
Chapter 5

Eigenvectors

We turn our attention now to a nonlinear problem about matrices: Finding their eigenvalues and
eigenvectors. Eigenvectors ~x and their corresponding eigenvalues λ of a square matrix A are
determined by the equation A~x = λ~x. There are many ways to see that this problem is nonlinear.
For instance, there is a product of unknowns λ and ~x, and to avoid the trivial solution ~x = ~0
we constrain ‖~x‖ = 1; this constraint is circular rather than linear. Thanks to this structure, our
methods for finding eigenspaces will be considerably different from techniques for solving and
analyzing linear systems of equations.

5.1 Motivation

Despite the arbitrary-looking form of the equation A~x = λ~x, the problem of finding eigenvectors
and eigenvalues arises naturally in many circumstances. We motivate our discussion with a few
examples below.

5.1.1 Statistics

Suppose we have machinery for collecting several statistical observations about a collection of
items. For instance, in a medical study we may collect the age, weight, blood pressure, and heart
rate of 100 patients. Then, each patient i can be represented by a point ~xi in R4 storing these four
values.

Of course, such statistics may exhibit strong correlation. For instance, patients with higher
blood pressure may be likely to have higher blood weights or heart rates. For this reason, although
we collected our data in R4, in reality it may—to some approximate degree—live in a lower-
dimensional space better capturing the relationships between the different variables.

For now, suppose that in fact there exists a one-dimensional space approximating our dataset.
Then, we expect all the data points to be nearly parallel to some vector ~v, so that each can be
written as ~xi ≈ ci~v for different ci ∈ R. From before, we know that the best approximation of ~xi
parallel to ~v is proj~v ~xi:

proj~v ~xi =
~xi ·~v
~v ·~v ~v by definition

= (~xi · v̂)v̂ since ~v ·~v = ‖~v‖2

1

Here, we define v̂ ≡ ~v/‖~v‖. Of course, the magnitude of ~v does not matter for the problem at hand,
so it is reasonable to search over the space of unit vectors v̂.

Following the pattern of least squares, we have a new optimization problem:

minimize ∑
i
‖~xi − projv̂ ~xi‖2

such that ‖v̂‖ = 1

We can simplify our optimization objective a bit:

∑
i
‖~xi − projv̂ ~xi‖2 = ∑

i
‖~xi − (~xi · v̂)v̂‖2 by definition of projection

= ∑
i

(
‖~xi‖2 − (~xi · v̂)2) since ‖v̂‖ = 1 and ‖~w‖2 = ~w · ~w

= const.−∑
i
(~xi · v̂)2

This derivation shows that we can solve an equivalent optimization problem:

maximize ‖X>v̂‖2

such that ‖v̂‖2 = 1,

where the columns of X are the vectors ~xi. Notice that ‖X>v̂‖2 = v̂>XX>v̂, so by Example ??
the vector v̂ corresponds to the eigenvector of XX> with the highest eigenvalue. The vector v̂ is
known as the first principal component of the dataset.

5.1.2 Differential Equations

Many physical forces can be written as functions of position. For instance, the force between two
particles at positions ~x and ~y in R3 exerted by a spring can be written as k(~x − ~y) by Hooke’s
Law; such spring forces are used to approximate forces holding cloth together in many simulation
systems. Although these forces are not necessarily linear in position, we often approximate them
in a linear fashion. In particular, in a physical system with n particles encode the positions of all
the particles simultaneously in a vector ~X ∈ R3n. Then, if we assume such an approximation we
can write that the forces in the system are approximately ~F ≈ A~X for some matrix A.

Recall Newton’s second law of motion F = ma, or force equals mass times acceleration. In our
context, we can write a diagonal mass matrix M ∈ R3n×3n containing the mass of each particle in
the system. Then, we know ~F = M~X′′, where prime denotes differentiation in time. Of course,
~X′′ = (~X′)′, so in the end we have a first-order system of equations:

d
dt

(
~X
~V

)
=

(
0 I3n×3n

M−1A 0

)(
~X
~V

)
Here, we simultaneously compute both positions in ~X ∈ R3n and velocities ~V ∈ R3n of all n
particles as functions of time.

