ADMM for Earth Mover's Distances

Justin Solomon, Raif Rustamov, Leonidas Guibas, and Adrian Butscher

This document derives the ADMM algorithm stated in "Earth Mover's Distances on Discrete Surfaces" (SIGGRAPH 2014).

In $\S 4.5$, we reduce the problem of computing earth mover's distances on triangulated surfaces to the following optimization for vector c :

$$
\inf _{c} \sum_{t}\left\|B_{t} c+w_{t}\right\| .
$$

To derive an ADMM approach, we define per-triangle vectors J_{t} and solve the following optimization instead:

$$
\begin{aligned}
\inf _{c, J} & \sum_{t}\left\|J_{t}\right\| \\
\text { s.t. } & J_{t}=B_{t} c+w_{t}
\end{aligned}
$$

This optimization problem has the following augmented Lagrangian:

$$
L_{\beta}=\sum_{t}\left[\left\|J_{t}\right\|+y_{t}^{\top}\left(J_{t}-B_{t} c-w_{t}\right)+\frac{\beta}{2}\left\|J_{t}-B_{t} c-w_{t}\right\|^{2}\right]
$$

ADMM alternates between three steps detailed below:

$$
\begin{aligned}
& J \leftarrow \underset{J}{\arg \min } L_{\beta}(J, c, y) \\
& c \leftarrow \underset{c}{\arg \min } L_{\beta}(J, c, y) \\
& y_{t} \leftarrow y_{t}+\beta\left(J_{t}-B_{t} c-w_{t}\right)
\end{aligned}
$$

1 Jupdate

We can optimize L_{β} over J independently for each face since the sum over t decouples in this step. Defining $J_{t}^{0}=B_{t} c+w_{t}$ and henceforth in this section dropping the t subscript, we wish to solve

$$
\min _{J}\left[\|J\|+y^{\top} J+\frac{\beta}{2}\left\|J-J^{0}\right\|^{2}\right]
$$

This objective is convex, and we could run generic machinery. But in fact we can solve this problem in closed form via the derivation below.

Let's simplify the optimization objective by "completing the square:"

$$
\|J\|+y^{\top} J+\frac{\beta}{2}\left\|J-J^{0}\right\|^{2}=\|J\|+y^{\top} J+\frac{\beta}{2}\left(\|J\|^{2}-2\left(J^{0}\right)^{\top} J\right)+\text { const. }
$$

$$
\begin{aligned}
& =\|J\|+\frac{\beta}{2}\|J\|^{2}+\left(y-\beta J^{0}\right)^{\top} J+\text { const. } \\
& =\|J\|+\frac{\beta}{2}\left[\|J\|^{2}+\frac{2}{\beta}\left(y-\beta J^{0}\right)^{\top} J\right]+\text { const. } \\
& =\|J\|+\frac{\beta}{2}\left[\|J\|^{2}-2 z^{\top} J\right]+\text { const. } \\
& =\|J\|+\frac{\beta}{2}\|J-z\|^{2}+\text { const. }
\end{aligned}
$$

Here, we defined $z \equiv-\frac{1}{\beta}\left(y-\beta J^{0}\right)$. So, we equivalently can solve the following optimization:

$$
\min _{J}\left[\|J\|+\frac{\beta}{2}\|J-z\|^{2}\right]
$$

In this form, it is clear we can write $J=a z$ for some $a \in \mathbb{R}$ (to prove this separate J into components orthogonal and parallel to z; the former must be zero). Then, we can write

$$
\min _{a}\left[|a|\|z\|+\frac{\beta}{2}(a-1)^{2}\|z\|^{2}\right]
$$

Or, equivalently:

$$
\min _{a}\left[|a|+d(a-1)^{2}\right],
$$

where $d=\frac{\beta}{2}\|z\|$. This final simplification is solvable using elementary techniques. Clearly $a \in$ $[0,1]$, so $|a|=a$. If $f(a)=a+d(a-1)^{2}$, then $f^{\prime}(a)=1+2 d(a-1)=0 \Longrightarrow a=1-\frac{1}{2 d}$. We have $a>0 \Longleftrightarrow 1-\frac{1}{2 d}>0 \Longleftrightarrow d>1 / 2$. Hence, in the end we must have:

$$
a= \begin{cases}1-\frac{1}{2 d} & d>\frac{1}{2} \\ 0 & \text { otherwise }\end{cases}
$$

2 cupdate

For this update step, we can write:

$$
0=\nabla_{c} L_{\beta}=\sum_{t}\left[-B_{t}^{\top} y_{t}-\beta B_{t}^{\top}\left(J_{t}-w_{t}\right)+\beta B_{t}^{\top} B_{t} c\right]
$$

Dividing by β and moving terms shows:

$$
\left(\sum_{t} B_{t}^{\top} B_{t}\right) c=\sum_{t} B_{t}^{\top}\left(\frac{y_{t}}{\beta}+J_{t}-w_{t}\right)
$$

This is a small matrix solve if we use the Laplace-Beltrami basis, and it can be prefactored.

3 Algorithm Summary

Based on the derivation above, the algorithm below minimizes the EMD energy (any time there is a t subscript, there should be a loop over triangles t):

1. J update:

$$
\begin{aligned}
& z_{t} \leftarrow B_{t} c+w_{t}-\frac{y_{t}}{\beta} \\
& a_{t} \leftarrow \begin{cases}1-\frac{1}{\beta\left\|z_{t}\right\|} & \beta\left\|z_{t}\right\|>1 \\
0 & \text { otherwise }\end{cases} \\
& J_{t} \leftarrow a_{t} z_{t}
\end{aligned}
$$

2. c update (can pre-factor the inverted matrix):

$$
c \leftarrow\left(\sum_{t} B_{t}^{\top} B_{t}\right)^{-1}\left[\sum_{t} B_{t}^{\top}\left(\frac{y_{t}}{\beta}+J_{t}-w_{t}\right)\right]
$$

3. Dual update:

$$
y_{t} \leftarrow y_{t}+\beta\left(J_{t}-B_{t} c-w_{t}\right)
$$

