Parallel Five-Cycle Counting Algorithms

Louisa Ruixue Huang
MIT, CSAIL, Cambridge, MA, USA

Jessica Shi
MIT, CSAIL, Cambridge, MA, USA

Julian Shun
MIT, CSAIL, Cambridge, MA, USA

Abstract
Counting the frequency of subgraphs in large networks is a classic research question that reveals the underlying substructures of these networks for important applications. However, subgraph counting is a challenging problem, even for subgraph sizes as small as five, due to the combinatorial explosion in the number of possible occurrences. This paper focuses on the five-cycle, which is an important special case of five-vertex subgraph counting and one of the most difficult to count efficiently.

We design two new parallel five-cycle counting algorithms and prove that they are work-efficient and achieve polylogarithmic span. Both algorithms are based on computing low out-degree orientations, which enables the efficient computation of directed two-paths and three-paths, and the algorithms differ in the ways in which they use this orientation to eliminate double-counting. We develop fast multicore implementations of the algorithms and propose a work scheduling optimization to improve their performance. Our experiments on a variety of real-world graphs using a 36-core machine with two-way hyper-threading show that our algorithms achieve 10–46x self-relative speed-up, outperform our serial benchmarks by 10–32x, and outperform the previous state-of-the-art serial algorithm by up to 818x.

1 Introduction
Subgraph or graphlet counting is a long standing research topic in graph processing with rich applications in bioinformatics, social network analysis, and network model evaluation [25, 14, 20, 21]. While there has been significant recent work on counting subgraphs of size three or four [18, 19, 2], counting subgraphs of size five or more is a difficult task even on the most modern hardware due to the massive number of such subgraphs in large graphs. As the subgraph sizes grow, the number of possible subgraphs grows exponentially.

We consider specifically the efficient counting of five-cycles. This pattern is particularly important for fraud detection [35]. Compared to other connected five-vertex patterns, five-cycles are much more difficult to count because they are the only such pattern that requires first counting all directed three-paths. Notably, the Efficient Subgraph Counting Algorithmic
PackagE (ESCAPE), a software package by Pinar et al. that serially counts all five-vertex subgraphs in large graphs [34], spends between 25–58% of the total runtime on counting five-cycles alone based on our measurement.

While there has been prior work on developing and implementing serial five-cycle counting algorithms [27, 34, 24], there has been no prior work on designing and implementing theoretically-efficient and scalable parallel five-cycle counting algorithms. We focus on designing multicore solutions, as all publicly-available graphs (which have up to hundreds of billions of edges [31]) can fit on a commodity multicore machine [16, 17].

We present two new parallel five-cycle counting algorithms that not only have strong theoretical guarantees, but are also demonstrably fast in practice. These algorithms are based on two different serial algorithms, namely by Kowalik [27] and from ESCAPE by Pinar et al. [34]. Kowalik studied k-cycle counting in graphs for $k \leq 6$ and proposed a five-cycle counting algorithm that runs in $O(md^2) = O(m\alpha^2)$ time for d-degenerate graphs [27], where m is the number of edges in the graph and α is the arboricity of the graph. The ESCAPE implementation contains a five-cycle counting algorithm that, with an important modification that we make, achieves the same asymptotic complexity of $O(m\alpha^2)$ [34]. The arboricity of a graph is a measure of its sparsity, and having running times parameterized by α is desirable since most real-world graphs have low arboricity [16].

The main procedure in both algorithms and the essential modification to the ESCAPE algorithm is to first compute an appropriate arboricity orientation of the graph in parallel, where the vertices' out-degrees are upper-bounded by $O(\alpha)$. This orientation then enables the efficient counting of directed two-paths and three-paths, which are then appropriately aggregated to form five-cycles. Notably, the counting and aggregation steps can each be efficiently parallelized. The two algorithms differ fundamentally in the ways in which they use the orientations of these path substructures to eliminate double-counting. We prove theoretical bounds that show that both of our algorithms match the work of the best sequential algorithms, taking $O(m\alpha^2)$ work and $O(\log^2 n)$ span with high probability (w.h.p.).

We present optimized implementations of our algorithms, which use thread-local data structures, fast resetting of arrays, and a new work scheduling strategy to improve load balancing. We provide a comprehensive experimental evaluation of our five-cycle counting algorithms. On a 36-core machine with 2-way hyperthreading, our parallel algorithms achieve between 10–46x self-relative speed-up, and between 162–818x speed-ups over the fastest prior serial five-cycle counting implementation, which is from ESCAPE [34]. We also implement our own serial versions of the two algorithms, which are 7–38.91x faster than ESCAPE’s algorithm due to improved theoretical work complexities. Our best parallel algorithms achieve between 10–32x speed-ups over our best serial algorithms. Our parallel five-cycle counting code is available at https://github.com/ParAlg/gbbs/tree/master/benchmarks/CycleCounting.

2 Background and Related Work

The difficulty of cycle counting has attracted considerable research effort over the years. Counting the number of k-cycles with k as an input parameter is NP-complete since it includes the problem of finding a Hamiltonian cycle. However, efficient algorithms have been developed to count k-cycles for $k \leq 5$. Notably, Alon et al. [3] developed algorithms for

1 A graph is d-degenerate if every subgraph has a vertex of degree at most d, and a graph has arboricity α if the minimum number of spanning forests needed to cover all of the edges of the graph is α.

2 With high probability (w.h.p.) means that the probability is at least $1 - 1/n^c$ for some constant $c > 0$ for an input of size n.
efficiently finding a k-cycle for general k, but these translate to efficient k-cycle counting algorithms only for planar graphs where $k \leq 5$. For $k = 3, 4$, Chiba and Nishizeki [15] proposed algorithms that take $O(ma)$ time. More recently, Bera et al. [7] analyzed the subgraph counting problem for $k = 5$ and gave an algorithm that takes $O(ma^2)$ time, and the five-cycle counting part of the algorithm takes $O(ma^3)$ time. However, it is shown in the same study that this result is unlikely to be extended to $k > 5$, due to the Triangle Detection Conjecture, which puts a lower bound of $\Omega(m^{1+\gamma})$ time with $\gamma > 0$ on any triangle detection algorithm on an input graph with m edges [1]. If the conjecture holds, a reduction of the triangle detection problem to the six-cycle counting problem implies that there cannot be a $o(f(\alpha)m^{1+\gamma})$ time algorithm for six-cycle counting.