More generally, differential equations of the form ~x′ = A~x appear in many contexts, including
simulation of cloth, springs, heat, waves, and other phenomena. Suppose we know eigenvectors

2

~x1, . . . ,~xk of A, such that A~xi = λi~xi. If we write the initial condition of the differential equation in
terms of the eigenvectors, as

~x(0) = c1~x1 + · · ·+ ck~xk,

then the solution to the equation can be written in closed form:

~x(t) = c1eλ1t~x1 + · · ·+ ckeλkt~xk,

This solution is easy to check by hand. That is, if we write the initial conditions of this differential
equation in terms of the eigenvectors of A, then we know its solution for all times t ≥ 0 for free.
Of course, this formula is not the end of the story for simulation: Finding the complete set of
eigenvectors of A is expensive, and A may change over time.

5.2 Spectral Embedding

Suppose we have a collection of n items in a dataset and a measure wij ≥ 0 of how similar each
pair of elements i and j are. For instance, maybe we are given a collection of photographs and use
wij to compare the similarity of their color distributions. We might wish to sort the photographs
based on their similarity to simplify viewing and exploring the collection.

One model for ordering the collection might be to assign a number xi for each item i, asking
that similar objects are assigned similar numbers. We can measure how well an assignment groups
similar objects by using the energy

E(~x) = ∑
ij

wij(xi − xj)
2.

That is, E(~x) asks that items i and j with high similarity scores wij get mapped to nearby values.
Of course, minimizing E(~x) with no constraints gives an obvious minimum: xi = const. for

all i. Adding a constraint ‖~x‖ = 1 does not remove this constant solution! In particular, taking
xi = 1/√n for all i gives ‖~x‖ = 1 and E(~x) = 0 in an uninteresting way. Thus, we must remove this
case as well:

minimize E(~x)

such that ‖~x‖2 = 1
~1 ·~x = 0

Notice that our second constraint asks that the sum of ~x is zero.
Once again we can simplify the energy:

E(~x) = ∑
ij

wij(xi − xj)
2

= ∑
ij

wij(x2
i − 2xixj + x2

j)

= ∑
i

aix2
i − 2 ∑

ij
wijxixj + ∑

j
bjx2

j

for ai ≡∑
j

wij and bj ≡∑
i

wij

= ~x>(A− 2W + B)~x where diag(A) =~a and diag(B) =~b

3

It is easy to check that~1 is an eigenvector of A− 2W + B with eigenvalue 0. More interestingly,
the eigenvector corresponding to the second-smallest eigenvalue corresponds to the solution of our
minimization objective above!

5.3 Properties of Eigenvectors

We have established a variety of applications in need of eigenspace computation. Before we can
explore algorithms for this purpose, however, we will more closely examine the structure of the
eigenvalue problem.

We can begin with a few definitions that likely are evident at this point:

Definition 5.1 (Eigenvalue and eigenvector). An eigenvector ~x 6= ~0 of a matrix A ∈ Rn×n is any
vector satisfying A~x = λ~x for some λ ∈ R; the corresponding λ is known as an eigenvalue. Complex
eigenvalues and eigenvectors satisfy the same relationships with λ ∈ C and ~x ∈ Cn.

Definition 5.2 (Spectrum and spectral radius). The spectrum of A is the set of eigenvalues of A. The
spectral radius ρ(A) is the eigenvalue λ maximizing |λ|.

The scale of an eigenvector is not important. In particular, scaling an eigenvector ~x by c yields
A(c~x) = cA~x = cλ~x = λ(c~x), so c~x is an eigenvector with the same eigenvalue. We often restrict
our search by adding a constraint ‖~x‖ = 1. Even this constraint does not completely relieve
ambiguity, since now ±~x are both eigenvectors with the same eigenvalue.

The algebraic properties of eigenvectors and eigenvalues easily could fill a book. We will limit
our discussion to a few important theorems that affect the design of numerical algorithms; we
will follow development of CITE AXLER. First, we should check that every matrix has at least
one eigenvector so that our search is not in vain. Our usual strategy is to notice that if λ is an
eigenvalue such that A~x = λ~x, then (A− λIn×n)~x = ~0; thus, λ is an eigenvalue exactly when the
matrix A− λIn×n is not full-rank.

Lemma 5.1 (CITE Theorem 2.1). Every matrix A ∈ Rn×n has at least one (complex) eigenvector.

Proof. Take any vector ~x ∈ Rn\{~0}. The set {~x, A~x, A2~x, · · · , An~x} must be linearly dependent
because it contains n + 1 vectors in n dimensions. So, there exist constants c0, . . . , cn ∈ R with
cn 6= 0 such that

~0 = c0~x + c1A~x + · · ·+ cn An~x.

We can write down a polynomial

f (z) = c0 + c1z + · · ·+ cnzn.

By the Fundamental Theorem of Algebra, there exist n roots zi ∈ C such that

f (z) = cn(z− z1)(z− z2) · · · (z− zn).

