Near-Isometric Level Set Tracking

Supplementary Material

Michael Tao¹ Justin Solomon²

Adrian Butscher³

¹University of Toronto ²Massachusetts Institute of Technology ³Autodesk Research

1. Proof of Theorem 1

Let $R_t : \mathbb{R}^3 \to \mathbb{R}^3$ be a family of rigid motions of the form $R_t(x) := \mathcal{O}_t x + p_t$ where $\mathcal{O}_t \in SO(3)$ is an orthogonal matrix with unit determinant and $p_t \in \mathbb{R}^3$ is a vector; neither of these depend on x. The Eulerian velocity vector field of this motion is an *affine* vector field of the form $V_t(x) := A_t x + b_t$ where $A_t := \frac{d\mathcal{O}_t}{dt} \mathcal{O}_t^\top$ and $b_t := \frac{dp_t}{dt} - \frac{d\mathcal{O}_t}{dt} \mathcal{O}_t^\top p_t$. Moreover, by differentiating the identity $\mathcal{O}_t^\top \mathcal{O}_t = Id$, we find that A_t is antisymmetric. The Jacobian matrix of V_t is thus constant and equal to A_t , therefore satisfying $DV_t + [DV_t]^\top = 0$.

For the converse, let $\partial_i V^j$ denote the partial derivatives of the components of *V*. Then the Killing equation implies that $\partial_1 V^1 = \partial_2 V^2 = \partial_3 V^3 = 0$ as well as $\partial_2 V^1 + \partial_1 V^2 = \partial_3 V^1 + \partial_1 V^3 = \partial_2 V^3 + \partial_3 V^2 = 0$. By taking a second derivative, observe that

 $0 = \partial_2 \left(\partial_2 V^1 + \partial_1 V^2 \right) = \partial_2 \partial_2 V^1 + \partial_1 \left(\partial_2 V^2 \right)$

so that $\partial_2 \partial_2 V^1 = 0$ since $\partial_2 V^2 = 0$. In the same way, we find $\partial_3 \partial_3 V^1 = 0$. Finally, observe that

$$0 = \partial_3 \left(\partial_2 V^1 + \partial_1 V^2 \right) + \partial_2 \left(\partial_3 V^1 + \partial_1 V^3 \right)$$

= $2 \partial_2 \partial_3 V^1 + \partial_1 \left(\partial_2 V^3 + \partial_3 V^2 \right)$

so that $\partial_2 \partial_3 V^1$ since $\partial_2 V^3 + \partial_3 V^2 = 0$. Thus we have learned that V^1 is an affine function of x^2 and x^3 alone. Similarly, we find that V^2 is an affine function of x^1 and x^3 , and V^3 is an affine function of x^1 and x^2 . Writing $V^1 := a_{12}x^2 + a_{13}x^3 + c_2$ and so on, we can now substitute this form for *V* into the Killing equation to find additional constraints on the *a*- and *c*-coefficients. In this way, we find that the *c*-coefficients are unconstrained and the *a*-coefficients are antisymmetric. This establishes the first part of the lemma

Next, we study the mapping $x \mapsto \mathcal{O}_t(x)$ which solves the ODE (2) with a family V_t satisfying the Killing equation (which we know exists thanks to the assumed smoothness of V_t in t). To show that \mathcal{O}_t is a rigid motion, we show that the derivative matrix $D\mathcal{O}_t$ preserves the inner products of vectors as follows. If $a, b \in \mathbb{R}^3$, then

$$\frac{\partial}{\partial t} \left(D\mathcal{O}_t a \cdot D\mathcal{O}_t b \right) = \sum_{ijk} \frac{\partial}{\partial t} \left(\frac{\partial \mathcal{O}_t^k}{\partial x^i} \frac{\partial \mathcal{O}_t^k}{\partial x^j} \right) a^i a^j$$

© 2016 The Author(s)

Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

$$=\sum_{ijk} \left(\frac{\partial V_t^k \circ \mathcal{O}_t}{\partial x^i} \frac{\partial \mathcal{O}_t^k}{\partial x^j} + \frac{\partial V_t^k \circ \mathcal{O}_t}{\partial x^j} \frac{\partial \mathcal{O}_t^k}{\partial x^i} \right) a^i a^j$$
$$=\sum_{ijk\ell} \left(\frac{\partial V_t^\ell}{\partial x^k} + \frac{\partial V_t^k}{\partial x^\ell} \right) \frac{\partial \mathcal{O}_t^k}{\partial x^i} \frac{\partial \mathcal{O}_t^\ell}{\partial x^j} a^i a^j$$
$$= 0$$

by the Killing equation. Thus $D\mathcal{O}_t a \cdot D\mathcal{O}_t b$ is constant.

2. Derivation of PDE Form

To derive the first-order optimality conditions satisfied by the minimizer of (5), we form the Lagrangian

$$\mathcal{L}(V,\lambda) := \frac{1}{2} \int_{\mathcal{U}} \|P(V)\|^2 + \int_{\mathcal{U}} \lambda \left(\frac{\partial F_t}{\partial t} + \nabla F_t \cdot V\right)$$
(1)

where $\lambda : \mathcal{U} \to \mathbb{R}$ is the Lagrange multiplier function. Since the minimizing pair (V, λ) is a critical point of \mathcal{L} , then for any variation δV of V we have $\frac{d}{d\epsilon}\mathcal{L}(V + \epsilon \delta V, \lambda)|_{\epsilon=0} = 0$. Expanding this expression provides the *weak form* of the optimality conditions:

$$0 = \int_{\mathcal{U}} \left(\operatorname{Tr} \left(P(V) [P(\delta V)]^{\top} \right) + \lambda \nabla F_t \cdot \delta V \right).$$
 (2)

If we then integrate by parts, we find

$$0 = \int_{\mathcal{U}} \left(P^* P(V) + \lambda \nabla F_t \right) \cdot \delta V + \int_{\partial \mathcal{U}} N_{\partial \mathcal{U}} \cdot P(V) \cdot \delta V , \quad (3)$$

where P^* : Symmetric matrix fields \rightarrow vector fields is the adjoint operator of *P*. Also, $N_{\partial U}$ is the unit normal vector of ∂U . Since Equation (3) is true for all variations δV , we conclude that the integrands appearing there must vanish.

