PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs

Joseph Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, Carlos Guestrin

CMU, UW

some figures in the slide deck are borrowed from the official OSDI slides
What are Natural Graphs?

Graphs that are derived from natural phenomena

Such as relationships between:
- People
- Product
- Interests
- Ideas
Most of natural graphs have skewed power-law degree distribution.

Most vertices have relatively few neighbors, while a few have many neighbors.
Problem: Hard to Partition

- Power-law graphs do not have low-cost balanced cuts
- Existing distributed graph computation systems perform poorly on power law graphs
High-Level PowerGraph Abstraction

• Split High-Degree Vertices
• New abstraction for programming graph computations
How do we program a graph computation?

- A user-defined Vertex-Program runs on each vertex
- Graph constrains intersections along edges
 - Using messages (Pregel[PODC09])
 - Using shared state (GraphLab[VLDB12])
How do we program a graph computation?

- A user-defined Vertex-Program runs on each vertex
- Graph constrains intersections along edges
 - Using messages (Pregel[PODC09])
 - Using shared state (GraphLab[VLDB12])
- Parallelism: run multiple vertex programs simultaneously
Example Computation: Social Network Popularity

What's the popularity of this user?

Popular?

depends on the popularity of her followers

depends on the popularity of their followers
PageRank Algorithm

\[R[i] = 0.15 + \sum_{j \in \text{Nbrs}(i)} w_{ji} R[j] \]

- Update ranks in parallel
- Iterate until convergence
The Pregel \[^{[PODC09]}\] Abstraction

Vertex-Programs interact by sending messages.

\[
\text{Pregel_PageRank}(i, \text{messages}) : \\
// Receive all the messages \\
total = 0 \\
\text{foreach}(\text{msg in messages}) : \\
\quad total = total + msg \\
// Update the rank of this vertex \\
R[i] = 0.15 + total \\
// Send new messages to neighbors \\
\text{foreach}(j \text{ in out_neighbors}[i]) : \\
\quad \text{Send } \text{msg}(R[i] \times w_{ij}) \text{ to vertex } j
\]
The GraphLab [VLDB12] Abstraction

Vertex-Programs directly read the neighbors state

```
GraphLab_PageRank(i)

// Compute sum over neighbors
total = 0
foreach( j in in_neighbors(i)):
    total = total + R[j] * w_{ji}

// Update the PageRank
R[i] = 0.15 + total

// Trigger neighbors to run again
if R[i] not converged then
    foreach( j in out_neighbors(i)):
        signal vertex-program on j
```
Challenges of High-Degree Vertices

- Sequentially process edges
- Sends many messages (Pregel)
- Touches a large fraction of graph (GraphLab)
- Edge meta-data too large for single machine

Asynchronous Execution requires heavy locking (GraphLab)
Synchronous Execution prone to stragglers (Pregel)

Communication Overhead for High-Degree Vertices is the Most Prominent
Pregel Reduces Fan-In Traffic

Sending vertex info from neighbors
Pregel Reduces Fan-in Traffic

User-defined commutative associative (+) message operation allows preprocessing on the local machine with combiners and reduces the amount of messages transmitted.
Pregel Struggles with Fan-Out

Machine 1

A

B

C

Machine 2

D'
Fan-In and Fan-Out Performance

- PageRank on synthetic Power-law Graphs

![Graph showing the relationship between Total Comm. (GB) and Power-Law Constant α. The graph illustrates that as α increases, the total communication decreases, indicating a reduction in fan-in traffic. Combiners help to reduce fan-in traffic, and the graph shows that high fan-out traffic still suffers in comparison to high fan-in traffic. More high-degree vertices are present as α increases.]
GraphLab Reduces Traffic by Creating Ghost Vertices

Create “Ghost Nodes” for the neighbors not on the same machine
GraphLab Reduces Broadcast Traffic by Creating Ghost Vertices

Updates to vertices under evaluation will be sent to another machine via 1 message, and the other machine internally performs transfers.
GraphLab Suffers from Neighbors’ Changes

Machine 1

A
B
C
D

Machine 2

A
B
C
D
Fan-In and Fan-Out Performance

- PageRank on synthetic Power-law Graphs
- GraphLab is undirected
Fan-In and Fan-Out Performance

- PageRank on synthetic Power-law Graphs
- GraphLab is undirected

Pregel and GraphLab are not well suited for natural graphs

- Challenges to reduce both the fan-in and fan-out traffic for high-degree vertices
- Low quality graph partitioning cuts a significant number of edges in the graph (contributing to the significant traffic between different machines)
PowerGraph – GAS Decomposition

Gather (Reduce)
Accumulate information about neighborhood

Apply
Apply the accumulated value to center vertex

Scatter
Update adjacent edges and vertices.

GraphLab_PageRank(i)

```plaintext
// Compute sum over neighbors
total = 0
foreach (j in in_neighbors(i)):
    total = total + R[j] * w_{ji}

// Update the PageRank
R[i] = 0.1 + total

// Trigger neighbors to run again
if R[i] not converged then
    foreach (j in out_neighbors(i))
        signal vertex-program on j
```

Gather Information About Neighborhood

Update Vertex

Signal Neighbors & Modify Edge Data
PowerGraph – GAS Decomposition

Gather (Reduce)
Accumulate information about neighborhood

User Defined:
- \(\text{Gather}(\bullet) \rightarrow \Sigma \)
- \(\Sigma_1 \oplus \Sigma_2 \rightarrow \Sigma_3 \)

Apply
Apply the accumulated value to center vertex

Scatter
Update adjacent edges and vertices.