Then, we have:

~0 = c0~x + c1A~x + · · ·+ cn An~x
= (c0 In×n + c1A + · · ·+ cn An)~x
= cn(A− z1 In×n) · · · (A− zn In×n)~x by our factorization

Thus, at least one A − zi In×n has a null space, showing that there exists ~v with A~v = zi~v, as
needed.

4

There is one additional fact worth checking to motivate our discussion of eigenvector compu-
tation:

Lemma 5.2 (CITE Proposition 2.2). Eigenvectors corresponding to different eigenvalues must be linearly
independent.

Proof. Suppose this is not the case. Then there exist eigenvectors ~x1, · · · ,~xk with distinct eigenval-
ues λ1, · · · , λk that are linearly dependent. This implies that there are coefficients c1, . . . , ck not all
zero with~0 = c1~x1 + · · ·+ ck~xk. If we premultiply by the matrix (A− λ2 In×n) · · · (A− λk In×n), we
find:

~0 = (A− λ2 In×n) · · · (A− λk In×n)(c1~x1 + · · ·+ ck~xk)

= c1(λ1 − λ2) · · · (λ1 − λk) since A~xi = λi~xi

Since all the λi’s are distinct, this shows c1 = 0. A similar proof shows that the rest of the ci’s have
to be zero, contradicting linear dependence.

This lemma shows that an n× n matrix can have at most n distinct eigenvalues, since a set of n
eigenvalues yields n linearly independent vectors. The maximum number of linearly independent
eigenvectors corresponding to a single eigenvalue λ is known as the geometric multiplicity of λ.

It is not true, however, that a matrix has to have exactly n linearly independent eigenvectors.
This is the case for many matrices, which we will call nondefective:

Definition 5.3 (Nondefective). A matrix A ∈ Rn×n is nondefective or diagonalizable if its eigenvec-
tors span Rn.

We call such a matrix diagonalizable for the following reason: If a matrix is diagonalizable, then it
has n eigenvectors~x1, . . . ,~xn ∈ Rn with corresponding (possibly non-unique) eigenvalues λ1, . . . , λn.
Take the columns of X to be the vectors ~xi, and define D to be the diagonal matrix with eigenval-
ues λ1, . . . , λn along the diagonal. Then, by definition of eigenvalues we have AX = XD; this is
simply a “stacked” version of A~xi = λi~xi. In other words,

D = X−1AX,

meaning A is diagonalized by a similarity transformation A 7→ X−1AX :

Definition 5.4 (Similar matrices). Two matrices A and B are similar if there exists T with B = T−1AT.

Similar matrices have the same eigenvalues, since if B~x = λx, then T−1AT~x = λ~x. Equiva-
lently, A(T~x) = λ(T~x), showing T~x is an eigenvector with eigenvalue λ.

5.3.1 Symmetric and Positive Definite Matrices

Unsurprisingly given our special consideration of normal matrices A>A, symmetric and/or pos-
itive definite matrices enjoy special eigenvector structure. If we can verify either of these proper-
ties, specialized algorithms can be used to extract their eigenvectors more quickly.

First, we can prove a property of symmetric matrices that obliterates the need for complex
arithmetic. We begin by making a generalization of symmetric matrices to matrices in Cn×n:

Definition 5.5 (Complex conjugate). The complex conjugate of a number z ≡ a+ bi ∈ C is z̄ ≡ a− bi.

5

Definition 5.6 (Conjugate transpose). The conjugate transpose of A ∈ Cm×n is AH ≡ Ā>.

Definition 5.7 (Hermitian matrix). A matrix A ∈ Cn×n is Hermitian if A = AH.

Notice that a symmetric matrix A ∈ Rn×n is automatically Hermitian because it has no complex
part. With this slight generalization in place, we can prove a symmetry property for eigenvalues.
Our proof will make use of the dot product of vectors in Cn, given by

〈~x,~y〉 = ∑
i

xiȳi,

where ~x,~y ∈ Cn. Notice that once again this definition coincides with ~x ·~y when ~x,~y ∈ Rn. For the
most part, properties of this inner product coincide with those of the dot product on Rn, a notable
exception being that 〈~v, ~w〉 = 〈~w,~v〉.

Lemma 5.3. All eigenvalues of Hermitian matrices are real.

