
Practical Parallel Lempel-Ziv Factorization∗

Julian Shun †

Carnegie Mellon University
jshun@cs.cmu.edu

Fuyao Zhao † ‡

Carnegie Mellon University
fuyaoz@cs.cmu.edu

Abstract: In the age of big data, the need for efficient data compression algorithms
has grown. A widely used data compression method is the Lempel-Ziv-77 (LZ77)
method, being a subroutine in popular compression packages such as gzip and PKZIP.
There has been a lot of recent effort on developing practical sequential algorithms for
Lempel-Ziv factorization (equivalent to LZ77 compression), but research in practical
parallel implementations has been less satisfactory. In this work, we present a simple
work-efficient parallel algorithm for Lempel-Ziv factorization. We show theoretically
that our algorithm requires linear work and runs in O(log2 n) time (randomized) for
constant alphabets and O(nε) time (ε < 1) for integer alphabets. We present experi-
mental results showing that our algorithm is efficient and achieves good speedup with
respect to the best sequential implementations of Lempel-Ziv factorization.

1 Introduction

As data sizes increase, compression techniques which reduce the storage requirements of
such data become more important. Data compression techniques are widely studied in
computer science and fall into two categories—lossless and lossy. For lossless methods
(e.g. Lempel-Ziv [31, 32], arithmetic coding [26], Huffman coding [15] and Burrows-
Wheeler [3]), no information is lost when the data is compressed, while compression with
lossy methods (e.g. JPEG and MPEG) can result in some information loss.

Lempel-Ziv-77 (LZ77) [31] and Lempel-Ziv-78 (LZ78) [32] form the basis for the fam-
ily of Lempel-Ziv methods. They are dictionary coders, meaning that the encoder searches
a dictionary for matches of substrings of the text, and returns a pointer to the substring’s
location in the dictionary. In LZ77, the encoder uses a sliding window (implicit dictio-
nary) over the text to search for previous occurrences of substrings. Lempel-Ziv-Storer-
Szymanski (LZSS) [29] is a variant of LZ77 that returns a pointer to the dictionary only
if the matched substring is “long enough”. LZ78 stores an explicit dictionary containing
substrings previously seen, and in each iteration searches this dictionary to find the longest
substring that exists in the dictionary, and then inserts a new entry into the dictionary.
Lempel-Ziv-Welch [30] is a variant of LZ78 that uses a pre-initialized dictionary.

As we are interested in parallel implementations, we focus on LZ77 in this work rather
than LZ78, since LZ77 admits efficient parallel solutions, whereas LZ78 was shown to be
P-complete (unlikely to have an efficient parallel solution) [10, 11].

LZ77 is a lossless dynamic compression method that has been popular due to its sim-
plicity and computational efficiency. It is a component of the DEFLATE algorithm, which
is used in software packages such as gzip and PKZIP. The LZ77 algorithm consists of
a compression stage, which computes the Lempel-Ziv factorization (LZ-factorization) of
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the input string, and a decompression stage, which recovers the original string from the
compressed string. The LZ-factorization can be computed sequentially [27] in linear time
with a suffix tree [21], and decompression can be done sequentially in linear time with a
scan. The first parallel algorithms for LZ-factorization were described independently by
Noar [22] and Crochemore and Rytter [9]. For a string of length n, their algorithms require
O(log n) time and O(n log n) work on the PRAM, making them not work-efficient. Farach
and Muthukrishnan [13] give the first linear-work algorithms for both LZ-factorization and
decompression, each requiring O(log n) time on the PRAM. These parallel algorithms all
make use of parallel suffix trees. LZ77 decompression is much simpler and faster than
LZ-factorization, so we focus on the latter.

There has been much research done in designing practical sequential algorithms for
computing the LZ-factorization. Recently, researchers have proposed the use of suffix
arrays instead of suffix trees to obtain faster and more space-efficient algorithms for LZ-
factorization [8, 6, 5, 7, 23]. Since suffix arrays can be computed in linear time [17],
these LZ-factorization algorithms are also able to run in linear time. The aforementioned
sequential algorithms have been shown to perform well in practice.

