Near-Isometric Level Set Tracking
 Supplementary Material

Michael Tao ${ }^{1} \quad$ Justin Solomon ${ }^{2} \quad$ Adrian Butscher ${ }^{3}$
${ }^{1}$ University of Toronto
${ }^{2}$ Massachusetts Institute of Technology
${ }^{3}$ Autodesk Research

1. Proof of Theorem 1

Let $R_{t}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a family of rigid motions of the form $R_{t}(x):=$ $\mathcal{O}_{t} x+p_{t}$ where $\mathcal{O}_{t} \in \mathrm{SO}(3)$ is an orthogonal matrix with unit determinant and $p_{t} \in \mathbb{R}^{3}$ is a vector; neither of these depend on x. The Eulerian velocity vector field of this motion is an affine vector field of the form $V_{t}(x):=A_{t} x+b_{t}$ where $A_{t}:=\frac{d \mathcal{O}_{t}}{d t} \mathcal{O}_{t}^{\top}$ and $b_{t}:=\frac{d p_{t}}{d t}-\frac{d \mathcal{O}_{t}}{d t} \mathcal{O}_{t}^{\top} p_{t}$. Moreover, by differentiating the identity $\mathcal{O}_{t}^{\top} \mathcal{O}_{t}=I d$, we find that A_{t} is antisymmetric. The Jacobian matrix of V_{t} is thus constant and equal to A_{t}, therefore satisfying $D V_{t}+\left[D V_{t}\right]^{\top}=0$.

For the converse, let $\partial_{i} V^{j}$ denote the partial derivatives of the components of V. Then the Killing equation implies that $\partial_{1} V^{1}=$ $\partial_{2} V^{2}=\partial_{3} V^{3}=0$ as well as $\partial_{2} V^{1}+\partial_{1} V^{2}=\partial_{3} V^{1}+\partial_{1} V^{3}=\partial_{2} V^{3}+$ $\partial_{3} V^{2}=0$. By taking a second derivative, observe that

$$
0=\partial_{2}\left(\partial_{2} V^{1}+\partial_{1} V^{2}\right)=\partial_{2} \partial_{2} V^{1}+\partial_{1}\left(\partial_{2} V^{2}\right)
$$

so that $\partial_{2} \partial_{2} V^{1}=0$ since $\partial_{2} V^{2}=0$. In the same way, we find $\partial_{3} \partial_{3} V^{1}=0$. Finally, observe that

$$
\begin{aligned}
0 & =\partial_{3}\left(\partial_{2} V^{1}+\partial_{1} V^{2}\right)+\partial_{2}\left(\partial_{3} V^{1}+\partial_{1} V^{3}\right) \\
& =2 \partial_{2} \partial_{3} V^{1}+\partial_{1}\left(\partial_{2} V^{3}+\partial_{3} V^{2}\right)
\end{aligned}
$$

so that $\partial_{2} \partial_{3} V^{1}$ since $\partial_{2} V^{3}+\partial_{3} V^{2}=0$. Thus we have learned that V^{1} is an affine function of x^{2} and x^{3} alone. Similarly, we find that V^{2} is an affine function of x^{1} and x^{3}, and V^{3} is an affine function of x^{1} and x^{2}. Writing $V^{1}:=a_{12} x^{2}+a_{13} x^{3}+c_{2}$ and so on, we can now substitute this form for V into the Killing equation to find additional constraints on the a - and c-coefficients. In this way, we find that the c-coefficients are unconstrained and the a-coefficients are antisymmetric. This establishes the first part of the lemma

Next, we study the mapping $x \mapsto \mathcal{O}_{t}(x)$ which solves the ODE (2) with a family V_{t} satisfying the Killing equation (which we know exists thanks to the assumed smoothness of V_{t} in t). To show that \mathcal{O}_{t} is a rigid motion, we show that the derivative matrix $D \mathcal{O}_{t}$ preserves the inner products of vectors as follows. If $a, b \in \mathbb{R}^{3}$, then

$$
\frac{\partial}{\partial t}\left(D \mathcal{O}_{t} a \cdot D \mathcal{O}_{t} b\right)=\sum_{i j k} \frac{\partial}{\partial t}\left(\frac{\partial \mathcal{O}_{t}^{k}}{\partial x^{i}} \frac{\partial \mathcal{O}_{t}^{k}}{\partial x^{j}}\right) a^{i} a^{j}
$$