Until recently, because of the high computational power required, exact five-vertex subgraph counting was often deemed impractical on graphs with more than a few million edges. Most effort has focused on obtaining approximate counts or approximate graphlet frequency distributions [46, 10, 36]. Hocevar and Demsar [24] developed Orca to count subgraphs of up to size five and tested them on graphs with tens of thousands of vertices. Pinar et al. [34] developed ESCAPE, which is the first package that aims to perform exact counting of all five-vertex subgraphs on moderately large graphs. However, ESCAPE does not exploit parallelism and is not optimized for cycle-counting. Kowalik [27] gave a serial algorithm for five-cycle counting that takes $O(ma^3)$, the best known theoretical bound for five-cycle counting, but does not provide an implementation. In Section 4, we describe Kowalik’s and Pinar et al.’s five-cycle counting algorithms in more detail.

While there has not been prior work on parallel five-cycle counting algorithms, parallel cycle counting algorithms for smaller cycles have been studied over the years. Specifically, for the case of three-cycles, or triangles, there has been a significant amount of attention over the past two decades (e.g., [40, 43, 33, 8], among many others).

Moreover, fast sequential algorithms for four-cycles have been studied extensively. For bipartite graphs, four-cycles, also known as butterflies, are the smallest non-trivial subgraphs. Chiba and Nishizeki’s [15] described a four-cycle counting algorithm that takes $O(ma)$ work by using a degree ordering of the graph. Subsequently, butterfly counting algorithms using degree ordering and other orderings have also been designed [47, 44, 38, 48, 39].

There have been fewer studies on parallel four-cycle counting algorithms. The Parametrized Graphlet Decomposition package by Ahmed et al. [2] provides efficient parallel implementations of exact counting of subgraphs of up to size four, including four-cycles. Wang et al. [44] implement a distributed algorithm using MPI that partitions the vertices across processors, where each processor sequentially counts the number of butterflies for vertices in its partition. Shi and Shun [42] presented a framework for parallel butterfly counting with several algorithms achieving $O(ma)$ expected work and $O(\log m)$ span with high probability. Wang et al. [45] describe a similar parallel butterfly counting algorithm, with an additional cache optimization in their implementation.

3 Preliminaries

Graph Notation. The input to our algorithms is a simple, undirected, unweighted graph $G(V,E)$. The number of vertices is $|V| = n$ and the number of edges is $|E| = m$. Vertices are labeled $0, 1, \ldots, n-1$. In our analysis, we assume that $m = \Omega(n)$. For a vertex v, we use $N(v)$ to denote the neighbors of v and $\deg(v)$ to denote the degree of v. When discussing directed graphs, $N^+(v)$ denotes v’s out-neighbors and $N^-(v)$ denote the in-neighbors.

Furthermore, we use $N_v(u)$ (or $N^-_v(u)$ for directed graphs) to represent the neighbors of vertex u that are after v given a non-increasing degree ordering. When vertices are relabeled by non-increasing degree order, we can easily obtain $N_v(u) = N(u) \cap \{w \in V \mid w > v\}$.

The arboricity of a graph G, denoted $\alpha(G)$, is defined as the minimum number of spanning forests needed to cover the graph. $\alpha(G)$ is known to be upper-bounded by $O(\sqrt{m})$. Due to the fact that graphs modeling the real world tend to be sparse, $\alpha(G)$ tends to be small for graphs that we are interested in processing. It is also known that $\sum_{(u,v) \in E} \min(\deg(u), \deg(v)) = O(m\alpha(G))$ [15]. Closely related to arboricity is the degeneracy of a graph G, $d(G)$, or the smallest k such that every subgraph of G contains a vertex of degree at most k. It is known that $d(G) = \Theta(\alpha(G))$ [32]. As such, our asymptotic bounds can use $\alpha(G)$ or $d(G)$ interchangeably. When it is unambiguous, we write the arboricity and degeneracy of a graph as α and d, respectively.

Graph Format. For the theoretical analysis, we assume the graphs are stored in hash tables in the adjacency list format, to obtain constant time edge queries. In our implementations, graphs are stored in Compressed Sparse Row (CSR) format, which is more compact and has better cache locality.

The Work-Span Model. To analyze the complexity of our parallel algorithms, we use the work-span model [26] with arbitrary forking. In this model, a computation is seen as a series-parallel DAG. Each instruction is a vertex, and sequential executions in a thread are composed in series and different children threads forked together are composed in parallel. The work in a computation is the total number of vertices and the span is the length of the longest path in the computation graph. The work of a sequential algorithm is the same as its time. A work-efficient parallel algorithm has a work complexity matching the time of the best sequential algorithm for the problem. For an algorithm with work W and span S, the running time on P processors is upper bounded by $W/P + S$ [13]. Since the number of processors in practice is modest, it is important to be work-efficient in addition to minimizing the span of the computation.

Parallel Primitives. We use the following parallel primitives. A parallel for-loop (parfor) with n iterations that can be executed in parallel launches all of its iterations in $O(n)$ work and $O(1)$ span. Parallel integer sort sorts n integers in the range $[0, O(n)]$ in $O(n)$ work and $O(\log n)$ span w.h.p. [37]. We also use parallel hash tables, which support a batch of n instructions in $O(n)$ work and $O(\log^* n)$ span w.h.p. [22]. We assume atomic adds take $O(1)$ work and span.

4 Five-Cycle Counting Algorithms

In this section, we present two new parallel algorithms for counting five-cycles. The first algorithm is based on the serial algorithm by Kowalik [27]. Kowalik shows that the algorithm achieves a time complexity of $O(m)$ on planar graphs, in which $\alpha = O(1)$, or $O(n\alpha^2) = O(m\alpha^2)$ on d-degenerate graphs. The second algorithm is based on the serial algorithm by Pinar et al. in their ESCAPE framework for counting all 5-vertex subgraphs in a graph [34]. We show that both of the parallel algorithms that we design are provably work-efficient with polylogarithmic span.

4.1 Preprocessing: Graph Orientation

Similar to many previous subgraph counting algorithms [7, 41], a key step in our algorithms is a preprocessing step that orients the graph G, creating a directed acyclic graph G^\rightarrow where the out-degrees of vertices are upper-bounded. We use l-orientation to refer to an orientation
where each vertex’s out-degree is bounded by \(l \). Furthermore, orientations in our context are always induced from a total ordering of the vertices, where directed edges point from vertices lower in the ordering to vertices higher in the ordering. As such, the problem of orienting the graph is reduced to the problem of finding an appropriate ordering of the vertices.