To the best of our knowledge, the only parallel implementations of LZ-factorization
described in the literature are those of Klein and Wiseman (using CPUs) [19] and Ozsoy
and Swany (using GPUs) [24]. Both implementations involve splitting the input string
among processors and having each processor independently compute the factorization of its
substring. Because in these implementations the processors do not necessarily have access
to the entire input string, they do not always compute the same LZ-factorization as would
be computed sequentially, and thus can produce larger compressed files. Furthermore,
the corresponding papers [19, 24] do not provide any complexity bounds on work and
time. Previous work on parallel algorithms for computing the same LZ-factorization as
would be computed sequentially do not include any implementations or experiments [13,
22, 9]. The linear-work algorithm of Farach and Muthukrishnan [13] does not lead to a
practical implementation, as it involves complicated parallel methods for tree contraction,
least common ancestors and Euler tours.

In this work, we present a simple linear-work parallel algorithm for LZ-factorization
and practical implementations of it. Our algorithm computes the same factorization as
would be computed sequentially. The algorithm is based on parallel suffix arrays [17], find-
ing all nearest smaller values [1], and uses simple parallel routines such as prefix sums and
leaffix computation [16]. Theoretically, our algorithm requires O(n) work and O(log2 n)
time (randomized) due to the use of suffix arrays, so does not achieve the O(log n) time
bound of Farach and Muthukrishnan [13], but lends itself to a practical implementation.
We show experimentally that on 40 cores we achieve speedups between 6.7 and 21.2 com-
pared to running the algorithm on a single core. We also implement a sequential algorithm
for LZ-factorization that is faster than previous algorithms,1 and our parallel algorithm
achieves a 4.8–15.5 fold speedup on 40 cores over this sequential algorithm.

2 Lempel-Ziv Factorization

Preliminaries. The LZ-factorization of a string S[0, . . . , n − 1] is S = ω0ω1 . . . ωm−1,

1Very recently, a slightly faster sequential algorithm was independently described by Kempa and Puglisi [18].



where m ≤ n and for each 0 ≤ i < m, ωi (called the ith factor of the string) is either a sin-
gle character which does not appear in ω0 . . . ωi−1 or is the longest prefix of ωi . . . ωm−1 that
also appears starting at a position to the left of ωi in S. In the example given by Crochemore
et. al. [8], the string abbaabbbaaabab has the factorization S = ω0 . . . ω7 where ω0 = a,
ω1 = b, ω2 = b, ω3 = a, ω4 = abb, ω5 = baa, ω6 = ab and ω7 = ab. To achieve
compression, the ω values are not explicitly returned. LZ77 returns a sequence of pairs
(starti, previ) where starti indicates the starting position of ωi in S and previ indicates the
position of ωi’s left match in S if it exists (coded), and otherwise stores the character at po-
sition starti (uncoded). For decompression, each pair i can reconstruct its factor by looking
at previ and either directly copying previ if it is a character or copying (starti+1− starti)
characters starting at the position stored in previ (we consider the value of start0 to be
0 and startm to be n). The sequence of pairs returned for the string abbaabbbaaabab is
[(0, a), (1, b), (2, 1), (3, 0), (4, 0), (7, 2), (10, 0), (12, 10)].

Throughout our discussion, we denote the LZ-factorization by an array LZ of size m
where LZ[i] stores only the starti value of the pair. To obtain the LZ77 representation, the
previ value of the pair can easily be computed given the previous occurrence array, defined
later in this section. This can easily be modified to return the LZSS representation [29].

We denote sufi of string S to be the suffix of S starting at position i. The suffix array
[20] of a string S[0, . . . , n − 1] is an array SA of length n such that SA is a permutation
of the integers {0, . . . , n − 1} and sufSA[0] ≺ sufSA[1] ≺ . . . ≺ sufSA[n−1], where ≺ means
lexicographically less than. We use lcp(si, sj) to denote the length of the longest common
prefix (lcp) between strings si and sj . The longest common prefix array is an array LCP
of length n such that LCP[0] = 0 and for i > 0, LCP[i] = lcp(sufSA[i−1], sufSA[i]). The
longest previous factor of an index i in S, is equal to the maximum value of lcp(sufi, sufj),
for all j < i. We denote LPF to be the longest previous factor array, where LPF[i] stores
the longest previous factor of index i (0 if none). We use prevOcc to denote the previous
occurrence array, where prevOcc[i] stores the starting location of the longest previous
factor of sufi in S (-1 if none). Figure 1 shows the SA, LCP, LPF, prevOcc and LZ arrays
for the string abbaabbbaaabab.

