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1. Proof of Theorem 1

Let Rt : R3→R3 be a family of rigid motions of the form Rt(x) :=
Otx+ pt where Ot ∈ SO(3) is an orthogonal matrix with unit de-
terminant and pt ∈ R3 is a vector; neither of these depend on x.
The Eulerian velocity vector field of this motion is an affine vec-
tor field of the form Vt(x) := Atx + bt where At := dOt

dt O
>
t and

bt := d pt
dt −

dOt
dt O

>
t pt . Moreover, by differentiating the identity

O>t Ot = Id, we find that At is antisymmetric. The Jacobian ma-
trix of Vt is thus constant and equal to At , therefore satisfying
DVt +[DVt ]

> = 0.

For the converse, let ∂iV j denote the partial derivatives of the
components of V . Then the Killing equation implies that ∂1V 1 =
∂2V 2 = ∂3V 3 = 0 as well as ∂2V 1+∂1V 2 = ∂3V 1+∂1V 3 = ∂2V 3+
∂3V 2 = 0. By taking a second derivative, observe that

0 = ∂2
(
∂2V 1 +∂1V 2)= ∂2∂2V 1 +∂1

(
∂2V 2)

so that ∂2∂2V 1 = 0 since ∂2V 2 = 0. In the same way, we find
∂3∂3V 1 = 0. Finally, observe that

0 = ∂3
(
∂2V 1 +∂1V 2)+∂2

(
∂3V 1 +∂1V 3)

= 2∂2∂3V 1 +∂1
(
∂2V 3 +∂3V 2)

so that ∂2∂3V 1 since ∂2V 3 + ∂3V 2 = 0. Thus we have learned that
V 1 is an affine function of x2 and x3 alone. Similarly, we find that
V 2 is an affine function of x1 and x3, and V 3 is an affine function of
x1 and x2. Writing V 1 := a12x2 +a13x3 +c2 and so on, we can now
substitute this form for V into the Killing equation to find additional
constraints on the a- and c-coefficients. In this way, we find that
the c-coefficients are unconstrained and the a-coefficients are anti-
symmetric. This establishes the first part of the lemma

Next, we study the mapping x 7→ Ot(x) which solves the ODE
(2) with a family Vt satisfying the Killing equation (which we know
exists thanks to the assumed smoothness of Vt in t). To show thatOt
is a rigid motion, we show that the derivative matrix DOt preserves
the inner products of vectors as follows. If a,b ∈ R3, then

∂

∂t
(
DOta ·DOtb

)
= ∑

i jk

∂

∂t

(
∂Ok

t
∂xi

∂Ok
t

∂x j

)
aia j

= ∑
i jk

(
∂V k

t ◦Ot

∂xi
∂Ok

t
∂x j +

∂V k
t ◦Ot

∂x j
∂Ok

t
∂xi

)
aia j

= ∑
i jk`

(
∂V `

t

∂xk +
∂V k

t

∂x`

)
∂Ok

t
∂xi

∂O`
t

∂x j aia j

= 0

by the Killing equation. Thus DOta ·DOtb is constant.

2. Derivation of PDE Form

To derive the first-order optimality conditions satisfied by the min-
imizer of (5), we form the Lagrangian

L(V,λ) :=
1
2

∫
U
‖P(V )‖2 +

∫
U

λ

(
∂Ft

∂t
+∇Ft ·V

)
(1)

where λ : U → R is the Lagrange multiplier function. Since the
minimizing pair (V,λ) is a critical point of L, then for any vari-
ation δV of V we have d

dε
L(V + εδV,λ)

∣∣
ε=0 = 0. Expanding this

expression provides the weak form of the optimality conditions:

0 =
∫
U

(
Tr
(
P(V )[P(δV )]>

)
+λ∇Ft ·δV

)
. (2)

If we then integrate by parts, we find

0 =
∫
U

(
P∗P(V )+λ∇Ft

)
·δV +

∫
∂U

N∂U ·P(V ) ·δV , (3)

where P∗ : Symmetric matrix fields → vector fields is the adjoint
operator of P. Also, N∂U is the unit normal vector of ∂U . Since
Equation (3) is true for all variations δV , we conclude that the inte-
grands appearing there must vanish.