3. Proof of Theorem 4

If $\Omega_t = R_t(\Omega)$ for some rigid motion R_t its level set function satisfies $F_t := F \circ R_t^{-1}$ where F is a level set function for the reference geometry. As we know, the Eulerian velocity $V_t(x) := \frac{dR_t}{dt} \circ R_t^{-1}(x)$

is a Killing vector field satisfying $P(V_t) = 0$. Let V_t have components $[V_t(x)]^i = \sum_{ik} \frac{d[R_t]_i^k}{dt} [R_t]_i^k x^j$. Then,

$$\sum_{i} [V_{t}(x)]^{i} \frac{\partial F \circ R_{t}(x)}{\partial x^{i}} + \frac{\partial F \circ R_{t}(x)}{\partial t}$$
$$= \sum_{k} \frac{\partial F}{\partial x^{k}} \circ R_{t}(x) \left([R_{t}]_{i}^{k} \sum_{jk} \frac{d[R_{t}]_{j}^{i}}{dt} [R_{t}]_{j}^{k} + \frac{d[R_{t}]_{j}^{k}}{dt} \right) x^{j}$$

The term in brackets vanishes because the linear part of R_t is an orthogonal matrix. Thus *V* satisfies the constraints as well. Therefore $(V_t, \lambda) = (0, 0)$ is the solution of the PDE.

4. Discrete Optimality Conditions

We obtain the discrete optimality equations by substituting the reduced forms of *V* and δV into (2). That is,

$$V := \sum_{i} \sum_{s=1}^{3} \sum_{s'=1}^{2} (a_{is'} z_{iss'} + w_{is}) \xi_{i} e_{s}$$

$$V' := \sum_{t=1}^{3} z_{jtt'} \xi_{j} e_{t} \quad \forall j \text{ and } \forall t' = 1, 2.$$
(4)

Since the variation V' above is orthogonal to ∇F_t by construction, the Lagrange multiplier term in (2) vanishes, leaving

$$0 = \int_{U_{\varepsilon}} \operatorname{Tr}(P(V)[P(V')]^{\top})$$

= $2\sum_{i} \sum_{s,t,u,\nu=1}^{3} (\delta_{s\nu} \delta_{tu} + \delta_{st} \delta_{u\nu}) v_{is} z_{jtt'} \sum_{T} \int_{T} \frac{\partial \xi_{i}}{\partial x^{u}} \frac{\partial \xi_{j}}{\partial x^{\nu}}$ (5)

after expanding in terms of the partial derivatives of the components of V and V'. Here δ_{ij} is the Kronecker delta v_{is} are the components of V in the expansions (5).

To evaluate further we need a formula for $\nabla \xi_i$, which is piecewise constant since ξ_i is piecewise linear. Let $T := [x_i, y_1, y_2, y_3]$ be a tetrahedron containing x_i and let n(i,T) be the inward-pointing unit vector normal to the face $[y_1, y_2, y_3]$ and let A(i,T) be its area. Then a straightforward geometric calculation shows that

$$abla \xi_i \Big|_T = -\frac{A(i,T)}{3 \operatorname{Vol}(T)} n(i,T).$$

The product of the partial derivatives in (5) is supported on *T* if and only if x_i, x_j are both vertices of *T*, so for each *i*

$$\sum_{T} \int_{T} \frac{\partial \xi_{i}}{\partial x^{u}} \frac{\partial \xi_{i}}{\partial x^{v}} = \frac{1}{9} \sum_{T \in R(i)} \frac{(A(i,T))^{2}}{\operatorname{Vol}(T)} n_{u}(i,T) n_{v}(i,T), \quad (6a)$$

where R(i) is the one-ring of tetrahedra containing x_i ; and for each pair $i \neq j$ such that $[x_i, x_j]$ is an edge

$$\sum_{T} \int_{T} \frac{\partial \xi_{i}}{\partial x^{u}} \frac{\partial \xi_{j}}{\partial x^{v}} = \frac{1}{9} \sum_{T \in \mathcal{R}(i,j)} \frac{A(i,T)A(j,T)}{\operatorname{Vol}(T)} n_{u}(i,T)n_{v}(j,T), \quad (6b)$$

where R(i, j) is the one-ring of tetrahedra containing $[x_i, x_j]$. We now substitute these expressions into (5) and find

$$0 = \sum_{i} \sum_{s,t=1}^{3} K_{ijst} (a_{is'} z_{iss'} + w_{is}) z_{jtt'} \quad \forall j \text{ and } \forall t' = 1, 2.$$
(7)

where K_{ijst} are the coefficients of the stiffness matrix.

M. Tao & J. Solomon & A. Butscher / Near-Isometric Level Set Tracking - Supplementary Material

Figure 1: Solver execution time and time slice construction time as a function of bandwidth size with respect to a fixed background grid resolution (equal to $60 \times 60 \times 60$) in 3D. Units are fractions of the diameter of the background grid. We collect data from the ellipse moving according to four different types of motion.

Figure 2: Solver execution time and time slice construction time as a function of grid resolution using a fixed-size narrow band (equal to 0.25) in 3D. We collect data from the ellipse moving according to four different types of motion.