Proof. Suppose A ∈ Cn×n is Hermitian with A~x = λ~x. By scaling we can assume ‖~x‖2 = 〈~x,~x〉 =
1. Then, we have:

λ = λ〈~x,~x〉 since ~x has norm 1
= 〈λ~x,~x〉 by linearity of 〈·, ·〉
= 〈A~x,~x〉 since A~x = λ~x

= (A~x)>~̄x by definition of 〈·, ·〉
= ~x>(Ā>~x) by expanding the product and using ab = āb̄

= 〈~x, AH~x〉 by definition of AH and 〈·, ·〉
= 〈~x, A~x〉 since A = AH

= λ̄〈~x,~x〉 since A~x = λ~x
= λ̄ since ~x has norm 1

Thus λ = λ̄, which can happen only if λ ∈ R, as needed.

Symmetric and Hermitian matrices also enjoy a special orthogonality property for their eigenvec-
tors:

Lemma 5.4. Eigenvectors corresponding to distinct eigenvalues of Hermitian matrices must be orthogonal.

Proof. Suppose A ∈ Cn×n is Hermitian, and suppose λ 6= µ with A~x = λ~x and A~y = µ~y. By the
previous lemma we know λ, µ ∈ R. Then, 〈A~x,~y〉 = λ〈~x,~y〉. But since A is Hermitian we can also
write 〈A~x,~y〉 = 〈~x, AH~y〉 = 〈~x, A~y〉 = µ〈~x,~y〉. Thus, λ〈~x,~y〉 = µ〈~x,~y〉. Since λ 6= µ, we must have
〈~x,~y〉 = 0.

Finally, we can state without proof a crowning result of linear algebra, the Spectral Theorem.
This theorem states that no symmetric or Hermitian matrix can be defective, meaning that an n× n
matrix satisfying this property has exactly n orthogonal eigenvectors.

Theorem 5.1 (Spectral Theorem). Suppose A ∈ Cn×n is Hermitian (if A ∈ Rn×n, suppose it is sym-
metric). Then, A has exactly n orthonormal eigenvectors ~x1, · · · ,~xn with (possibly repeated) eigenvalues
λ1, . . . , λn . In other words, there exists an orthonormal matrix X of eigenvectors and diagonal matrix D of
eigenvalues such that D = X>AX.

6

This theorem implies that any vector ~y ∈ Rn can be decomposed into a linear combination of the
eigenvectors of a Hermitian matrix A. Many calculations are easier in this basis, as shown below:

Example 5.1 (Computation using eigenvectors). Take ~x1, . . . ,~xn ∈ Rn to be the unit-length eigenvec-
tors of symmetric matrix A ∈ Rn×n. Suppose we wish to solve A~y =~b. We can write

~b = c1~x1 + · · ·+ cn~xn,

where ci =~b ·~xi by orthonormality. It is easy to guess the following solution:

~y =
c1

λ1
~x1 + · · ·+

cn

λn
~xn.

In particular, we find:

A~y = A
(

c1

λ1
~x1 + · · ·+

cn

λn
~xn

)
=

c1

λ1
A~x1 + · · ·+

cn

λn
A~xn

= c1~x1 + · · ·+ cn~xn

=~b, as desired.

The calculation above is both a positive and negative result. It shows that given the eigenvectors
of symmetric A, operations like inversion are straightforward. On the flip side, this means that
finding the full set of eigenvectors of a symmetric matrix A is “at least” as difficult as solving
A~x =~b.

Returning from our foray into the complex numbers, we return to real numbers to prove one
final useful if straightforward fact about positive definite matrices:

Lemma 5.5. All eigenvalues of positive definite matrices are nonnegative.

Proof. Take A ∈ Rn×n positive definite, and suppose A~x = λ~x with ‖~x‖ = 1. By positive definite-
ness, we know ~x>A~x ≥ 0. But, ~x>A~x = ~x>(λ~x) = λ‖~x‖2 = λ, as needed.

5.3.2 Specialized Properties1

Characteristic Polynomial

Recall that the determinant of a matrix det A satisfies the relationship that det A 6= 0 if and only
if A is invertible. Thus, one way to find eigenvalues of a matrix is to find roots of the characteristic
polynomial

pA(λ) = det(A− λIn×n).

We will not define determinants in our discussion here, but simplifying pA reveals that it is an
n-th degree polynomial in λ. This provides an alternative reason why there are at most n distinct
eigenvalues, since there are at most n roots of this function.

From this construction, we can define the algebraic multiplicity of an eigenvalue as its multiplic-
ity as a root of pA. It is easy to see that the algebraic multiplicity is at least as large as the geometric

1This section can be skipped if readers lack sufficient background but is included for completeness.

7

multiplicity. If the algebraic multiplicity is 1, the root is called simple, because it corresponds to a
single eigenvector that is linearly dependent with any others. Eigenvalues for which the algebraic
and geometric multiplicities are not equal are called defective.