Degree Orientation. The core idea of orienting an undirected input graph based on ordering the vertices by non-increasing degree to perform subgraph counting or listing is attributed to Chiba and Nishizeki [15]. Using degree ordering, they proposed efficient triangle and four-cycle counting algorithms based on this key result:

▶ **Lemma 1** ([15]). For a graph \(G = (V, E) \), \(\sum_{(u, v) \in E} \min\{\deg(u), \deg(v)\} \leq 2\alpha m \).

This result allows us to bound the number of wedges in graph \(G \) by \(2\alpha m \), where a wedge is defined as a triple \((v, w, u)\) where \((v, w) \in E\), \(\deg(v) \geq \deg(w) \) and \(\deg(v) \geq \deg(u) \).

In Kowalik’s five-cycle algorithm, wedges are the building blocks of five-cycles, and we can show that \(O(\alpha) \) work is done for each wedge. Combined with the \(O(m\alpha) \) bound on the number of wedges, this gives us the \(O(m\alpha^2) \) running time bound.

Arboricity Orientation. An **arboricity orientation** of a graph is one where the vertices’ out-degrees are upper-bounded by \(O(\alpha(G)) \). An arboricity-oriented graph has slightly different theoretical properties compared to a degree-oriented graph, but literature has shown that in some algorithms arboricity orientation can achieve the same practical efficiency as degree orientation [41]. We note that in Kowalik’s five-cycle counting algorithm as well as our parallelization of the algorithm, both a degree ordering and an arboricity ordering are required to achieve work-efficiency.

One way to obtain an arboricity orientation is by computing the degeneracy ordering using a standard \(k \)-core decomposition algorithm [30, 6]. The algorithm repeatedly removes the vertex with the lowest degree from the graph. When we direct edges using this orientation, we obtain a DAG where each vertex’s out-degree is bounded by \(d(G) \). While this algorithm can be parallelized to be work-efficient, it does not attain polylogarithmic span; notably, the problem is P-complete [4].

Since the parallel algorithm for exact degeneracy ordering has sub-optimal span, we use approximate algorithms with polylogarithmic span. We test two such algorithms: Goodrich-Pszona and Barenboim-Elkin. Both algorithms work by peeling low-degree vertices in batches. Goodrich and Pszona originally designed the algorithm in the external-memory model [23], while Barenboim and Elkin designed the algorithm for a distributed model [5]. Shi et al. adapted both algorithms for shared memory and showed that both compute an \(O(\alpha) \)-orientation in \(O(m) \) work and \(O(\log^2 n) \) span (one of which is deterministic and the other of which is randomized) [41]. A different algorithm with the same (deterministic) work and span bounds was described by Besta et al. [9].

4.2 Kowalik’s Algorithm

We present in Algorithm 1 our parallelization of Kowalik’s serial five-cycle counting algorithm [27]. In this algorithm, vertices are sorted and processed in non-increasing degree order. Each vertex is processed by counting all five-cycles with the vertex itself as the lowest-ranked (i.e., highest-degree) vertex. After processing all vertices, each five-cycle is counted exactly once and the counts are summed and outputted.

Recall that we use \(N_v(u) \) (\(N_v^-(u) \) for directed graphs) to represent the neighbors of vertex \(u \) that are after \(v \) in the non-increasing degree ordering. Since the vertices are relabeled by non-increasing degree order on line 3, we can easily obtain \(N_v(u) = N(u) \cap \{ w \in V \mid w > v \} \).
Algorithm 1 Kowalik’s Five-Cycle Counting Algorithm Parallelized.

1: procedure COUNT-FIVE-CYCLES(G = (V, E))
2: #c ← 0
3: Relabel vertices of G such that d(0) ≥ d(1) ≥ ... ≥ d(n − 1)
4: Orient G using arboricity orientation to produce G\rightarrow
5: parfor v ← 0 to n − 1 do
6: Initialize an empty parallel hash table \(T_v\)
7: parfor u ∈ \(N_v(v)\) do
8: parfor w ∈ \(N_v(u)\) do \(U_v[w] ← U_v[w] + 1\)
9: parfor w ∈ \(N_v(v)\) do \(T_v[w] ← 1\)
10: parfor w ∈ \(N_v(u)\) do
11: if \(x \neq u\) then
12: if \(w \in N^{-}(v)\) or \(v \in N^{-}(w)\) then
13: \(#c ← #c + U_v[x] − T_{v,u}[x] − 1\)
14: else
15: \(#c ← #c + U_v[x] − T_{v,u}[x]\)
16: return #c

We now focus on the iteration \(v\) of the outer for-loop. An example is shown in Figure 1. We note that for each \(v\), we consider only vertices ranked higher than \(v\) to complete five-cycles containing \(v\). Lines 7–8 count in a parallel hash table \(U_v\) all wedges, where \(v\) is one of the endpoints and \(v\) is the lowest-ranked vertex in the wedge. Then, lines 11–12 store in a parallel hash table \(T_{v,u}\) all wedges where \(v\) is one of the endpoints, \(v\) is the lowest-ranked vertex in the wedge, and \(u\) is the center. Both hash tables are indexed on \(w\), the other endpoint of the wedge.

On each iteration of the loop in line 13, the algorithm counts all five-cycles that contain the wedge \(v \rightarrow u \rightarrow w\). To accomplish this, the algorithm iterates through each neighbor \(x\) of \(w\) in \(G\rightarrow\), and considers the number of wedges that \(x\) shares with \(v\), which is stored in \(U_v[x]\). Note that three vertices of the cycle are given \((v, u,\) and \(w)\), so the algorithm must ensure that the two vertices used to complete the cycle do not include these existing vertices. Line 15 ensures that \(x \neq u\) in the cycle; note that \(x \neq w\) because the graph is assumed to not contain self-loops, and \(x \neq v\) by definition of \(N_v\rightarrow\). Lines 16–19 check if \(v\) and \(w\) are neighbors; if so, then the number of wedges ending in \(x\) includes the wedge \(v \rightarrow w \rightarrow x\), which does not properly complete a five-cycle. In this case, there is one fewer five-cycle completed by the wedges ending in \(x\), and so we subtract one on line 17. Finally, note that if there exists the wedge \(v \rightarrow u \rightarrow x\), then this similarly does not properly complete a five-cycle, so we subtract \(T_{v,u}[x]\), which stores precisely this wedge. We assume that indexing an entry that does not exist in a hash table returns a value of 0.

