The Case for a Learned Sorting Algorithm

Authors: Ani Kristo, Kapil Vaidya, Ugur Cetintemel, Sanchit Misra, Tim Kraska

Presenter: Terryn Brunelle
Motivation

- Fundamental CS problem
- Database operations
 - Sort query results
 - Perform joins
Existing Work

● Comparison sort
● Distribution sort
 ○ Counting sort
 ○ Radix sort
● ML-enhanced algorithms
Learned Sort

- Train CDF model
- Use predicted prob for each key to predict final position for every key in sorted output

Linear time possible! (if have perfect model)
Problems

- Perfect model = expensive to train
- Random-access memory problem
Algorithm 1 A first Learned Sort

Input A - the array to be sorted
Input F_A - the CDF model for the distribution of A
Input o - the over-allocation rate. Default=1
Output A' - the sorted version of array A

1: procedure LEARNED-SORT(A, F_A, o)
2: $N \leftarrow A$.length
3: $A' \leftarrow$ empty array of size $(N \cdot o)$
4: for x in A do
5: pos $\leftarrow \lfloor F_A(x) \cdot N \cdot o \rfloor$
6: if EMPTY($A'[pos]$) then $A'[pos] \leftarrow x$
7: else COLLISION-HANDLER(x)
8: if $o > 1$ then COMPACT(A')
9: if NON-MONOTONIC then INSERTION-SORT(A')
10: return A'
Cache-Efficient Learned Sort

Step 1
Model-based bucketization

Step 2
In-bucket reordering

Step 3
Touch-up & Compaction

Step 4
Sort & Merge

!!!Note: The diagram illustrates the process of converting an unsorted array into a sorted array using a cache-efficient learned sort method. The steps include model-based bucketization, in-bucket reordering, touch-up & compaction, and sort & merge. Each step is visually represented with intermediate sorted buckets and final sorted array.!!!
Pseudo-Code: Step 1

Input A - the array to be sorted
Input F_A - the CDF model for the distribution of A
Input f - fan-out of the algorithm
Input t - threshold for bucket size
Output A' - the sorted version of array A

1: procedure Learned-Sort(A, F_A, f, t)
2: \[N \leftarrow |A| \] \hspace{1em} \triangleright \text{Size of the input array}
3: \[n \leftarrow f \] \hspace{1em} \triangleright \text{n represents the number of buckets}
4: \[b \leftarrow \lfloor N/f \rfloor \] \hspace{1em} \triangleright \text{b represents the bucket capacity}
5: \[B \leftarrow [] \times N \] \hspace{1em} \triangleright \text{Empty array of size N}
6: \[I \leftarrow [0] \times n \] \hspace{1em} \triangleright \text{Records bucket sizes}
7: \[S \leftarrow [] \] \hspace{1em} \triangleright \text{Spill bucket}
8: \[\text{read}_\text{arr} \leftarrow \text{pointer to } A \]
9: \[\text{write}_\text{arr} \leftarrow \text{pointer to } B \]

10: // Stage 1: Model-based bucketization
11: while $b \geq t$ do \hspace{1em} \triangleright \text{Until bucket capacity reaches the threshold t}
12: \[I \leftarrow [0] \times n \] \hspace{1em} \triangleright \text{Reset array I}
13: \[\text{for } x \in \text{read}_\text{arr} \text{ do} \]
14: \[\text{pos} \leftarrow \lfloor \text{Infer}(F_A, x) \cdot n \rfloor \]
15: \[\text{if $I[\text{pos}] \geq b$ then} \] \hspace{1em} \triangleright \text{Bucket is full}
16: \[S.\text{append}(x) \] \hspace{1em} \triangleright \text{Add to spill bucket}
17: \[\text{else} \] \hspace{1em} \triangleright \text{Write into the predicted bucket}
18: \[\text{write}_\text{arr}[\text{pos} \cdot b + I[\text{pos}]] \leftarrow x \]
19: \[\text{INCREMENT } I[\text{pos}] \]
20: \[b \leftarrow \lfloor b/f \rfloor \] \hspace{1em} \triangleright \text{Update bucket capacity}
21: \[n \leftarrow \lfloor N/b \rfloor \] \hspace{1em} \triangleright \text{Update the number of buckets}
22: \[\text{PtrSwap(read}_\text{arr}, \text{write}_\text{arr}) \] \hspace{1em} \triangleright \text{Pointer swap to reuse memory}
Pseudo-Code: Steps 2-4

