3 * s^2 \leq Z$
- Cache Complexity:

 $$Q(n) = \left(\frac{n}{s}\right)^3 * \Theta\left(\frac{s^2}{L}\right) = \Theta\left(\frac{n^3}{\sqrt{Z} * L}\right)$$

- Optimal cache complexity, but requires knowledge of cache properties.

\begin{verbatim}
BLOCK-MULT(A, B, C, n)
1 for i ← 1 to n/s
2 do for j ← 1 to n/s
3 do for k ← 1 to n/s
4 do ORD-MULT(A_{ik}, B_{kj}, C_{ij}, s)
\end{verbatim}

Figure 5: block matrix multiplication
Cache-Aware Matrix Multiplication

- Optimal cache complexity without knowing L or Z?
- Idea: Divide and Conquer!
Cache-Oblivious Matrix Multiplication

Split into $\left(\frac{n}{2}\right) \times \left(\frac{n}{2}\right)$ block matrices and recurse:

\[
\begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix}
= \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\cdot
\begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
= \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]
Analysis

- Work: \(W(n) = 8W\left(\frac{n}{2}\right) + \Theta(1) \implies W(n) = \Theta(n^3) \) Optimal!

- Cache Complexity:

\[
Q(n) = \begin{cases}
\Theta\left(\frac{n^2}{L}\right) & n^2 \leq cZ \\
8 \times Q\left(\frac{n}{2}\right) + \Theta(1) & o/w
\end{cases}
\]

Which means \(Q(n) = \Theta\left(\frac{n^3}{L \times \sqrt{Z}}\right) \) Optimal!
Cache-Oblivious Matrix Multiplication

Non-square case: Split A or B along biggest dimension:

- If $m > \max(n, p)$:
 \[
 \begin{pmatrix}
 A_1 \\
 A_2
 \end{pmatrix} \begin{pmatrix}
 B
 \end{pmatrix} = \begin{pmatrix}
 A_1 B \\
 A_2 B
 \end{pmatrix},
 \]

- If $n > \max(m, p)$:
 \[
 \begin{pmatrix}
 A_1 \\
 A_2
 \end{pmatrix} \begin{pmatrix}
 B_1 \\
 B_2
 \end{pmatrix} = A_1 B_1 + A_2 B_2,
 \]

- If $p > \max(m, n)$:
 \[
 A \begin{pmatrix}
 B_1 \\
 B_2
 \end{pmatrix} = \begin{pmatrix}
 AB_1 & AB_2
 \end{pmatrix}.
 \]

Figure 7: recursion cases for matrix multiplication
Cache-Oblivious Matrix Multiplication

Theorem 1 The Rec-Mult algorithm uses $\Theta(mnp)$ work and incurs $\Theta(m + n + p + (mn + np + mp)/L + mnp/L\sqrt{Z})$ cache misses when multiplying an $m \times n$ matrix by an $n \times p$ matrix.
Why Tall-Cache Assumption?

- Cache misses bring full row-major submatrix rows + useless data
- Submatrix might not fit in cache even if $3 \times s^2 \leq Z$

Figure 8: short cache
Cache-Oblivious Matrix Transposition
Cache-Oblivious Matrix Transposition

- Idea: Divide and Conquer
- Transpose each half of matrix A individually
Cache-Oblivious Matrix Transposition

- Idea: Divide and Conquer
- Transpose each half of matrix A individually

$$A = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}, \quad B = A^T = \begin{bmatrix} A_1^T & A_3^T \\ A_2^T & A_4^T \end{bmatrix}$$

Figure 9: recursive transpose
Analysis

- Work: \(W(n) = 4 \times W\left(\frac{n}{2}\right) + \Theta(1) \implies W(n) = \Theta(n^2) \)

- Cache complexity:
 \[
 Q(n) = \begin{cases}
 \Theta\left(\frac{n^2}{L}\right) & n^2 \leq cZ \\
 4 \times Q\left(\frac{n}{2}\right) + \Theta(1) & o/w
 \end{cases}
 \implies Q(n) = \Theta\left(\frac{n^2}{L}\right)

- Cache complexity optimal. Rectangular case similar to multiplication.
Cache-Oblivious FFT

- Want to use cache-oblivious transposition as subroutine.
- Cache complexity: \[Q(n) = O\left(1 + \frac{n}{L} \left(1 + \log_2 n\right)\right) \]
Cache-Oblivious Sorting
Funnelsort

1. Split the input into $n^{1/3}$ contiguous arrays of size $n^{2/3}$, and sort these arrays recursively.
2. Merge the $n^{1/3}$ sorted sequences using a $n^{1/3}$-merger, which is described below.