As every thread operates on the variable \(#c\), we use atomic add for all of these operations, which takes \(O(1)\) work. In practice, we use thread-local variables to keep the count and sum them in the end to avoid heavy contention. We now show that the parallel algorithm is work-efficient and has polylogarithmic span.

Theorem 2. Algorithm 1 can be performed in \(O(m\alpha^2)\) work and \(O(\log^2 n)\) span w.h.p., and \(O(m)\) space on a graph with \(m\) edges and arboricity \(\alpha\).

Proof. For line 3, we sort \(n\) integers in the range \([0, n − 1]\), which can be done in \(O(n)\) work and \(O(\log n)\) span w.h.p. using parallel integer sorting [37]. As discussed in Section 4.1, line 4 can be implemented in \(O(m)\) work and \(O(\log^2 n)\) span [41]. As a result, the for-loops on
The vertices have already been relabeled by non-increasing degree and the entries in each algorithm is executed (sub-figures (a), (c), and (d)). Otherwise, line 19 is executed (sub-figures (b), (e), and (f)). The final value of \(#_e\) is 4.

Figure 1 This figure outlines steps in our parallelization of Kowalik’s five-cycle counting algorithm where \(#_e\) is updated (Algorithm 1). Each subfigure considers a different \(\{u, v, w, x\}\) from lines 13–14, and the corresponding \(U_v\) is displayed for each subfigure. For simplicity, the \(U_v\) hash tables are depicted as arrays, with the appropriate wedge counts stored at the index on the corresponding endpoint, and the updates to the parallel hash tables \(T_{v,u}\) in lines 11–12 of Algorithm 1 are shown as subtracted directly from the corresponding \(U_v\) for a fixed \(u\) from line 9.

The vertices have already been relabeled by non-increasing degree and the entries in each \(U_v\) have already been computed (lines 10–12). The vertex \(v\) that we are considering on line 5 is colored in red. The edges colored in blue form wedges \(v \rightarrow u \rightarrow w\), and the direction of those edges is irrelevant. The red edges represent the out-edge \(w \rightarrow x\) on line 14. When \(w\) and \(v\) are neighbors (the edge is colored grey), the condition checked on line 16 returns true, and the subsequent line in each algorithm is executed (sub-figures (a), (c), and (d)). Otherwise, line 19 is executed (sub-figures (b), (e), and (f)). The final value of \(#_e\) is 4.

lines 7 and 9 iterating over \(u \in N_v(v)\) take at most \(\min(\deg(u), \deg(v))\) iterations, and by Lemma 1, the total number of times we iterate through \(w \in N_v(u)\) on each of lines 8, 11, and 13 is at most \(2ma\).

Since parallel hash tables can perform a batch of \(k\) operations in \(O(k)\) work and \(O(\log^* k)\) span w.h.p., the time complexities of lines 8 and 12 are given by \(O(ma)\) work and \(O(\log^* n)\) span w.h.p. Then, the for-loop of line 14 has at most \(O(\alpha)\) iterations because of the \(O(\alpha)\)-orientation of the graph. In total, lines 15–19 are executed at most \(O(\alpha) \cdot 2ma = O(ma^2)\) times, and again due to the parallel hash tables, the time complexity is given by \(O(ma^2)\) work and \(O(\log^* n)\) span w.h.p. In all, the total time complexity is given by \(O(ma^2)\) work and \(O(\log^* n)\) span w.h.p.

Finally, this algorithm uses \(O(ma)\) space. Based on Lemma 1, the total number of keys stored over all \(U_v\)’s is upper-bounded by \(O(ma)\), as is the number of keys stored over all \(T_{v,u}\)’s (over all pairs \((v, u)\)). The parallel hash table’s space usage is linear in the number of keys [22]. Hence, the total space usage is \(O(ma)\). ▸
Another serial five-cycle counting algorithm is given by Pinar et al. as part of ESCAPE, which counts all 5-vertex subgraphs in a graph serially [34].

The proof of the serial time complexity with the arboricity orientation follows directly from the number of wedges to the total count. However, this over-counts five-cycles since the five-cycle counting algorithm computes \(W_{+}(v,u) + W_{-}(u,v) \) on lines 6–8 and \(W_{+}(u,v) \) on lines 9–11, and stores these counts in a parallel hash table \(U_v \).

Figure 4 shows all possible orientations of acyclically directed five-cycles. We iterate over the 3-path shown in Figure 4 from vertex \(v \) to vertex \(x \) (lines 12–15), each of which can be completed by either an inout-wedge or an out-wedge with endpoints \(v \) and \(x \), assuming \(x \neq v \) and \(x \neq u \). Now, any orientation of a five-cycle has one of the three configurations shown in Figure 4, where exactly one of the vertices can be assigned to be \(v \). Thus, every 3-path between a pair \((v,x) \) contributes \(W_{+}(v,x) + W_{+}(v,x) + W_{-}(x,v) \) (which is stored in \(U \)) to the five-cycle count. However, this over-counts five-cycles since the wedge and the 3-path may overlap. Lines 16–20 deal with the over-counting when adding the number of wedges to the total count.

Algorithm 2 Five-Cycle Counting in ESCAPE Parallelized.

1: procedure COUNT-FIVE-CYCLES(\(G = (V,E) \))
2: \(\#_c \leftarrow 0 \)
3: Orient \(G \) using arboricity orientation to produce \(G^\rightarrow \)
4: \parfor \(v \leftarrow 0 \) to \(n-1 \) \do
5: Initialize an empty parallel hash table \(U_v \)
6: \parfor \(w \in N^+(v) \) \do
7: \parfor \(u \in N(w) \) \do
8: \(U_v[u] \leftarrow U_v[u] + 1 \)
9: \parfor \(w \in N^-(v) \) \do
10: \parfor \(u \in N^+(w) \) \do
11: \(U_v[u] \leftarrow U_v[u] + 1 \)
12: \parfor \(u \in N^-(v) \) \do
13: \parfor \(w \in N^+(u) \) \do
14: \parfor \(x \in N^-(w) \) \do
15: if \(x \neq v \) and \(x \neq u \) then
16: \(\#_c \leftarrow \#_c + U_v[x] \)
17: if \(w \in N(v) \) then
18: \(\#_c \leftarrow \#_c - 1 \)
19: if \(x \in N(u) \) then
20: \(\#_c \leftarrow \#_c - 1 \)
21: return \(\#_c \)

4.3 ESCAPE Algorithm

Another serial five-cycle counting algorithm is given by Pinar et al. as part of ESCAPE, which counts all 5-vertex subgraphs in a graph serially [34].