i S[i] SA[i] LCP[i] sufi LPF[SA[i]] prevOcc[SA[i]] LZ[i]
0 a 8 0 aaabab 2 3 0
1 b 9 2 aabab 3 3 1
2 b 3 3 aabbbaaabab 1 0 2
3 a 12 1 ab 2 10 3
4 a 10 2 abab 2 0 4
5 b 0 2 abbaabbbaaabab 0 -1 7
6 b 4 3 abbbaaabab 3 0 10
7 b 13 0 b 1 7 12
8 a 7 1 baaabab 3 2 –
9 a 2 3 baabbbaaabab 1 1 –

10 a 11 2 bab 2 2 –
11 b 6 1 bbaaabab 4 1 –
12 a 1 4 bbaabbbaaabab 0 -1 –
13 b 5 2 bbbaaabab 2 1 –

Figure 1: SA, LCP, LPF, prevOcc and LZ for S = abbaabbbaaabab.

The all nearest smaller values (ANSV) problem is defined as follows: for each element



in a sequence of elements from a total ordering, find the closest smaller element to the left
and the closest smaller element to the right of it (if there is no smaller element, then report
it). An algorithm for ANSV returns two arrays LN and RN where LN[i] (RN[i]) contains
the index of the nearest smaller element to the left (right) of element i (-1 if none).

Throughout this paper, we will use the parallel random-access machine (PRAM) model
of parallel computation [16], where work W refers to the number of operations performed
by an algorithm and time T refers to the number of time steps required by an algorithm.
We will assume that the model supports concurrent reads and concurrent writes (CRCW
PRAM). If the number of processors available is P , then by Brent’s work-time scheduling
principle, the total running time will be proportional to O(W

P
+ T ) [16].

Algorithm. Our parallel algorithm is based on the sequential algorithm described
by Crochemore, Ilie and Smyth (henceforth CIS) [8], which first computes the LPF array.
Computing the LZ-factorization can then be computed with a single pass over the LPF
array [6]. The psuedocode for computing LZ from LPF is shown below [6].

LPFtoLZ(LPF, n)
1: LZ[0] = 0
2: i = 0
3: while LZ[i] < n do
4: LZ[i+ 1] = LZ[i] + max(1, LPF[LZ[i]])
5: i = i+ 1
6: return LZ

We first describe Farach and Muthukrishnan’s method of parallelizing LPFtoLZ given
the LPF array as an input [13]. Their method creates a size n + 1 array of pointers, next,
where next[i] = min(i + max(LPF[i], 1), n) for i < n and next[n] = −1. Following the
indices (pointers) starting at next[0] until reaching a value of -1 is sufficient to determine
the indices in LZ. Using a parallel leaffix algorithm [16] with the value at index 0 set to
1 and the remaining values set to 0, the result is an array of flags indicating which indices
are in the LZ-factorization. This can be done in O(n) work and O(log n) time. A prefix
sums [16] is then done on the array of flags to get the start values for the elements in the
LZ-factorization, and this can also be done in O(n) work and O(log n) time.

Now what remains is to show how to compute the LPF array. As done in CIS, the
suffix array SA is first computed. While CIS computes the LCP array after computing SA,
we compute LCP while computing SA. Using the algorithm of Karkkainen and Sanders
[17], both SA and LCP can be computed in parallel using O(n) work and O(log2 n) time
(randomized) for constant-sized alphabets and O(n) work and O(nε) time for ε < 1 on
integer alphabets on the CRCW PRAM.

After computing SA and LCP, we apply the following lemma due to Crochemore et.
al. [7], which states that any LPF[i] can be computed using an ANSV computation and
range minima queries on SA and LCP. To deal with boundary cases, we assume sufSA[−1]

evaluates to the empty string (and therefore has an lcp of 0 with any other string).

Lemma 2.1 Let LN[i] and RN[i] be the left and right nearest smaller neighbors of element
i in SA. Then LPF[i] = max(lcp(sufSA[i], sufSA[LN[i]]), lcp(sufSA[i], sufSA[RN[i]])).

Berkman, Schieber and Vishkin [1] show that ANSVs can be computed in O(n) work
and O(log log n) time on the CRCW PRAM. It can be shown that for any 0 ≤ i < j < n,



lcp(sufSA[i], sufSA[j]) = mini<k≤j LCP[k], so using range minima queries, we can compute
the lcp values and hence the LPF values [17]. prevOcc[i] is set to LN[i] if sufSA[LN[i]] has a
longer lcp with sufSA[i], and RN[i] otherwise. Range minima queries can be performed in
O(1) work and time, and requires O(n) work and O(log n) time for preprocessing [16].

