Graph Clustering: Affinity Clustering and Higher-Order Clustering

Laxman Dhulipala
MIT (Postdoc)
https://ldhulipala.github.io/

Based on papers by Bateni et al. (Neurips 2017) and Yin et al. (KDD 2017)
Outline

❖ Clustering and Graph Clustering Overview
❖ Affinity Clustering
❖ Higher-Order Clustering
❖ Future Directions
❖ Conclusion
Clustering

Problem (informal):
Group objects in such a way that objects in the same group (cluster) are more similar than those in other groups (clusters).

Points in ambient space

Vertices and edges in a (potentially weighted) graph
Flat and Hierarchical Clustering

Flat Clustering:
Assign objects to clusters (no structure relating clusters to other clusters)

Hierarchical Clustering:
Build a hierarchy of clusters called a *dendrogram*
Often want clusters to be formed by *binary merges* of sub-clusters
Dendrograms usually equipped with a weight (*similarity*) indicating how similar the two merged clusters are
Hierarchical Graph Clustering

Problem:
Given a graph with positive edge weights representing distances (smaller is more similar), compute a hierarchical clustering of the graph.

Input

Clustering

Validate

labels

threshold

\[A = \text{pig} \]

\[B = \text{bear} \]

\[C = ? \]

\[D = \text{dog} \]
Hierarchical Agglomerative Clustering (on graphs)

- defined using different **linkage function**
- can either work in **similarity** or **dissimilarity** setting. Let’s stick with (D) for now.

<table>
<thead>
<tr>
<th>(s)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>larger weights are more similar</td>
<td>smaller weights are more similar</td>
</tr>
</tbody>
</table>

Generic HAC algorithm: II dissimilarity

while J more than one cluster:

- let (u,v) be the most similar (smallest-weight) edge
- merge (u,v) into a new cluster
- update weights in the graph using the specified **linkage function**
Suppose the HAC algorithm merges two vertices A, B to form a cluster $A \cup B$. How do we weight edges out of this new cluster?
Linkage Functions:

Single Linkage: \(W(A \cup B, C) = \min \{ w(A, C), w(B, C) \} \)

Complete Linkage: \(W(A \cup B, C) = \max \{ w(A, C), w(B, C) \} \)

Weighted Average-Linkage: \(W(A \cup B, C) = \frac{(w(A, C) + w(B, C))}{2} \)
Linkage Functions Cont'd.

Unweighted Average-Linkage:

\[W(A \cup B, C) = \frac{\sum_{(a,b) \in E} w(a, b)}{|A| \cdot |B|} \]

\[w(a, b) = \begin{cases} 2 & \text{if } a \neq b, \text{ and } a, b \in A \cup B \cup C \\ 0 & \text{otherwise} \end{cases} \]

Weighted Average-Linkage:

\[\frac{1}{|A| \cdot W(A, C) + 1B| \cdot W(B, C)} \]

\[\frac{|A| \cdot 4 + 1B| \cdot 5}{|A| \cdot 1B|} = \frac{4 + 5}{4} \]

\[\text{Weighted avg } = \frac{13}{2} \]
HAC: Output (unweighted avg-link)

merge weight: 1

merge weight: 2

merge weight: 4
Parallelizing Hierarchical Agglomerative Graph Clustering

Is it possible to solve this problem in \(\text{NC} \)?

What about using different linkage functions?

- Single-Linkage
 - \(\text{MST}(n) \) postprocesses \(\text{ENC} \) dendrogram
 - \(O(n \log n) \) work, \(O(\text{polylog} n) \) depth

\[\text{Class of problems solvable in today: want close to best seq.} \]

- \(\text{poly}(n) \) work?
- \(\text{polylog}(n) \) depth alg

\[\text{RNC} \]

A generic \(\text{HAC} \) alg:

- Complete Linkage \(\rightarrow \) \(\text{CC-hard} \)
- \(\approx \) \(\text{Weighted/Unweighted} \) \(\text{P-complete} \)

straightforward parallelization

\(O(m+n) \) work

\(O(n) \) depth
Background: Boruvka’s Algorithm

Cut property:
Let S be any subset of vertices. The minimum cost edge on the boundary of S is in the MST.
def Boruvka(G(V, E, w)):
 # Compute the minimum edge out of each vertex.
 Let the set of min-weight edges be MinE.
 # Compute connected components on the graph induced
 # by only edges in MinE.
 C = Components(G[V, MinE])
 # Contract the graph to the components of C. An edge
 # (u,v) in E is discarded if C(u) = C(v). For
 # duplicate edges (u,v) with C(u) != C(v), keep the
 # minimum-weight edge.
 GC = ContractMin(G, C)
 return MinE U Boruvka(GC)

How many components can there be in C?