$$
\begin{aligned}
& =\sum_{i j k}\left(\frac{\partial V_{t}^{k} \circ \mathcal{O}_{t}}{\partial x^{i}} \frac{\partial \mathcal{O}_{t}^{k}}{\partial x^{j}}+\frac{\partial V_{t}^{k} \circ \mathcal{O}_{t}}{\partial x^{j}} \frac{\partial \mathcal{O}_{t}^{k}}{\partial x^{i}}\right) a^{i} a^{j} \\
& =\sum_{i j k \ell}\left(\frac{\partial V_{t}^{\ell}}{\partial x^{k}}+\frac{\partial V_{t}^{k}}{\partial x^{\ell}}\right) \frac{\partial \mathcal{O}_{t}^{k}}{\partial x^{i}} \frac{\partial \mathcal{O}_{t}^{\ell}}{\partial x^{j}} a^{i} a^{j} \\
& =0
\end{aligned}
$$

by the Killing equation. Thus $D \mathcal{O}_{t} a \cdot D \mathcal{O}_{t} b$ is constant.

2. Derivation of PDE Form

To derive the first-order optimality conditions satisfied by the minimizer of (5), we form the Lagrangian

$$
\begin{equation*}
\mathcal{L}(V, \lambda):=\frac{1}{2} \int_{\mathcal{U}}\|P(V)\|^{2}+\int_{\mathcal{U}} \lambda\left(\frac{\partial F_{t}}{\partial t}+\nabla F_{t} \cdot V\right) \tag{1}
\end{equation*}
$$

where $\lambda: \mathcal{U} \rightarrow \mathbb{R}$ is the Lagrange multiplier function. Since the minimizing pair (V, λ) is a critical point of \mathcal{L}, then for any variation δV of V we have $\left.\frac{d}{d \varepsilon} \mathcal{L}(V+\varepsilon \delta V, \lambda)\right|_{\varepsilon=0}=0$. Expanding this expression provides the weak form of the optimality conditions:

$$
\begin{equation*}
0=\int_{\mathcal{U}}\left(\operatorname{Tr}\left(P(V)[P(\delta V)]^{\top}\right)+\lambda \nabla F_{t} \cdot \delta V\right) \tag{2}
\end{equation*}
$$

If we then integrate by parts, we find

$$
\begin{equation*}
0=\int_{\mathcal{U}}\left(P^{*} P(V)+\lambda \nabla F_{t}\right) \cdot \delta V+\int_{\partial \mathcal{U}} N_{\partial \mathcal{U}} \cdot P(V) \cdot \delta V \tag{3}
\end{equation*}
$$

where P^{*} : Symmetric matrix fields \rightarrow vector fields is the adjoint operator of P. Also, $N_{\partial \mathcal{U}}$ is the unit normal vector of $\partial \mathcal{U}$. Since Equation (3) is true for all variations δV, we conclude that the integrands appearing there must vanish.

3. Proof of Theorem 4

If $\Omega_{t}=R_{t}(\Omega)$ for some rigid motion R_{t} its level set function satisfies $F_{t}:=F \circ R_{t}^{-1}$ where F is a level set function for the reference geometry. As we know, the Eulerian velocity $V_{t}(x):=\frac{d R_{t}}{d t} \circ R_{t}^{-1}(x)$
is a Killing vector field satisfying $P\left(V_{t}\right)=0$. Let V_{t} have components $\left[V_{t}(x)\right]^{i}=\sum_{j k} \frac{d\left[R_{t}\right]_{j}^{i}}{d t}\left[R_{t}\right]_{j}^{k} x^{j}$. Then,

$$
\begin{aligned}
& \sum_{i}\left[V_{t}(x)\right]^{i} \frac{\partial F \circ R_{t}(x)}{\partial x^{i}}+\frac{\partial F \circ R_{t}(x)}{\partial t} \\
& \quad=\sum_{k} \frac{\partial F}{\partial x^{k}} \circ R_{t}(x)\left(\left[R_{t}\right]_{i}^{k} \sum_{j k} \frac{d\left[R_{t}\right]_{j}^{i}}{d t}\left[R_{t}\right]_{j}^{k}+\frac{d\left[R_{t}\right]_{j}^{k}}{d t}\right) x^{j} .
\end{aligned}
$$

The term in brackets vanishes because the linear part of R_{t} is an orthogonal matrix. Thus V satisfies the constraints as well. Therefore $\left(V_{t}, \lambda\right)=(0,0)$ is the solution of the PDE.