In the example shown in Figure 1, to determine LPF[7] and prevOcc[7] (corresponding
to suffix baaabab), we look at its left nearest smaller value in SA, which is 4, and its right
nearest smaller value, which is 2, and then select the one corresponding to the suffix with a
larger lcp with baaabab, which is of length 3. Therefore, LPF[7] = 3 and prevOcc[7] = 2.

We now describe two variants of our algorithm, differing only in how LPF is computed.
Our first variant (PLZ1) uses Lemma 2.1 directly. It builds a range minima query table on
the LCP array for constant-time queries and then in parallel does range minima queries to
compute each LPF[i]. The n queries require a total of O(n) work and O(1) time.

Our second variant (PLZ2) uses as a component the sequential algorithm of Crochemore
et. al. [6], which takes the ANSVs as input and does a single pass over the string to com-
pute the LPF array. Their crucial observation is that LPF[i] ≥ LPF[i − 1] − 1, and using
this dependence they derive a linear-work algorithm for computing LPF.

Unlike PLZ1, PLZ2 does not build a range minima query table for constant-time queries
but instead builds a segment tree [12] on the LCP array, an idea which was also investigated
by Canovas and Navarro [4]. The segment tree is a binary tree whose leaves store the ele-
ments of LCP and internal nodes store the minimum value of its children. It requires O(n)
work and O(log n) time to construct. Range minima queries can be answered by traversing
the O(log n) levels of the tree, hence requiring O(log n) work and time. PLZ2 then divides
the input into n

logn
blocks and computes the LPF values of each block. The longest pre-

vious factor of the first element is computed using a range minima query on the segment
tree described above, and since LPF[i] only depends on LPF[i − 1], we can then run the
sequential algorithm of Crochemore et. al. [6] to compute the remaining longest previous
factors of each block. Since we perform in parallel one query for each of the n

logn
blocks,

this leads to a cost of O(n) work and O(log n) time. Running the linear-work sequential
algorithm per block in parallel takes a total of O(n) work and O(log n) time, since the
size of each block is O(log n). Our motivation for designing PLZ2 was that constructing
the segment tree is simpler than constructing the table for constant-time queries, and since
we only perform queries on a subset of the elements, we found experimentally that the
decreased construction time more than makes up for the increased query times.

The steps for LZ-factorization are summarized below. PLZ1 and PLZ2 differ only in
the computation of step 3.

ComputeLZ(S, n)
1: Compute the suffix array, SA, and longest common prefix array, LCP, for S.
2: Compute the left and right smaller neighbor arrays, LN and RN, on SA using an ANSV algorithm.
3: Compute the LPF and prevOcc arrays.
4: return LPFtoLZ(LPF, n)

From the above discussion, we see that all the steps require O(n) work, and the time is
dominated by the suffix array construction. We have the following lemma:

Lemma 2.2 Our parallel algorithm for computing the Lempel-Ziv factorization requires
O(n) work and O(log2 n) time (randomized) for constant-sized alphabets and O(n) work



and O(nε) time (ε < 1) for integer alphabets on the CRCW PRAM.
Except for the suffix array and lcp computation, our algorithm takes O(log n) time for

arbitrary alphabets, so improvements to the bounds for suffix array and lcp computation
can improve our overall bounds as well. Our algorithm is amenable to implementation, as
we describe in the next section.

3 Implementations

Parallel. We implemented PLZ1, PLZ2 and a simple variant of PLZ2 that avoids com-
puting the LCP array. For suffix arrays, we used the linear-work and O(nε) time (for some
constant ε < 1) implementation from the Problem Based Benchmark Suite [28]. There
are faster sequential suffix array codes when running on one core, but most of them do
not compute the LCP array (see, e.g., [25]). We implemented an optimized version of
the O(n log n) work and O(log n) time ANSV algorithm of Berkman et. al. [1] instead
of their much more complicated work-optimal version. For LPFtoLZ , we implemented
a random sampling-based leaffix algorithm [16] and used the parallel sequence routines
from the Problem Based Benchmark Suite [28]. For the range minima query table used for
computing the LCP array inside the suffix array algorithm, we used an O(n log n) work,
O(log n) time construction for constant-time range minima queries. For PLZ1, we built a
range minima table on the resulting LCP array using the same construction.