Work: $\Theta(n \log n)$
k-Merger

- Suspends merging when output sequence “long enough”
- More details in next presentation
Funnelsort Analysis

Lemma 6 If \(Z = \Omega(L^2) \), then a \(k \)-merger operates with at most

\[
Q_M(k) = O(1 + k + k^3/L + k^3 \log_Z k/L)
\]

cache misses.

\[
\implies Q_M(n^{\frac{3}{2}}) = O(n \times \frac{\log_Z n}{L})
\]
Funnelsort Analysis

- $Q(n) = n^{\frac{1}{3}} \times Q(n^{\frac{2}{3}}) + O(n \times \frac{\log Z n}{L})$

- Using induction:

$$Q(n) = O\left(\frac{n}{L} \times \log_Z n\right)$$
Distribution Sort

- $\Theta(n \log n)$ work.
- $Q(n) = O\left(\frac{n}{L} \times \log_Z n\right)$ cache complexity - optimal
Distribution Sort

1. Partition A into \sqrt{n} contiguous subarrays of size \sqrt{n}. Recursively sort each subarray.
2. Distribute the sorted subarrays into q buckets B_1, \ldots, B_q of size n_1, \ldots, n_q, respectively, such that
 1. $\max \{x \mid x \in B_i\} \leq \min \{x \mid x \in B_{i+1}\}$ for $i = 1, 2, \ldots, q-1$.
 2. $n_i \leq 2\sqrt{n}$ for $i = 1, 2, \ldots, q$.

(See below for details.)
3. Recursively sort each bucket.
4. Copy the sorted buckets to array A.

```
DISTRIBUTE(i, j, m)
1   if m = 1
2       COPYELEMS(i, j)
3   else  DISTRIBUTE(i, j, m/2)
4       DISTRIBUTE(i + m/2, j, m/2)
5       DISTRIBUTE(i, j + m/2, m/2)
6       DISTRIBUTE(i + m/2, j + m/2, m/2)
```
Theoretical Justifications for the Ideal Cache Model

Lemma 12 Consider an algorithm that causes $Q^*(n;Z,L)$ cache misses on a problem of size n using a (Z,L) ideal cache. Then, the same algorithm incurs $Q(n;Z,L) \leq 2Q^*(n;Z/2,L)$ cache misses on a (Z,L) cache that uses LRU replacement.

LRU competitive with optimal replacement.
Theoretical Justifications for the Ideal Cache Model

Corollary 13 For any algorithm whose cache-complexity bound \(Q(n;Z,L) \) in the ideal-cache model satisfies the regularity condition

\[
Q(n;Z,L) = O(Q(n;2Z,L)), \quad (14)
\]

the number of cache misses with LRU replacement is \(\Theta(Q(n;Z,L)) \).
Theoretical Justifications for the Ideal Cache Model

- **Inclusion property**: cache level \((i+1)\) contains all cache lines in level \((i)\).
- Same-line elements in level \((i)\) are same-line in level \((i+1)\).
- More cache lines in level \((i+1)\) than level \((i)\).
Theoretical Justifications for the Ideal Cache Model

Lemma 14 A \((Z_i, L_i)\)-cache at a given level \(i\) of a multilevel LRU model always contains the same cache lines as a simple \((Z_i, L_i)\)-cache managed by LRU that serves the same sequence of memory accesses.

Lemma 15 An optimal cache-oblivious algorithm whose cache complexity satisfies the regularity condition (14) incurs an optimal number of cache misses on each level\(^3\) of a multilevel cache with LRU replacement.
Theoretical Justifications for the Ideal Cache Model

Lemma 16 A (Z,L) LRU-cache can be maintained using $O(Z)$ memory locations such that every access to a cache line in memory takes $O(1)$ expected time.

- Eliminates full-associativity and automatic replacement assumptions.
- Proof outline: hashtable - doubly-linked list LRU cache implementation in memory. LRU policy in $O(1)$ expected time.
Preliminary Experimental Analysis

Figure 12: $N \times N$ matrix transposition runtime / N^2
Preliminary Experimental Analysis

Figure 13: $N \times N$ matrix multiplication runtime / N^3
Strengths

- Novel approach to construct cache-efficient algorithms
- Plenty of detailed proofs for cache complexities
Weaknesses

- Hard to understand details of all proofs
- Could have presented experimental analysis of some same-work cache-oblivious vs cache-aware algorithms
Discussion Questions

- Are cache-oblivious algorithms more or less efficient than cache-aware algorithms?
- Does the recursion overhead overshadow the obtained cache efficiency?