#vertices (deterministically) decreases by a constant factor per-round

Overall parallel cost is:

$O(m \log n)$ work

$O(\log^2 n)$ depth
Affinity Clustering

Idea: Stop Borůvka's Alg. after \(r > 0 \) rounds, at the first time when there are \(\leq k \) clusters for some desired \(k > 0 \).

If \(< k \) clusters, delete the edges added in the last round in decreasing order to get exactly \(k \) clusters.

if \(k = 2 \), cut the weight 4 edge to get 2 clusters.
Hierarchical Affinity Clustering

Round 1

Round 2

The fanout/arity of a cluster can be arbitrarily large:

Figure 1: An example of how affinity may produce a large component in one round.
Contributions of This Paper:

- Theoretical characterization of Affinity clustering under randomly distributed points.
 Note that worst case guarantees on cluster sizes not possible.

- Characterization of the "cost" of affinity clustering wrt any non-singleton clusterings (min cluster size ≥ 2)

- Characterization of single-linkage clustering.
 Each vertex in single-linkage clustering w. k clusters (non-singleton) has a neighbor inside its cluster which is closer than any vertex outside the cluster.
Algorithms Contributions:

- $O(1)$ round MPC algorithm for MST for dense graph
 - $m = \Theta(n^{1+c})$ for any constant $c > 0$
 - space-per-machine = $S = \tilde{O}(n^{1+c})$ w.h.p. for $0 < c < C$
 - total machines = $T = O(n^{c-\eta})$
 - polylog factors
 - runs in $\lceil \log (C/\varepsilon) \rceil + 1$ rounds of MPC

- $O(\log n)$ round MPC algorithm using Distributed Hash Tables (DHT)
 - $O(\log^2 n)$ rounds without DHT
Massively Parallel Computation (MPC) Model

- \(N \) input size
- total of \(M \) machines each with space \(S \)
- Both \(M \) and \(S \) are sublinear in \(N \), e.g., \(M = O(N^{1-\epsilon}) \) \(S = O(N^\epsilon) \)

Within one round machines can perform arb. polytime computation on local data.

\[\text{Round 1} \]

\(\sum_s \) # messages sent (received = \(O(s) \))

\[\text{Round 2} \]
MST Algorithm (Dense Graphs)\[S = N = m \]

Recall that \[S = O(n^{1+\varepsilon}) \], \[m = O(n^{1+c}) \], and \(0 < \varepsilon < c \)

\[\rightarrow \quad \text{if } S = O(n^{1+c}) \text{ can solve MST in one round} \]

- Can't fit all edges in one machine; have to compute edges some other way

Q: What about running Borůvka?

A: \(O(\log^2 n) \) round complexity (follows from work-depth discussion)

Hint: Connectivity can be solved in \(O(\log n) \) MPC rounds through PRAM simulations.
MST Algorithm (Dense Graphs)

Observation: If $G' = (V', E')$ is an arbitrary subgraph of G and an edge $e' e E' \notin \text{MST}(G')$ then $e' \notin \text{MST}(G)$

Idea: Divide G into subgraphs s.t. each edge of G is in at least 1 subgraph (and subgraph sizes $\leq S$). Then since $|\text{MST}| = O(n)$ and $S = O(n^{1+\epsilon})$, we will get rid of a lot of edges.

\[\Downarrow\]

Repeat until only $S = O(n^{1+\epsilon})$ edges left and solve on a single machine.
Algorithm 1 MST of Dense Graphs

Input: A weighted graph \(G \)

Output: The minimum spanning tree of \(G \)