For PLZ2, we set the number of blocks to n
8196

in our experiments, which we found to
give the best results. We implemented the sequential algorithm of Crochemore et. al. [6],
which is used in each block. Our variant of PLZ2, which we call PLZ3, does not compute
the LCP array, but instead computes the lcp values of the first element of each block with
its nearest smaller neighbors using naive string comparison, and uses this to compute its
LPF value. The rest of each block is computed in the same way as in PLZ2.

Sequential. Here we describe a simple sequential algorithm for LZ-factorization
which we use in our experiments in Section 4. Our sequential algorithm (LZ-ANSV) first
computes the suffix array (without lcps), and then computes the ANSVs on the suffix array
sequentially using the stack-based algorithm of Gabow et. al. [14]. It then loops through
the suffixes in their original order, and for the positions appearing in the LZ-factorization,
it computes the longest previous factor with the suffixes corresponding to the positions of
their left and right smaller neighbors in SA using naive string comparison. By incrementing
the index of the loop by the length of the longest previous factor after computing it for
an element, it bypasses the LPF computation for the elements not appearing in the LZ-
factorization. LZ-ANSV requires O(n) work.

4 Experiments

We experimentally compare the performance of the different implementations of our paral-
lel LZ-factorization algorithm. We are not aware of any existing parallel implementations
for computing the same LZ-factorization as would be computed sequentially. Previous
parallel algorithms for doing so [13, 22, 9] use parallel suffix trees and are relatively com-
plicated (no implementations are available). We show that the best publicly available par-
allel suffix tree algorithm [2] is slower than that of our entire LZ-factorization algorithm
on most strings; hence it is unlikely that a parallel implementation of LZ-factorization that
uses suffix trees will outperform our implementation.



We compare our parallel code with our sequential LZ-ANSV code and the sequential
algorithm of Ohlebusch and Gog [23], which they showed to be faster than other sequential
algorithms (note that as mentioned in Footnote 1, very recently, a faster algorithm was pub-
lished by Kempa and Puglisi [18]). We obtained the code from Ohlebusch and Gog, and
refer to it as LZ-OG. All of the implementations in our experiments compute pairs contain-
ing the starting position and previous occurrence for each factor in the LZ-factorization.
For fair comparison, all of the implementations used the same suffix array code [28].

Experimental Setup. We performed experiments on a 40-core Intel machine (with
hyper-threading) with 4 × 2.4GHz Intel 10-core E7-8870 Xeon processors, a 1066MHz
bus, and 256GB of main memory. The parallel programs were compiled with Intel’s icpc
compiler (version 12.1.0) using CilkPlus with the -O2 flag. The sequential programs were
compiled using g++ 4.4.1 with the -O2 flag.

We used a variety of real-world strings available online (http://people.unipmn.
it/manzini/lightweight/corpus/ and http://pizzachili.dcc.uchile.
cl/texts.html), XML code from Wikipedia samples (wikisamp*.xml), and artificial
inputs. Our artificial inputs are of size 107 and include an all identical string (10Midentical),
a random string with an alphabet size of 10 (10Mrandom), and a string with an alphabet
size of 2 where every

√
107th position contains the first character and all other positions

contain the second character (10Msqrtn).
Experimental Results. We first compared the three variants of our PLZ algorithm

and found that PLZ3 gives the best absolute performance across the board, both in parallel
and sequentially. This is due to the fact that PLZ3 does not need to compute the LCP array
(which takes about one-third of the time of the suffix array code), and this more than makes
up for the extra time spent in performing naive string comparisons for the first element of
each block. The parallel running times on 40 cores with hyper-threading (T40) for all three
variants are shown in Table 1.

We compared PLZ3 to the two sequential algorithms LZ-ANSV and LZ-OG, and Table
1 shows a comparison of running times on the input strings. T1 is the time (in seconds)
for running PLZ3 on a single core and the speedup is computed as T1/T40. The results
show that our sequential algorithm (LZ-ANSV) outperforms LZ-OG for all of the input
strings. Note that, however, LZ-ANSV does not compute the entire LPF array whereas
LZ-OG does, so for applications where the entire LPF array is required, LZ-ANSV will
not suffice. On a single core, PLZ3 is 1.3–1.6 times slower than LZ-ANSV. On 40 cores
with hyper-threading, PLZ3 achieves 6.7–21.2 times speedup with respect to running the
algorithm on one core. It achieves a 4.8–15.5 times speedup with respect to LZ-ANSV.