The first step of the ESCAPE five-cycle counting algorithm is to orient the graph. The ESCAPE framework uses degree orientation and achieves a time complexity of \(O(m\alpha^2) \). We note that, if instead an arboricity orientation is used, the five-cycle counting algorithm achieves an improved time complexity of \(O(ma^2) \). We include this modification in our parallelization of the ESCAPE five-cycle counting algorithm to achieve work-efficient bounds. The proof of the serial time complexity with the arboricity orientation follows directly from the proof of our parallel algorithm.

We present in Algorithm 2 our parallelization of the algorithm from ESCAPE, and an example is shown in Figure 2. We use \(u \prec v \) to indicate that \(u \) precedes \(v \) in the ordering that produced the orientation, and so an edge from \(u \) to \(v \) exists in the directed graph \(G^\rightarrow \) if and only if \(u \prec v \).

After orienting the graph using an arboricity orientation (line 3), for each vertex \(v \) (line 4), the algorithm counts all out-wedges and inout-wedges (see Figure 3). We denote the number of out-wedges with endpoints \(v \) and \(u \) by \(W_{+}(v,u) \), and the number of inout-wedges with endpoints \(v \) and \(u \), starting with a directed edge out of \(v \), by \(W_{+}(v,u) \). For each \(v \), the algorithm computes \(W_{+}(u,v) + W_{-}(u,v) \) on lines 6–8 and \(W_{+}(v,u) \) on lines 9–11, and stores these counts in a parallel hash table \(U_v \).

Figure 4 shows all possible orientations of acyclically directed five-cycles. We iterate over the 3-path shown in Figure 4 from vertex \(v \) to vertex \(x \) (lines 12–15), each of which can be completed by either an inout-wedge or an out-wedge with endpoints \(v \) and \(x \), assuming \(x \neq v \) and \(x \neq u \). Now, any orientation of a five-cycle has one of the three configurations shown in Figure 4, where exactly one of the vertices can be assigned to be \(v \). Thus, every 3-path between a pair \((v,x) \) contributes \(W_{+}(v,x) + W_{+}(v,x) + W_{-}(x,v) \) (which is stored in \(U \)) to the five-cycle count. However, this over-counts five-cycles since the wedge and the 3-path may overlap. Lines 16–20 deal with the over-counting when adding the number of wedges to the total count.
Figure 2 This figure outlines steps in the ESCAPE five-cycle counting algorithm where \(\#_e \) is updated (Algorithm 2). Each subfigure considers a different \(\{u, v, w, x\} \) from lines 12–15, and the corresponding \(U_v \) is displayed for each subfigure. For simplicity, the \(U_i \) hash tables are depicted as arrays, with the appropriate wedge counts stored at the index on the corresponding endpoint. Note that the entries in each \(U_v \) have already been computed (lines 6–11). The vertex \(v \) that we are considering on line 4 is colored in red. The red edges represent the directed 3-paths \(v \leftarrow u \leftarrow w \rightarrow x \) found on lines 12–15. Lines 17 and 19 check whether \(v \) and \(w \) or \(u \) and \(x \) are neighbors, respectively. When either of the conditions holds, the relevant edge is colored grey. Each grey edge subtracts one from the five-cycle count. Note that in sub-figures (a) and (c), the condition that \(v \) is adjacent to \(w \) from line 17 holds, and in sub-figure (f), the condition that \(u \) is adjacent to \(x \) from line 19 holds. In sub-figures (b), (d), and (e), neither conditions hold, and therefore 1 is not subtracted from the final count. The final value of \(\#_e \) is 4.

In more detail, Line 16 first adds \(U_v[x] \) to the count (again, assume that indexing an entry that does not exist in a hash table returns a value of 0). Line 17 checks if \(w \) is adjacent to \(v \); if so, depending on the direction of the edge between \(w \) and \(v \), there is either an out-wedge or an inout-wedge on \(v, w, \) and \(x \), that does not complete a five-cycle with the 3-path. Line 18 subtracts the five-cycle counted for this case. Similarly, line 19 checks if \(x \) is adjacent to \(u \), and if so, there is either an out-wedge or an inout-wedge on \(v, u, \) and \(x \), that does not complete a five-cycle; line 20 corrects this.
Similar to the parallelization of Kowalik’s algorithm, in theory we use atomic adds for all of the increments on the \(c \) variable, and in practice we use thread-local variables.

Theorem 3. Algorithm 2 can be performed in \(O(ma^2) \) work and \(O(\log^2 n) \) span w.h.p., and \(O(ma) \) space on a graph with \(m \) edges and arboricity \(\alpha \).

Proof. As discussed in Section 4.1, line 3 can be implemented in \(O(m) \) work and \(O(\log^2 n) \) span [41]. Lines 6–11 go through all inout-wedges and out-wedges where \(v \) is an endpoint. Because of the arboricity orientation, there are at most \(ma \) inout-wedges and out-wedges. Each wedge is counted at most twice, and so lines 6–11 incur \(O(ma) \) hash table operations, which takes \(O(ma) \) work and \(O(\log^* n) \) span w.h.p.

There are \(O(ma^2) \) 3-paths (i.e., \(v \leftarrow u \leftarrow w \rightarrow x \)) and each is encountered exactly once in the triply-nested for-loop (lines 12–20). Again, by using an arboricity orientation, the algorithm executes lines 15–20 for at most \(O(ma^2) \) times, which due to the hash table operations, takes \(O(ma^2) \) work and \(O(\log^* n) \) span w.h.p.

Overall, the algorithm takes \(O(ma^2) \) work and \(O(\log^2 n) \) span w.h.p.

The parallel hash tables and the space to store the accumulated cycle counts account for all of the additional space usage. Since each wedge results in at most two additional keys in the hash tables, the number of keys in all of the hash tables \(U_i \) is upper-bounded by twice the total number of out-wedges and inout-wedges. For the arboricity-oriented graph, there are \(O(ma) \) out-wedges and \(O(ma) \) inout-wedges, and so the number of keys across all hash tables is bounded by \(O(ma) \). Thus, the algorithm takes \(O(ma) \) space.