1. function \(\text{MST}(G = (V, E), c) \)
2. \(c \leftarrow \log_n (m/n) \)
3. \(\text{while } |E| > O(n^{1+c}) \text{ do} \)
4. \(\text{REDUCEEDGES}(G, c) \)
5. \(c \leftarrow (c - \varepsilon)/2 \)
6. Move all the edges to one machine and find MST of \(G \) in there.
7. function \(\text{REDUCEEDGES}(G = (V, E), c) \)
8. \(k \leftarrow n^{(c-\varepsilon)/2} \)
9. Independently and u.a.r. partition \(V \) into \(k \) subsets \(\{V_1, \ldots, V_k\} \).
10. Independently and u.a.r. partition \(V \) into \(k \) subsets \(\{U_1, \ldots, U_k\} \).
11. Let \(G_{i,j} \) be a subgraph of \(G \) with vertex set \(V_i \cup U_j \) containing any edge \((v, u) \in E(G)\) where \(v \in V_i \) and \(u \in U_j \).
12. for any \(i, j \in \{1, \ldots, k\} \) do
13. Send all the edges of \(G_{i,j} \) to the same machine and find its MST in there.
14. Remove an edge \(e \) from \(E(G) \), if \(e \in G_{i,j} \) and it is not in MST of \(G_{i,j} \).
Lemma: Alg. 1 correctly finds the MST in \(\lceil \log (\varepsilon/n) \rceil + 1\) rounds.

Correctness: each call to Reduce Edge randomly partitions vertices into

\[V = \{ V_1, \ldots, V_k \} \]

\[U = \{ U_1, \ldots, U_k \} \]

and for each \((i, j)\) pair \(i \in \{ 1, \ldots, k \}\)
finds \(MST(C_i, j)\), discarding any edge in \(G_{i, j} \cap MST(C_i, j)\).

\[\rightarrow \text{none of the discarded edge are part of } MST(C) \]

Algorithm 1 MST of Dense Graphs

Input: A weighted graph \(G\)

Output: The minimum spanning tree of \(G\)

1. function \(MST(G = (V, E), \varepsilon)\)
2. \[c \leftarrow \log_{\varepsilon} (m/n) \] \(\triangleright\) Since \(G\) is assumed to be dense we know \(c > 0\).
3. while \(|E| > O(n^{1+\varepsilon})\) do
4. \(\text{REDUCE EDGES}(G, c)\)
5. \[c \leftarrow (c - \varepsilon)/2 \]
6. Move all the edges to one machine and find MST of \(G\) in there.
7. function \(\text{REDUCE EDGES}(G = (V, E), \varepsilon)\)
8. \[k \leftarrow \frac{n(c - \varepsilon)/2}{\varepsilon} \]
9. Independently and u.a.r. partition \(V\) into \(k\) subsets \(\{V_1, \ldots, V_k\}\).
10. Independently and u.a.r. partition \(V\) into \(k\) subsets \(\{U_1, \ldots, U_k\}\).
11. Let \(G_{i,j}\) be a subgraph of \(G\) with vertex set \(V_i \cup U_j\) containing any edge \((v, u) \in E(G)\) where \(v \in V_i\) and \(u \in U_j\).
12. for any \(i, j \in \{1, \ldots, k\}\) do
13. \(\text{Send all the edges of } G_{i,j} \text{ to the same machine and find its MST in there.}\)
14. \(\text{Remove an edge } e \text{ from } E(G), \text{ if } e \in G_{i,j} \text{ and it is not in MST of } G_{i,j}\).
Round complexity:

- Let \(c_r = \text{value of } c \text{ in } r\text{-th iter.} \)
- Let \(k_r = n \frac{c_r - \epsilon}{2} \)
- For each \(G_{i,j} \) let \(T_{i,j} = \text{MST}(k_{i,j}) \). Notice that only \(\bigcup_{i,j} T_{i,j} \) are kept in next round.

\[\text{MST on } n' \text{ vertices has } \leq n' - 1 \text{ edges.} \]

Next, conceptually charge each edge \(e \in T_{i,j} \) to a vertex in \(T_{i,j} \)

Claim: each vertex in \(G_{i,j} \) charged at most once

\[\text{e.g. } \]

\[\text{Idea?} \]

Algorithm 1 MST of Dense Graphs

Input: A weighted graph \(G \)

Output: The minimum spanning tree of \(G \)

