A Simple Parallel Cartesian Tree Algorithm and its Application to Parallel Suffix Tree Construction

Julian Shun and Guy Blelloch
Motivation for Suffix Trees

• To efficiently search for patterns in large texts
 – Example: Bioinformatic applications

• Suffix trees allow us to do this
 – $O(N)$ work for construction with $O(M)$ work for search, where N is the text size and M is the pattern size
 • In contrast, Knuth-Morris-Pratt’s algorithm takes $O(M)$ work for construction and $O(N)$ work for search
 – Other supported operations: longest common substring, maximal repeats, longest palindrome, etc.
 – There are sequential implementations but no parallel ones that are both theoretically and practically efficient

• We developed a new (practical) linear-work parallel algorithm and analyzed it experimentally
Outline: Suffix Array to Suffix Tree (in parallel)

Suffix array + Longest Common Prefixes

(interleave SA and LCPs)

Multiway Cartesian tree

(label edges, insert into hash table)

Suffix tree

- There are standard techniques to perform all of these steps in parallel, except for building the multiway Cartesian Tree.
Suffix Arrays and Longest-common-prefixes (LCPs)

Original String: mississippi$

Suffixes:
- mississippi$
- ississippi$
- ssissippi$
- sissippi$
- issippi$
- ssippi$
- sippi$
-ippi$
- ppi$
- pi$
- i$
- $

Sort suffixes

Suffix array:
$ $
 i$
 ippi$
 issippi$
 ississippi$
 mississippi$
 pi$
 ppi$
 sippi$
 ssippi$
 sissippi$
 ssissippi$

LCPs:
- 0
- 1
- 1
- 4
- 0
- 0
- 0
- 1
- 2
- 3
Suffix Trees

- String = mississippi$
- Store suffixes in a patricia tree (trie with one-child nodes collapsed)
Multiway Cartesian Tree

- Maintains heap property
- Components of same value treated as one “cluster”
- Inorder traversal gives back the sequence

Sequence = 1 2 0 4 1 1 3 1 2

![Multiway Cartesian Tree Diagram]
Suffix Tree History

• Sequential O(n) work algorithms based on incrementally adding suffixes [Weiner ‘73, McCreight ‘76, Ukkonen ‘95]

• Parallel O(n) work algorithms very complicated, no implementations [Sahinalp-Vishkin ‘94, Hariharan ‘94, Farach-Muthukrishnan ‘96]

• Parallel algorithms used in practice are not linear-work

• Practical linear-work parallel algorithm?
 • Simple O(n) work parallel algorithm
 • Fastest algorithm in practice
More Related Work

• Cartesian trees
 – Sequential O(n) work stack-based algorithm
 – Work-optimal parallel algorithm for Cartesian tree on distinct values (Berkman, Schieber and Vishkin 1993)

• Suffix arrays to suffix trees
 – Sequential O(n) work algorithms
 – Two parallel algorithms for converting a suffix array into a suffix tree (Iliopoulos and Rytter 2004)
 • Both require O(n log n) work

• Our contributions
 – A parallel algorithm for converting suffix arrays to suffix trees, which requires only O(n) work and is based on multiway Cartesian trees
Suffix Array/LCPs \(\rightarrow\) Suffix Tree

- Interleave suffix lengths and LCP values
- Build a multiway Cartesian tree on that
- This returns the suffix tree!

Suffix lengths: 1, 2, 5, 8, 11, 12, 3, 4, 6, 9, 7, 10
LCP values: 0, 1, 1, 4, 0, 0, 1, 0, 2, 1, 3

Interleaved
String = mississippi$

= Leaf node with suffix length

= Contracted internal node with LCP value

= Internal node with LCP value

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
Suffix Array to Suffix Tree (in parallel)

Suffix array + Longest Common Prefixes

(interleave SA and LCPs)

Multiway Cartesian tree

(Suffix tree)

Karkkainen and Sander’s algorithm O(n) work and O(log^2 n) span

(label edges, insert into hash table)
Cartesian Tree (in parallel)

- Divide-and-conquer approach
- Merge spines of subtrees (represented as lists) together using standard techniques

\[\text{SA} + \text{LCPs} = 1, 0, 2, 0, 5, 1, 8, 1, 11, 4, 12, 0, 3, 0, 4, 1, 6, 0, 9, 2, 8, 1, 7, 3, 10 \]
Cartesian Tree (in parallel)
Cartesian Tree (in parallel)