4.4 Implementation

We implement the serial and parallel versions of Kowalik’s algorithm and Pinar et al.’s algorithm using the Graph Based Benchmark Suite framework (GBBS) [16, 17]. GBBS provides many utilities for parallel algorithms, including sorting, parallel data structures, and implementations of the arboricity ordering algorithms mentioned above. In GBBS, graphs are represented in compressed sparse row (CSR) format. The compact representation improves memory locality, but this format does not allow us to check edge existence in \(O(1) \) work, which is an operation required by both five-cycle counting algorithms. Using a separate data structure to store edges adversely affects locality, and so to improve performance, we sort the neighbor lists in the preprocessing step and use binary search to locate neighbors.

In our parallel implementation, we only parallelize the outer for-loop for each algorithm since there is sufficient parallelism provided by the outer for-loop alone. For Kowalik’s algorithm, instead of using parallel integer sort, we use a cache-efficient implementation of parallel sample sort [11] provided by GBBS to sort the vertices by degree. We also use vertex-indexed size-\(n \) arrays instead of parallel hash tables for \(U_i \) and \(T_{i,j} \). While hash tables have lower space usage for sparse graphs, they tend to have worse cache locality and are slower in practice. We introduce further practical optimizations below.

Thread-local Data Structures. As we parallelize the outer for-loop, the arrays \(U_i \) in both algorithms must be allocated per iteration. We optimize this allocation by using the `parallel_for_alloc` construct in GBBS, which allocates one array per thread and reuses this space over iterations. Each iteration uses the array as a local array, and so this incurs no synchronization overhead. With this optimization, the algorithm only requires \(O(Pn) \) space, where \(P \) is the number of processors.

Fast Reset. Additionally, the thread-local arrays must be reset after each iteration of the outer for-loop. Depending on the structure of the graph, the array can be sparse,
and naively resetting the entire array incurs $O(n^2)$ extra work, which is costly. We use a separate thread-local array to record the non-zero entries and reset only those entries after an iteration of the outer for-loop. The sparser the graph, the more effective this optimization is. This optimization at most doubles the space requirement for the algorithm, but drastically improves the running time by avoiding unnecessary writes.

Work Scheduling. The naive parallelization of the five-cycle counting algorithms blocks a fixed number of vertices together and processes them in series. For our experiments, we use a block size of 16, which we found to give the best performance in this setting. However, due to the nature of the algorithm, the amount of work per vertex is not uniform. This is particularly true for Kowalik’s algorithm, which processes vertices in non-increasing degree order and deletes a vertex after processing it. The number of five-cycles that can be counted under a given vertex v in the outermost loop falls off rapidly with the vertex’s degree rank. In our work scheduling optimization, we block vertices together into groups that require similar amounts of work by estimating the work required for each vertex. We use the sum of the degrees of a vertex’s neighbors as the estimator. That is, for each vertex v, we estimate the amount of work done on the vertex to be $\sum_{w \in N(v)} \deg(w)$.

5 Experiments

Environment. We run our experiments on a `c5.18xlarge` AWS EC2 instance, which is a dual-processor system with 18 cores per processor (2-way hyper-threading, 3.00GHz Intel Xeon(R) Platinum 8124M processors), and 144 GiB of main memory. We use Cilk Plus for parallelism [28, 12]. We use the `g++` compiler (version 8.2.1) with the `-O3` flag.

We test the performance of our two parallel five-cycle counting algorithms. Our parallel implementations use all of the optimizations described in Section 4.4, except that we test the performance with and without the work scheduling optimization. We compare the performance of the parallel implementations against our implementations of Kowalik’s algorithm and the ESCAPE algorithm. We also tested the performance of the serial five-cycle counting algorithm in the ESCAPE package, the fastest known implementation of five-cycle counting. This algorithm is embedded inside the ESCAPE code for counting all five-vertex patterns, and so we obtained timings by running only the five-cycle counting portion of the code. We found our serial ESCAPE implementation to be 1.1–2.95x faster than the one provided in the ESCAPE package, and hence present only our running times in the tables.

We also test the effect of using different arboricity ordering algorithms. Besides Goodrich-Pszona, Barenboim-Elkin, and k-core, we also tested non-decreasing degree ordering as an approximation of degeneracy ordering. Intuitively, it limits the out-degree of the graph by directing edges from lower-degree vertices to higher-degree neighbors.

We perform these tests on a number of real-world graphs from the Stanford Network Analysis Platform [29]. Table 1 describes the properties of these graphs. All graphs are simple, unweighted, and undirected.

Serial Five-cycle Counting. Table 2 lists the running time of the two of serial five-cycle counting algorithms. Our serial Kowalik implementation always outperforms our serial ESCAPE implementation, and the difference in running times between the ESCAPE algorithm and Kowalik’s algorithm grows as the graph size grows. The serial Kowalik algorithm achieves between 6.37–14.77x speed-up over our serial ESCAPE implementation, and between 7–38.91x speed-up over the original ESCAPE implementation.
Parallel Five-Cycle Counting Algorithms

Table 1 Relevant statistics of our input graphs.

| Dataset | |V| | |E| | # 5-cycles |
|------------------|-----------------|-----------------|-----------------|-----------------|
| email-Eu-Core | 1005 | 32128 | 245,585,096 |
| com-DBLP (dblp) | 425957 | 2.10 × 10^6 | 3,440,276,253 |
| com-YouTube (youtube) | 1.16 × 10^6 | 5.98 × 10^5 | 34,634,647,544 |
| com-LiveJournal (lj) | 4.03 × 10^6 | 6.94 × 10^5 | 6,668,633,003,006 |
| com-Orkut (orkut) | 3.27 × 10^6 | 2.34 × 10^6 | 42,499,585,326,270 |
| com-Friendster (friendster) | 1.25 × 10^6 | 3.61 × 10^5 | 96,281,214,210,322 |

Table 2 Running times (seconds) of the two serial implementations and the two parallel five-cycle counting implementations without the work scheduling optimization. All running times include both preprocessing (graph orienting) and five-cycle counting time. We stop each experiment after 5.5 hours, and “TL” indicates that the time limit was exceeded. For the serial algorithms, \(T_E \) is our implementation of the ESCAPE algorithm without the work scheduling optimization, and \(T_K \) is our implementation of the serial Kowalik’s algorithm. The serial runtimes are measured using the Goodrich-Pszona degeneracy ordering algorithm. For the parallel algorithms, we use superscripts to indicate the orientation that achieved the best running time. \(^a\) refers to Goodrich-Pszona, \(^b\) refers to Barenboim-Elkin, and \(^c\) refers to \(k \)-core orientation. Note that degree orientation is never the fastest orientation. For the parallel algorithms, we list the runtimes obtained on a single thread (\(T_1 \)), 36 cores without hyper-threading (\(T_{36} \)), and 36 cores with hyper-threading (\(T_{36h} \)). We also tested all implementations on friendster, but they all exceeded the time limit.