1: function \(\text{MST}(G = (V, E), c) \)
2: \(c \leftarrow \log_2(n/m) \)
3: \(\text{while } |E| > O(n^{1+\epsilon}) \text{ do} \)
4: \(\text{REDUCE EDGES}(G, c) \)
5: \(c \leftarrow (c - \epsilon)/2 \)
6: \(\text{Move all the edges to one machine and find MST of } G \text{ in there.} \)
7: function \(\text{REDUCE EDGES}(G = (V, E), c) \)
8: \(k \leftarrow n^{(1-\epsilon)/2} \)
9: Independently and u.a.r. partition \(V \) into \(k \) subsets \(\{V_1, \ldots, V_k\} \).
10: Independently and u.a.r. partition \(V \) into \(k \) subsets \(\{U_1, \ldots, U_k\} \).
11: Let \(G_{i,j} \) be a subgraph of \(G \) with vertex set \(V_i \cup U_j \) containing any edge \((v, u) \in E(G)\)
\[\text{where } v \in V_i \text{ and } u \in U_j. \]
12: for any \(i, j \in \{1, \ldots, k\} \) do
13: Send all the edges of \(G_{i,j} \) to the same machine and find its MST in there.
14: Remove an edge \(e \) from \(E(G) \), if \(e \in G_{i,j} \) and it is not in MST of \(G_{i,j} \).
Round Complexity:

- Let $c_r = \text{value of } c \text{ in } r\text{-th iter.}$
- Let $k_r = \frac{(c_r - \varepsilon)}{2}$
- Let each $G_{i,j}$ let $T_{i,j} = \text{MST}(G_{i,j})$.
- Each vertex in $G_{i,j}$ charged at most once.

Consider $v \in V_i$ (w.l.o.g.). v appears in $G_{i,1}, \ldots, G_{i, k_r}$. Therefore v can be charged for at most k_r edges.

$k_r \text{ times } \Rightarrow k_r \cdot n$ is an upper bound for $\# \text{ edges at end of } r\text{-th round.}$

$\Rightarrow k_r \cdot n = n + (c_r - \varepsilon)/2$ and $c_r < \frac{c}{2\varepsilon} \cdot \frac{\log(\log(\varepsilon/c))}{2} \leq \varepsilon$

$\Rightarrow O(n^{1+\varepsilon}) \text{ edges after } \lceil \log(\varepsilon/c) \rceil \text{ rounds.}$

Algorithm 1 MST of Dense Graphs

Input: A weighted graph G

Output: The minimum spanning tree of G

1. \textbf{function} MST$(G = (V, E), c)$
2. \hspace{1em} $c \leftarrow \log_{\text{base } c}(m/n)$ \hspace{1em} \triangleright Since G is assumed to be dense we know $c > 0$.
3. \hspace{1em} \textbf{while} $|E| > O(n^{1+\varepsilon})$ \textbf{do}
4. \hspace{2em} \textbf{REDUCE EDGES}(G, c)
5. \hspace{1em} \hspace{1em} $c \leftarrow (c - \varepsilon)/2$
6. \hspace{1em} Move all the edges to one machine and find MST of G in there.
7. \textbf{function} REDUCE EDGES$(G = (V, E), c)$
8. \hspace{1em} $k \leftarrow n(1-\varepsilon)/2$
9. \hspace{1em} Independently and u.a.r. partition V into k subsets $\{V_1, \ldots, V_k\}$.
10. Independently and u.a.r. partition V into k subsets $\{U_1, \ldots, U_k\}$.
11. \hspace{1em} Let $G_{i,j}$ be a subgraph of G with vertex set $V_i \cup U_j$ containing any edge $(v, u) \in E(G)$ where $v \in V_i$ and $u \in U_j$.
12. \hspace{1em} \textbf{for any } i, j \in \{1, \ldots, k\} \textbf{ do}
13. \hspace{2em} Send all the edges of $G_{i,j}$ to the same machine and find its MST in there.
14. \hspace{1em} Remove an edge e from $E(G)$, if $e \in G_{i,j}$ and it is not in MST of $G_{i,j}$.