Parallel Sum
\(+ \) \(+ \) ... \(+ \) \(\rightarrow \Sigma \)
PowerGraph – GAS Decomposition

Gather (Reduce)
Accumulate information about neighborhood

User Defined:
- \(\text{Gather}(Y) \rightarrow \Sigma \)
- \(\Sigma_1 \oplus \Sigma_2 \rightarrow \Sigma_3 \)

Apply
Apply the accumulated value to center vertex

User Defined:
- \(\text{Apply}(Y, \Sigma) \rightarrow Y' \)

Scatter
Update adjacent edges and vertices.
PowerGraph – GAS Decomposition

Gather (Reduce)
Accumulate information about neighborhood

User Defined:
- Gather(Y) → Σ
- $\Sigma_1 \oplus \Sigma_2 \rightarrow \Sigma_3$

Apply
Apply the accumulated value to center vertex

User Defined:
- Apply(Y, Σ) → Y'

Scatter
Update adjacent edges and vertices.

User Defined:
- Scatter(Y') → Y'

Update Edge Data & Activate Neighbors
PageRank in PowerGraph

\[R[i] = 0.15 + \sum_{j \in \text{Nbrs}(i)} w_{ji} R[j] \]

PowerGraph_PageRank(i)

Gather(\(j \rightarrow i \)) : return \(w_{ji} \cdot R[j] \)

sum(a, b) : return a + b;

Apply(i, Σ) : \(R[i] = 0.15 + \Sigma \)

Scatter(i \rightarrow j) :
 if \(R[i] \) changed then trigger \(j \) to be recomputed
Distributed Execution of a PowerGraph Vertex-Program

Cutting graphs from vertices instead of cutting from edges
Distributed Execution of a PowerGraph Vertex-Program

- Assign each portion of edges to a different machine
 - Select a master machine
 - Create shadow vertices on auxiliary machines
Distributed Execution of a PowerGraph Vertex-Program

• Gather:
 • Each vertices shadow gathers on local machine (parallel)
 • Send the sum to the master machine
Distributed Execution of a PowerGrpah Vertex-Program

• Apply:
 • Apply the aggregated sum in a user defined way
 • Send the updated value to all machines
Distributed Execution of a PowerGraph Vertex-Program

• Scatter:
 • Scatter locally (parallel)
Distributed Execution of a PowerGrpah Vertex-Program

• Scatter:
 • Scatter locally (parallel)

• Communication is linear in the number of machines each vertex spans
• Percolation theory suggests that power law graphs have good vertex cuts
• **Theorem**: For any edge-cut we can directly construct a vertex-cut which requires less communication and storage
How to perform vertex cuts?

- Random partitioning
 - Pick the lightest loaded machine when edges come in
 - No coordination overhead

Random vertex cut communication improvements
How to perform vertex cuts?

- **Random partitioning**
 - Pick the lightest loaded machine when edges come in
 - No coordination overhead

- **Greedy partitioning**
 - Globally tracks which vertex is placed to which machine and try to place the edges for the same vertex on the same machine in a workload-balanced way
 - High coordination overhead

- **Oblivious partitioning**
 - Locally tracks the per-vertex info, and place the edges in a workload-balanced way
 - Medium coordinate overhead
Comparing Vertex Cut Algorithms

Twitter Graph: 41M vertices, 1.4B edges

Cost

Construction Time

Oblivious balances cost and partitioning time.
Delta-Caching Optimization

• Most of time, only a few of the neighboring vertices change their values
• Opportunities to reduce the necessary gathering
• Keep a local copy of the gathered neighboring value from the last iteration
• Calculate delta during scatter to update the local cached value as well
Results – Algorithm Implementations

• Collaborative Filtering
 – Alternating Least Squares
 – Stochastic Gradient Descent
 – SVD
 – Non-negative MF

• Statistical Inference
 – Loopy Belief Propagation
 – Max-Product Linear Programs
 – Gibbs Sampling

• Graph Analytics
 – PageRank
 – Triangle Counting
 – Shortest Path
 – Graph Coloring
 – K-core Decomposition

• Computer Vision
 – Image stitching

• Language Modeling
 – LDA
Results – Compare to GraphLab & Pregel

- Running PageRank on Synthetic Power-Law Graphs
Results – Scaling

- Running PageRank on Twitter graph
Results – Delta Cache Improvements

- Running PageRank on Twitter graph
Strengths

+ Paper is well-motivated by the concern of efficiently processing power-law natural graphs
+ Paper clearly presents the challenges of the problems and the issues of the existing work
+ Paper shows a comprehensive study of the performance of the proposed abstraction
 - application algorithms
 - communication overhead
 - scaling
Weakness

- Paper does not show how well the abstraction performs if the application workload is not as power-law in nature. A good abstraction should still have reasonable performance even if the workload is not the target workload.

- Paper did not show results with fewer than 8 machines and do not compare against sequential algorithm.
Discussions

• Is the GAS abstraction general enough to represent all commonly known algorithms?

• Can we apply the vertex cut ideas to other framework for performance improvements?

• How will PowerGraph perform if the application workloads are not natural graphs?