23: // Stage 2: In-bucket reordering
24: offset ← 0
25: for i ← 0 up to n do ➔ Process each bucket
26: K ← [0] × b ➔ Array of counts
27: for j ← 0 up to I[i] do ➔ Record the counts of the predicted positions
28: pos ← ⌈INFERR(A, read_arr[offset + j]) ⋅ N⌉
29: INCREMENT K[pos − offset]
30: for j ← 1 up to |K| do ➔ Calculate the running total
32: T ← [] ➔ Temporary auxiliary memory
33: for j ← 0 up to I[i] do ➔ Order keys w.r.t. the cumulative counts
34: pos ← ⌈INFERR(A, read_arr[offset + j]) ⋅ N⌉
35: T[j] ← read_arr[offset + K[pos − offset]]
36: DECREMENT K[pos − offset]
37: Copy T back to read_arr[offset]
38: offset ← offset + b
39: // Stage 3: Touch-up
40: INSERTION-SORT-AND-COMPACT(read_arr)
41: // Stage 4: Sort & Merge
42: Sort(S)
43: A′ ← MERGE(read_arr, S)
44: return A′
Optimizations

- Process elements in batches (cache locality)
- One bucket at a time (temporal locality)
- Bucket buffer space (reduce overflows)
CDF Model

Figure 5: A typical RMI architecture containing three layers
Algorithm 3 The inference procedure for the CDF model

Input F_A - the trained model ($F_A[l][r]$ refers to the r^{th} model in the l^{th} layer)
Input x - the key
Output r - the predicted rank (between 0-1)

1: **procedure** `INFER(F_A, x)
2: \quad L \leftarrow \text{the number of layers of the CDF model } F_A
3: \quad M^l \leftarrow \text{the number of models in the } l^{th} \text{ layer of the RMI } F_A
4: \quad r \leftarrow 0
5: \quad \textbf{for } l \leftarrow 0 \textbf{ up to } L \textbf{ do}
6: \quad \quad r = x \cdot F_A[l][r].\text{slope} + F_A[l][r].\text{intercept}
7: \quad \textbf{return } r
Theoretical Results

- Step 1: $O(N \times L)$
- Step 2: $O(N)$
- Step 3: $O(N_t)$ (non-dominant)
- Step 4: $O(s \log s) + O(N)$

Space complexity: order of $O(N)$
Experimental Results

Figure 8: The sorting throughput for normally distributed double-precision keys (higher is better).
Experimental Results

(A) synthetic, 64-bit floating points

(B) real/benchmark, 64-bit floating points (high precision)

Sorting Rate (keys/sec)

- uniform
- multimodal
- exponential
- lognormal

100M

100M

100M

100M

100M

10M

10M

10M

3M

Learned Sort
Radix Sort
IS^4o
std::sort
Timsort
Histogram Sort
Experimental Results

(C) real/benchmark, 64-bit floating points (low precision)

(D) synth & real, 32-bit integers

Sorting Rate (keys/sec)

Learned Sort Radix Sort IS^4o std::sort Timsort Histogram Sort
Figure 12: The sorting rate of Learned Sort and its in-place version for all of our synthetic datasets.
Performance Decomposition

Figure 13: Performance of each of the stages of Learned Sort.
Strengths/Weaknesses

Strengths

- Performance on real-world data
- Improvement over default Java/Python sorting function
- Cache-efficient
- Model training time accounted for

Weaknesses

- Other CDF implementations?
- Duplicate keys
Directions for Future Work

- Sorting complex objects
- Parallel Sorting
- Using in DB systems
Discussion Questions

- Can you think of adversarial inputs that may be good to evaluate this specific approach on?
- What parallelization techniques may apply to this algorithm/sorting algorithms in general?
- What are other ways through which collisions might be handled? What is attractive about the spill bucket method?
Additional Materials
String Sorting

Figure 10: The sorting rate for various strings datasets.
Duplicates
CDF Model Training

Algorithm 4 The training procedure for the CDF model

Input A - the input array
Input L - the number of layers of the CDF model
Input M^l - the number of linear models in the l^{th} layer of the CDF model
Output F_A - the trained CDF model with RMI architecture

1: procedure $\text{Train}(A, L, M)$
2: $S \leftarrow \text{Sample}(A)$
3: Sort(S)
4: $T \leftarrow [||]$
5: for $i \leftarrow 0$ up to $|S|$ do
6: $T[0][0].\text{add}(S[i], i/|S|)$
7: for $l \leftarrow 0$ up to L do
8: for $m \leftarrow 0$ up to M^l do
9: $F_A[l][m] \leftarrow \text{linear model trained on the set } \{ t : t \in T[l][m] \}$
10: if $l + 1 < L$ then
11: for $t \in T[l][m]$ do
12: $F_A[l][m].\text{slope} \leftarrow F_A[l][m].\text{slope} \cdot M^{l+1}$
13: $F_A[l][m].\text{intercept} \leftarrow F_A[l][m].\text{intercept} \cdot M^{l+1}$
14: $i \leftarrow F_A[l][m].\text{slope} \cdot t + F_A[l][m].\text{intercept}$
15: $T[l + 1][i].\text{add}(t)$
16: return F_A