$A_{\varepsilon} = c_r$, $c_r = (c_{r-1} - \varepsilon)/2$
MST Algorithm (Sparse Graphs)

Let \(G(V, E, w) \) be given. \(n = |V|, m = |E| \) (no requirements on \(m \))

Algorithm: (proceed in rounds)
- each vertex finds its best edge (most similar edge)
- graph is contracted along the selected edges

Round 1

Round 2

\[\text{PRAM} \quad \begin{array}{c} \text{multi-prefix} \\ \text{PRAM} \end{array} \quad \text{MPM} \quad 0(1) \text{ rounds} \]
MST Algorithm (Sparse Graphs)

Let \(G(V, E, w) \) be given. \(n = |V|, m = |E| \) (no requirements on \(m \))

Algorithm: (proceed in rounds)

1. Each vertex finds its best edge (most similar edge) \(\Omega(1) \) rounds
2. Graph is contracted along the selected edges \(\Omega(n^2) \) rounds

(2) solvable using connectivity as we discussed before but requires \(\Omega(n \log n) \) rounds.

Turn out that we can solve (2) in \(O(1) \) rounds using a distributed hash table (DHT)
MST Algorithm (Sparse Graphs)

Let \(G(V, E, w) \) be given. \(n = |V| \), \(m = |E| \) (no requirements on \(m \))

Algorithm: (proceed in rounds)
1. each vertex finds its best edge (most similar edge)
2. graph is contracted along the selected edges using DHT

- Each loop of two gives a unique label for a connected component.
- Performing all queries takes \(O(1) \) rounds

Adaptive MPC (AMPC) model
Experiments

First, how do we compare two different clusterings?

Definition 4 (Rand index [40]). Given a set \(V = \{v_1, \ldots, v_n\} \) of \(n \) points and two clusterings \(X = \{X_1, \ldots, X_r\} \) and \(Y = \{Y_1, \ldots, Y_s\} \) of \(V \). Define the following.

- \(a \): the number of pairs in \(V \) that are in the same cluster in \(X \) and in the same cluster in \(Y \).
- \(b \): the number of pairs in \(V \) that are in different clusters in \(X \) and in different clusters in \(Y \).

The Rand index \(r(X, Y) \) is defined to be \((a + b)/\binom{n}{2} \). By having the ground truth clustering \(T \) of a data set, we define the Rand index score of a clustering \(X \), to be \(r(X, T) \).

Example.

\[n = 4 \quad V = \{v_1, v_2, v_3, v_4\} \]

\[X = \{\{v_1, v_4\}, \{v_2, v_3\}\} \quad a = \]

\[T = \{\{v_1, v_4, v_2\}, \{v_3\}\} \quad b = \]

\[r(X, T) = \]
Evaluation

- Generally single affinity performs very well! Surprisingly better than HAC algorithms.
- K-means is also close.
- For hierarchical clustering, level of tree w. highest score is used.

Idea is to reweight edge after each round.
Graph-based HAC on complete graph.

run in original metric
different linkage versions of affinity
Scalability

Table 1: Statistics about datasets used. (Numbers for ImageGraph are approximate.) The fifth column shows the relative running time of affinity clustering, and the last column is the speedup obtained by a ten-fold increase in parallelism.

<table>
<thead>
<tr>
<th>Dataset</th>
<th># nodes</th>
<th># edges</th>
<th>max degree</th>
<th>running time</th>
<th>speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiveJournal</td>
<td>4,846,609</td>
<td>7,861,383,690</td>
<td>444,522</td>
<td>1.0</td>
<td>4.3</td>
</tr>
<tr>
<td>Orkut</td>
<td>3,072,441</td>
<td>42,687,055,644</td>
<td>893,056</td>
<td>2.4</td>
<td>9.2</td>
</tr>
<tr>
<td>Friendster</td>
<td>65,608,366</td>
<td>1,092,793,541,014</td>
<td>2,151,462</td>
<td>54</td>
<td>5.9</td>
</tr>
<tr>
<td>ImageGraph</td>
<td>2×10^{10}</td>
<td>10^{12}</td>
<td>14000</td>
<td>142</td>
<td>4.1</td>
</tr>
</tbody>
</table>

- Construct weighted graphs by setting $w(u,v) = |N(u) \cap N(v)|$ (number of common neighbors) and discarding 0-weight edges.
- Procedure basically connects a vertex's 2-hop neighborhood.
- Use maximum spanning tree (similarity) version of affinity.

increase W by 10^x. See $4-10x$ speedup.
Hierarchical Clustering using MST

Compute MST

Postprocess MST to compute a Dendrogram

recent result due to Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun (2021)

Turn out that one can get the single-linkage dendrogram in NC