4. Discrete Optimality Conditions

We obtain the discrete optimality equations by substituting the reduced forms of V and δV into (2). That is,

$$
\begin{align*}
V & :=\sum_{i} \sum_{s=1}^{3} \sum_{s^{\prime}=1}^{2}\left(a_{i s^{\prime}} z_{i s s^{\prime}}+w_{i s} \xi_{i} e_{s}\right. \\
V^{\prime} & :=\sum_{t=1}^{3} z_{j t t^{\prime}} \xi_{j} e_{t} \quad \forall j \text { and } \forall t^{\prime}=1,2 . \tag{4}
\end{align*}
$$

Since the variation V^{\prime} above is orthogonal to ∇F_{t} by construction, the Lagrange multiplier term in (2) vanishes, leaving

$$
\begin{align*}
0 & =\int_{U_{\varepsilon}} \operatorname{Tr}\left(P(V)\left[P\left(V^{\prime}\right)\right]^{\top}\right) \\
& =2 \sum_{i} \sum_{s, t, u, v=1}^{3}\left(\delta_{s v} \delta_{t u}+\delta_{s t} \delta_{u v}\right) v_{i s} z_{j t t^{\prime}} \sum_{T} \int_{T} \frac{\partial \xi_{i}}{\partial x^{u}} \frac{\partial \xi_{j}}{\partial x^{v}} \tag{5}
\end{align*}
$$

after expanding in terms of the partial derivatives of the components of V and V^{\prime}. Here $\delta_{i j}$ is the Kronecker delta $v_{i s}$ are the components of V in the expansions (5).
To evaluate further we need a formula for $\nabla \xi_{i}$, which is piecewise constant since ξ_{i} is piecewise linear. Let $T:=\left[x_{i}, y_{1}, y_{2}, y_{3}\right]$ be a tetrahedron containing x_{i} and let $n(i, T)$ be the inward-pointing unit vector normal to the face $\left[y_{1}, y_{2}, y_{3}\right]$ and let $A(i, T)$ be its area. Then a straightforward geometric calculation shows that

$$
\left.\nabla \xi_{i}\right|_{T}=-\frac{A(i, T)}{3 \operatorname{Vol}(T)} n(i, T) .
$$

The product of the partial derivatives in (5) is supported on T if and only if x_{i}, x_{j} are both vertices of T, so for each i

$$
\begin{equation*}
\sum_{T} \int_{T} \frac{\partial \xi_{i}}{\partial x^{u}} \frac{\partial \xi_{i}}{\partial x^{v}}=\frac{1}{9} \sum_{T \in R(i)} \frac{(A(i, T))^{2}}{\operatorname{Vol}(T)} n_{u}(i, T) n_{v}(i, T), \tag{6a}
\end{equation*}
$$

where $R(i)$ is the one-ring of tetrahedra containing x_{i}; and for each pair $i \neq j$ such that $\left[x_{i}, x_{j}\right]$ is an edge

$$
\begin{equation*}
\sum_{T} \int_{T} \frac{\partial \xi_{i}}{\partial x^{u}} \frac{\partial \xi_{j}}{\partial x^{v}}=\frac{1}{9} \sum_{T \in R(i, j)} \frac{A(i, T) A(j, T)}{\operatorname{Vol}(T)} n_{u}(i, T) n_{v}(j, T), \tag{6b}
\end{equation*}
$$

where $R(i, j)$ is the one-ring of tetrahedra containing $\left[x_{i}, x_{j}\right]$. We now substitute these expressions into (5) and find

$$
\begin{equation*}
0=\sum_{i} \sum_{s, t=1}^{3} K_{i j s t}\left(a_{i s^{\prime}} z_{i s s^{\prime}}+w_{i s}\right) z_{j t t^{\prime}} \quad \forall j \text { and } \forall t^{\prime}=1,2 . \tag{7}
\end{equation*}
$$

where $K_{i j s t}$ are the coefficients of the stiffness matrix.
M. Tao \& J. Solomon \& A. Butscher / Near-Isometric Level Set Tracking - Supplementary Material

Figure 1: Solver execution time and time slice construction time as a function of bandwidth size with respect to a fixed background grid resolution (equal to $60 \times 60 \times 60$) in 3D. Units are fractions of the diameter of the background grid. We collect data from the ellipse moving according to four different types of motion.

Figure 2: Solver execution time and time slice construction time as a function of grid resolution using a fixed-size narrow band (equal to 0.25) in 3D. We collect data from the ellipse moving according to four different types of motion.