3. Proof of Theorem 4

If Ωt = Rt(Ω) for some rigid motion Rt its level set function satis-
fies Ft := F ◦R−1

t where F is a level set function for the reference
geometry. As we know, the Eulerian velocity Vt(x) := dRt

dt ◦R−1
t (x)
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is a Killing vector field satisfying P(Vt) = 0. Let Vt have compo-

nents [Vt(x)]i = ∑ jk
d[Rt ]

i
j

dt [Rt ]
k
jx

j. Then,

∑
i
[Vt(x)]i

∂F ◦Rt(x)
∂xi +

∂F ◦Rt(x)
∂t

= ∑
k

∂F
∂xk ◦Rt(x)

(
[Rt ]

k
i ∑

jk

d[Rt ]
i
j

dt
[Rt ]

k
j +

d[Rt ]
k
j

dt

)
x j .

The term in brackets vanishes because the linear part of Rt is an or-
thogonal matrix. Thus V satisfies the constraints as well. Therefore
(Vt ,λ) = (0,0) is the solution of the PDE.

4. Discrete Optimality Conditions

We obtain the discrete optimality equations by substituting the re-
duced forms of V and δV into (2). That is,

V := ∑
i

3

∑
s=1

2

∑
s′=1

(ais′ziss′ +wis)ξies

V ′ :=
3

∑
t=1

z jtt′ξ jet ∀ j and ∀ t′ = 1,2 .

(4)

Since the variation V ′ above is orthogonal to ∇Ft by construction,
the Lagrange multiplier term in (2) vanishes, leaving

0 =
∫

Uε

Tr
(
P(V )[P(V ′)]>

)
= 2∑

i

3

∑
s,t,u,v=1

(δsvδtu +δstδuv)visz jtt′ ∑
T

∫
T

∂ξi

∂xu
∂ξ j

∂xv (5)

after expanding in terms of the partial derivatives of the compo-
nents of V and V ′. Here δi j is the Kronecker delta vis are the com-
ponents of V in the expansions (5).

To evaluate further we need a formula for ∇ξi, which is piece-
wise constant since ξi is piecewise linear. Let T := [xi,y1,y2,y3] be
a tetrahedron containing xi and let n(i,T ) be the inward-pointing
unit vector normal to the face [y1,y2,y3] and let A(i,T ) be its area.
Then a straightforward geometric calculation shows that

∇ξi
∣∣
T =− A(i,T )

3Vol(T )
n(i,T ) .

The product of the partial derivatives in (5) is supported on T if and
only if xi,x j are both vertices of T , so for each i

∑
T

∫
T

∂ξi

∂xu
∂ξi

∂xv =
1
9 ∑

T∈R(i)

(A(i,T ))2

Vol(T )
nu(i,T )nv(i,T ), (6a)

where R(i) is the one-ring of tetrahedra containing xi; and for each
pair i 6= j such that [xi,x j] is an edge

∑
T

∫
T

∂ξi

∂xu
∂ξ j

∂xv =
1
9 ∑

T∈R(i, j)

A(i,T )A( j,T )
Vol(T )

nu(i,T )nv( j,T ), (6b)

where R(i, j) is the one-ring of tetrahedra containing [xi,x j]. We
now substitute these expressions into (5) and find

0 = ∑
i

3

∑
s,t=1

Ki jst(ais′ziss′ +wis)z jtt′ ∀ j and ∀ t′ = 1,2 . (7)

where Ki jst are the coefficients of the stiffness matrix.
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Figure 1: Solver execution time and time slice construction time as a function of bandwidth size with respect to a fixed background grid
resolution (equal to 60×60×60) in 3D. Units are fractions of the diameter of the background grid. We collect data from the ellipse moving
according to four different types of motion.
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Figure 2: Solver execution time and time slice construction time as a function of grid resolution using a fixed-size narrow band (equal to
0.25) in 3D. We collect data from the ellipse moving according to four different types of motion.
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