The running times of PLZ3 and LZ-ANSV as a function of the number of processors for
the 10Mrandom and wikisamp8.xml files are shown in Figures 2(a) and 2(b), respectively.
PLZ3 achieves good speedup and outperforms LZ-ANSV with just 2 or more processors.
Figure 3 shows the running time of PLZ3 on 40 cores as a function of the input size (random
characters). We see that PLZ3 scales gracefully with the size of the input. Figure 4 shows
the breakdown of the running time of PLZ3 on several input strings. We note that the suffix
array takes about 80% of the time. If the lcps are also computed (as in PLZ1 and PLZ2),
then the suffix array time becomes about 1.5 times slower, which explains why PLZ3 im-
proves over PLZ1 and PLZ2 by not computing the LCP array. The LPF computation takes



Text Size LZ-ANSV LZ-OG PLZ3 PLZ3 PLZ3 PLZ1 PLZ2 PST
(MB) T1 T40 Speedup T40 T40 T40

10Midentical 10 1.68 1.74 2.35 0.347 6.772 0.553 0.515 0.377
10Mrandom 10 3.97 4.67 6.2 0.437 14.18 0.521 0.55 0.286

10Msqrtn 10 2.14 2.44 3.36 0.401 8.379 0.618 0.611 0.439
chr22.dna 34.6 19.4 22.0 28.9 1.57 18.40 1.9 2.02 1.56

etext99 105 69.9 75.2 99.0 4.8 20.62 5.69 6.18 5.33
howto.txt 39.4 24.0 25.5 33.4 1.82 18.35 2.24 2.36 1.93

jdk13c 69.7 40.4 41.4 54.1 2.86 18.91 3.89 3.95 3.45
pitches 55.8 31.8 34.3 43 2.27 18.94 2.79 2.89 2.47
proteins 210 147 172 203 9.79 20.74 11.6 12.5 11.4
rctail96 115 70.0 72.9 96.5 4.77 20.23 6.19 6.57 5.83

rfc 116 72.8 76.6 100 4.83 20.70 6.19 6.5 5.77
sources 211 140 163 186 9.17 20.28 11.7 12.1 11.4

sprot34.dat 110 69.0 72.2 93.7 4.6 20.36 5.9 6.31 5.57
w3c2 104 63.1 64.7 84.1 4.42 19.02 5.96 6.11 5.5

wikisamp8.xml 100 59.9 61.4 81.2 4.03 20.14 5.51 5.54 4.96
wikisamp9.xml 1000 653 670 894 42.1 21.23 55.1 56.2 59.9

Table 1: Comparison of running times (seconds) of parallel and sequential algorithms on
different inputs on a 40-core machine with hyper-threading.
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Figure 2: Log-log plots of running times on a 40-core machine (with hyper-threading).

less than 20% of the overall time, and the ANSV computation and conversion from LPF to
LZ take very little time. The suffix array portion of the code achieves the lowest speedup, so
improvements in parallel suffix array code will likely improve our LZ-factorization code.

In Table 1, we also include the 40-core times for a modified version of the best publicly
available parallel suffix tree code of Blelloch and Shun [2] (labeled PST). We note that for
most strings, the parallel suffix tree code alone takes as much time or more time than our
entire LZ-factorization algorithm, and since a suffix tree-based LZ-factorization algorithm
involves many other procedures (e.g. tree contraction, least common ancestors and Euler
tours), it is unlikely that such an algorithm will have a better overall performance.

5 Conclusion

We have presented a simple parallel algorithm for Lempel-Ziv factorization, which requires
O(n) work and O(log2 n) time (randomized) for constant-sized alphabets and O(n) work
and O(nε) time (ε < 1) for integer alphabets. We showed that a practical implementation
of our algorithm is fast for a wide variety of input strings, and achieves good speedup on
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Figure 3: Running time versus input size of PLZ3 on 40 cores.
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Figure 4: Breakdown of running time of PLZ3 on 40 cores.
a 40-core machine, even relative to the best sequential implementations. Opportunities
for future work include integrating our algorithm into popular compression packages and
developing practical parallel implementations of other methods in the Lempel-Ziv family.
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