- Input: Array A[1...N]

Build(A[1...n]){
 if n < 2 return;
 else in parallel do:
 t1 = Build(A[1...n/2]);
 t2 = Build(A[(n/2)+1...n]);
 Merge(t1, t2);
}

Merge(t1, t2){
 R-spine = rightmost branch of t1;
 L-spine = leftmost branch of t2;
 use a parallel merge algorithm on R-spine and L-spine;
}

String = mississippi$

= Leaf node with suffix length

= Internal node with LCP value

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
String = mississippi$

= Leaf node with suffix length
= Internal node with LCP value

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10 (interleaved)
String = mississippi$

= Leaf node with suffix length

= Internal node with LCP value

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
String = mississippi$

= Leaf node with suffix length

= Internal node with LCP value

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10 (interleaved)
String = mississippi$

= Leaf node with suffix length

= Internal node with LCP value

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
String = mississippi$

= Leaf node with suffix length
= Internal node with LCP value

SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10
(interleaved)
String = mississippi$

= Contracted internal node with LCP value

= Leaf node with suffix length

= Internal node with LCP value

\[SA + LCPs = 1, 0, 2, 1, 5, 1, 8, 4, 11, 0, 12, 0, 3, 1, 4, 0, 6, 2, 9, 1, 7, 3, 10 \] (interleaved)
Cartesian Tree (in parallel)

• Almost all merged nodes will never be processed again (they are “protected”)

- Charged to merge

- Left subtree
- Right subtree
- Merged tree
- Protected
- Processed
Cartesian Tree - Complexity bounds

• Observation: All nodes processed, except for two, become protected during a merge.
• Charge the processing of those two nodes to the merge itself (there are only $O(n)$ merges). Other nodes pay for themselves and then get protected.
 – It is important that when one spine has been completely processed, the merge does not process the rest of the other spine, otherwise we get $O(n \log n)$ work.
• Therefore, the merges contribute a total of $O(n)$ work to the algorithm.
Cartesian Tree - Complexity bounds

- Maintain binary search trees for each spine so that the endpoint of the merge can be found efficiently (in $O(\log n)$ work and span)
- A parallel merge takes linear work and $O(\log n)$ span
- Merges contribute $O(n)$ work, and searches and binary tree maintenance in the spine cost $O(\log n)$ work per merge
 - $W(n) = 2W(n/2) + O(\log n) = O(n)$
- Span: $O(\log n)$ levels of recursion, and merges + binary search tree operations take $O(\log n)$ span
 - $S(n) = S(n/2) + O(\log n) = O(\log^2 n)$
Multiway Cartesian Tree - Complexity bounds

• To obtain multiway Cartesian tree, use parallel tree contraction to contract adjacent nodes with the same value

• This can be done in $O(n)$ work and $O(\log n)$ span, which is within our bounds

• We have a $O(n)$ work and $O(\log^2 n)$ span algorithm for constructing a multiway Cartesian tree
Suffix Array to Suffix Tree (in parallel)

- Suffix array + Longest Common Prefixes
 - Karkkainen and Sander’s algorithm
 - O(n) work and O(\(\log^2 n\)) span
- Multiway Cartesian tree
 - Our parallel merging algorithm
 - O(n) work and O(\(\log^2 n\)) span
 - (label edges, insert into hash table)
 - Parallel hash table
 - O(n) work and O(\(\log n\)) span
- Suffix tree
Experimental Setup

• Implementations in Cilk Plus
• 40-core Intel Nehalem machine
• Inputs: real-world and artificial texts
Suffix Tree Experiments

- Compared to best sequential algorithm [Kurtz '99]

- Speedup varies from 5.4x to 50x on 40 cores
- Self-relative speedup 23x to 26x on 40 cores
Suffix Tree on Human Genome (≈3 GB)

- Differences due to various factors
 - Shared memory vs. distributed memory
 - Algorithmic differences

Not linear-work
Conclusions

• Developed an $O(n)$ work and $O(\log^2 n)$ span algorithm for parallel multiway Cartesian Tree construction
• This allows us to transform a suffix array into a suffix tree in parallel
• Experiments show that our implementations outperform existing ones and achieve good speedup