Dataset	Serial Runtimes	Parallel Kowalik Algorithm	Parallel ESCAPE Algorithm			
	\(T_E \)	\(T_K \)	Running times (s)	Speedup	Running times (s)	Speedup
email-Eu-Core	0.36	0.026	0.027\(^b\) 0.0027\(^c\) 0.0029\(^b\)	9.3	0.017\(^b\) 0.0177\(^b\) 0.0177\(^b\)	21.2
dblp	2.93	0.46	0.48\(^b\) 0.046\(^b\) 0.046\(^b\)	10.4	0.34\(^b\) 0.277\(^b\) 0.277\(^b\)	11.7
com-YouTube (youtube)	4.80 \(^b\)	1.73\(^c\) 1.69\(^b\)	2.8	43.94\(^b\) 14.5\(^c\) 9.96\(^b\)	4.4	
com-LiveJournal (lj)	2579.34	174.60	17.46\(^b\) 29.0\(^c\) 25.72\(^b\)	6.8	2582.30\(^b\) 426.38\(^c\) 308.41\(^b\)	8.4
com-Orkut (orkut)	38.17	2878.38	2867.07\(^b\) 504.61\(^b\) 487.4\(^b\)	5.9	TL 8192.33\(^b\) 6384.24\(^b\)	–

Parallel Five-cycle Counting. Table 2 shows the best performance with the Kowalik and ESCAPE algorithms with 1 thread, 36 cores without hyper-threading, and 72 hyper-threads, without the work scheduling optimization. We see that the algorithms achieve decent speed-up without the work scheduling optimization. The parallel speed-up plateaus from 36 to 72 hyper-threads, especially for the parallelization of Kowalik’s algorithm. The speed-up for the Kowalik algorithm is usually lower since, due to its degree ordering, it does not distribute work evenly across vertices, but rather concentrates the work on high-degree vertices. Our naive parallel algorithm groups a fixed number of vertices together regardless of whether they are high- or low-degree, resulting in unbalanced work distribution across workers.

From both the serial and parallel running times, we observe that the ESCAPE algorithm, with all of the same optimizations as the parallel Kowalik’s algorithm, generally has about a 10x slowdown compared to Kowalik’s algorithm. We attribute this difference to the discrepancy in the number of edge queries the two algorithms must perform. Since we store graphs in CSR format, each edge query requires a binary search. In Kowalik’s algorithm, an edge query is performed for every \((v, w)\)-pair, and it can be performed just before the for-loop with \(x\), so there only needs to be \(O(na)\) binary searches. In the ESCAPE algorithm, \((x, u)\) needs to be queried \(O(ma^2)\) times. Table 3 shows that the ESCAPE algorithm does significantly more binary searches than Kowalik’s algorithm.
Table 3 These are the number of binary searches each algorithm performed for each dataset, and the ratio of the number of binary searches in the ESCAPE algorithm to Kowalik’s algorithm.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#binary searches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kowalik</td>
</tr>
<tr>
<td>email</td>
<td>5.15 x 10^5</td>
</tr>
<tr>
<td>dblp</td>
<td>8.41 x 10^6</td>
</tr>
<tr>
<td>youtube</td>
<td>6.28 x 10^7</td>
</tr>
<tr>
<td>lj</td>
<td>1.30 x 10^9</td>
</tr>
<tr>
<td>orkut</td>
<td>1.25 x 10^10</td>
</tr>
</tbody>
</table>

Table 4 Single-thread (T) and 36-core with hyper-threading (T_{36h}) running times (seconds) of the parallel Kowalik and ESCAPE algorithms with the work scheduling optimization, and their parallel speed-ups. All running times include both preprocessing (graph orienting) and five-cycle counting time. We stop each experiment after 5.5 hours, and “TL” indicates that the time limit was exceeded. The superscripts indicate the orientation that achieved the best runtime. \(^g\) refers to Goodrich-Pszona, \(^b\) refers to Barenboim-Elkin, and \(^\circ\) refers to degree orientation. In the appendix, we present the data for all orientations.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Parallel Kowalik Algorithm</th>
<th></th>
<th>Parallel ESCAPE Algorithm</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(T_1)</td>
<td>(T_{36h})</td>
<td>(\frac{T_1}{T_{36h}})</td>
<td>(T_1)</td>
</tr>
<tr>
<td>email</td>
<td>0.0265(^g)</td>
<td>0.00252(^b)</td>
<td>10.5</td>
<td>0.357(^g)</td>
</tr>
<tr>
<td>dblp</td>
<td>0.46(^g)</td>
<td>0.0143(^b)</td>
<td>32.2</td>
<td>3.07(^g)</td>
</tr>
<tr>
<td>youtube</td>
<td>4.75(^g)</td>
<td>0.338(^b)</td>
<td>14.1</td>
<td>43.32(^g)</td>
</tr>
<tr>
<td>lj</td>
<td>171.92(^g)</td>
<td>5.85(^b)</td>
<td>29.4</td>
<td>2510.97(^g)</td>
</tr>
<tr>
<td>orkut</td>
<td>2858.18(^b)</td>
<td>136.98(^g)</td>
<td>29.9</td>
<td>TL</td>
</tr>
<tr>
<td>friendst</td>
<td>TL</td>
<td>8417.31(^g)</td>
<td>–</td>
<td>TL</td>
</tr>
</tbody>
</table>

Compared to the state-of-the-art serial five-cycle counting implementation provided in the ESCAPE package, without the work scheduling optimization, our parallel Kowalik implementation achieves a speed-up of 33.78–229.79x, and our parallel ESCAPE implementation achieves a speed-up of 5.73–23.16x.

Work Scheduling Optimization. We present the best running times of the parallel Kowalik and ESCAPE algorithms using work scheduling in Table 4. Compared to Table 2, we see that the work scheduling optimization is effective on both parallel algorithms. It allows five-cycle counting to be performed on the Friendster graph in under 2.5 hours using the parallel Kowalik algorithm. Figure 5 shows the relative running time of the parallel Kowalik algorithm with 72 hyper-threads with different arboricity orientation subroutines, including Goodrich-Pszena, Barenboim-Elkin, degree ordering, and \(k\)-core orientation, with and without the work scheduling optimization. The comparison shows that work scheduling significantly improves the running time and scaling of the parallel Kowalik algorithm.

Throughout our tests, we use the sum of neighbors’ degrees as the estimator of the amount of work. Other work estimators were tested, including a simple out-degree count and the two-hop neighbor out-degree sum, but did not result in improved performance.

Compared to the state-of-the-art serial five-cycle counting implementation provided in the ESCAPE package, using the work scheduling optimization, our parallel Kowalik implementation achieves a speed-up of 162.70–818.12x, and our parallel ESCAPE implementation achieves a speed-up of 23.56–72.13x. Compared to our best serial baselines, our parallel Kowalik implementation achieves a speed-up of 10.5–32.2x.
Figure 5 Running time of the parallel Kowalik algorithm vs. number of threads. “36h” is 36 cores with hyper-threading. Dashed lines indicate that the work scheduling optimization is disabled and solid lines indicate that the work scheduling optimization is enabled. The lines for Goodrich-Pszona, Barenboim-Elkin, and degree ordering overlap each other for the most part.

Figure 6 Five-cycle counting times, excluding preprocessing steps like relabeling and orienting the graph, under different orientation schemes for each of the graphs, using 36 cores with hyper-threading.

Graph Orientation. Figure 6 compares the performance of our parallel Kowalik implementation using different orientation schemes. Goodrich-Pszona and Barenboim-Elkin have very similar performance. k-core performs slightly worse on all graphs except for the small email graph. From our experiments, degree ordering results in running times that are comparable to both Goodrich-Pszona and Barenboim-Elkin.

While Goodrich-Pszona, Barenboim-Elkin, and k-core produce arboricity orderings, we may want to use degree ordering as it is much more efficient to compute and can compensate for the potentially worse counting time. Figure 7 shows the proportion of time spent on preprocessing (T_p) versus counting (T_c) on different orientation methods on three of the graphs. As the graph size grows, the preprocessing time takes up a smaller fraction of the total running time and becomes negligible in the case of the orkut graph. However, for smaller graphs, degree orientation has a clear advantage, because it takes much less time to compute while allowing for similar performance in the counting step. k-core ordering does not perform well when considering the times for both preprocessing and counting.
6 Conclusion

We designed the first theoretically work-efficient parallel five-cycle counting algorithms with polylogarithmic span. On 36 cores, our implementations outperform the fastest existing serial implementation by up to 818x, and achieve self-relative speed-ups of 10–46x. Designing parallel algorithms for counting larger cycles is interesting for future work, although such algorithms are likely to require super-linear work, even for low-arboricity graphs [7].

References

Appendix

We present in Table 5 the running times of the parallelized Kowalik’s algorithm and the ESCAPE algorithm using the work scheduling optimization for the different orientations described.

| Table 5 | Single-thread (T_1) and 36-core with hyper-threading (T_{36h}) running times (seconds) of the parallel Kowalik and ESCAPE algorithms with the work scheduling optimization using all four orientations. All running times include both preprocessing (graph orienting) and five-cycle counting time. We stop each experiment after 5.5 hours, and “TL” indicates that the time limit was exceeded. The bold values mark the best serial and parallel runtimes for each of Kowalik and ESCAPE, out of the four orientations, which are used in Table 4.

(a) Goodrich-Pszona.

<table>
<thead>
<tr>
<th></th>
<th>Kowalik</th>
<th>ESCAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T_1</td>
<td>T_{36h}</td>
</tr>
<tr>
<td>email</td>
<td>0.0267</td>
<td>0.00289</td>
</tr>
<tr>
<td>dblp</td>
<td>0.459</td>
<td>0.0143</td>
</tr>
<tr>
<td>youtube</td>
<td>4.81</td>
<td>0.361</td>
</tr>
<tr>
<td>lj</td>
<td>174.40</td>
<td>5.85</td>
</tr>
<tr>
<td>orkut</td>
<td>2867.78</td>
<td>136.98</td>
</tr>
</tbody>
</table>

(b) Barenboim-Elkin.

<table>
<thead>
<tr>
<th></th>
<th>Kowalik</th>
<th>ESCAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T_1</td>
<td>T_{36h}</td>
</tr>
<tr>
<td>email</td>
<td>0.0265</td>
<td>0.00294</td>
</tr>
<tr>
<td>dblp</td>
<td>0.465</td>
<td>0.0147</td>
</tr>
<tr>
<td>youtube</td>
<td>4.75</td>
<td>0.038</td>
</tr>
<tr>
<td>lj</td>
<td>171.92</td>
<td>5.95</td>
</tr>
<tr>
<td>orkut</td>
<td>2858.18</td>
<td>139.87</td>
</tr>
</tbody>
</table>

(c) Degree.

<table>
<thead>
<tr>
<th></th>
<th>Kowalik</th>
<th>ESCAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T_1</td>
<td>T_{36h}</td>
</tr>
<tr>
<td>email</td>
<td>0.0276</td>
<td>0.00252</td>
</tr>
<tr>
<td>dblp</td>
<td>0.472</td>
<td>0.0144</td>
</tr>
<tr>
<td>youtube</td>
<td>4.79</td>
<td>0.344</td>
</tr>
<tr>
<td>lj</td>
<td>178.02</td>
<td>5.96</td>
</tr>
<tr>
<td>orkut</td>
<td>2949.47</td>
<td>139.37</td>
</tr>
</tbody>
</table>

(d) K-Core.

<table>
<thead>
<tr>
<th></th>
<th>Kowalik</th>
<th>ESCAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T_1</td>
<td>T_{36h}</td>
</tr>
<tr>
<td>email</td>
<td>0.0278</td>
<td>0.00304</td>
</tr>
<tr>
<td>dblp</td>
<td>0.473</td>
<td>0.0161</td>
</tr>
<tr>
<td>youtube</td>
<td>5.64</td>
<td>0.531</td>
</tr>
<tr>
<td>lj</td>
<td>198.16</td>
<td>8.06</td>
</tr>
<tr>
<td>orkut</td>
<td>3100.79</td>
<td>147.83</td>
</tr>
</tbody>
</table>