In numerical analysis we avoid discussing the determinant of a matrix. While it is a convenient
theoretical construction, its practical use is limited. Determinants are difficult to compute. In fact,
eigenvalue algorithms do not attempt to find roots of pA since doing so would require evaluation
of a determinant. Furthermore, the determinant det A has nothing to do with the conditioning of
A, so near-zero determinant of det(A− λIn×n) might not show that λ is nearly an eigenvalue of
A.

Jordan Normal Form

We can only diagonalize a matrix when it has a full eigenspace. All matrices, however, are similar
to a matrix in Jordan normal form, which has the following form:

• Nonzero values are on the diagonal entries aii and on the “superdiagonal” ai(i+1).

• Diagonal values are eigenvalues repeated as many times as their multiplicity; the matrix is
block diagonal about these clusters.

• Off-diagonal values are 1 or 0.

Thus, the shape looks something like the following

λ1 1
λ1 1

λ1
λ2 1

λ2
λ3

. . .


Jordan normal form is attractive theoretically because it always exists, but the 1/0 structure is
discrete and unstable under numerical perturbation.

5.4 Computing Eigenvalues

The computation and estimation of the eigenvalues of a matrix is a well-studied problem with
many potential solutions. Each solution is tuned for a different situation, and achieving maximum
conditioning or speed requires experimentation with several techniques. Here, we cover a few of
the most popular and straightforward solutions to the eigenvalue problem frequently encountered
in practice.

5.4.1 Power Iteration

For now, suppose that A ∈ Rn×n is symmetric. Then, by the spectral theorem we can write
eigenvectors ~x1, . . . ,~xn ∈ Rn; we sort them such that their corresponding eigenvalues satisfy
|λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

8

Suppose we take an arbitrary vector ~v. Since the eigenvectors of A span Rn, we can write:

~v = c1~x1 + · · ·+ cn~xn.

Then,

A~v = c1A~x1 + · · ·+ cn A~xn

= c1λ1~x1 + · · ·+ cnλn~xn since A~xi = λi~xi

= λ1

(
c1~x1 +

λ2

λ1
c2~x2 + · · ·+

λn

λ1
cn~xn

)
A2~v = λ2

1

(
c1~x1 +

(
λ2

λ1

)2

c2~x2 + · · ·+
(

λn

λ1

)2

cn~xn

)
...

Ak~v = λk
1

(
c1~x1 +

(
λ2

λ1

)k

c2~x2 + · · ·+
(

λn

λ1

)k

cn~xn

)

Notice that as k → ∞, the ratio (λi/λ1)k → 0 unless λi = λ1, since λ1 has the largest magnitude of
any eigenvalue by definition. Thus, if ~x is the projection of ~v onto the space of eigenvectors with
eigenvalues λ1, then as k→ ∞ the following approximation holds more and more exactly:

Ak~v ≈ λk
1~x.

This observation leads to an exceedingly simple algorithm for computing an eigenvector ~x of
A corresponding to the largest eigenvalue λ1:

1. Take ~v1 ∈ Rn to be an arbitrary nonzero vector.

2. Iterate until convergence for increasing k:

~vk = A~vk−1

This algorithm, known as power iteration, will produce vectors ~vk more and more parallel to the
desired ~x1. It is guaranteed to converge, even when A is asymmetric, although the proof of this
fact is more involved than the derivation above. The one time that this technique may fail is if we
accidentally choose ~v1 such that c1 = 0, but the odds of this occurring are slim to none.

Of course , if |λ1| > 1, then ‖~vk‖ → ∞ as k → ∞, an undesirable property for floating point
arithmetic. Recall that we only care about the direction of the eigenvector rather than its magnitude,
so scaling has no effect on the quality of our solution. Thus, to avoid this divergence situation we
can simply normalize at each step, producing the normalized power iteration algorithm:

1. Take ~v1 ∈ Rn to be an arbitrary nonzero vector.

2. Iterate until convergence for increasing k:

~wk = A~vk−1

~vk =
~wk

‖~wk‖

9

Notice that we did not decorate the norm ‖ · ‖ with a particular subscript. Mathematically, any
norm will suffice for preventing the divergence issue, since we have shown that all norms on Rn

are equivalent. In practice, we often use the infinity norm ‖ · ‖∞; in this case it is easy to check that
‖~wk‖ → |λ1|.

5.4.2 Inverse Iteration

We now have a strategy for finding the largest-magnitude eigenvalue λ1. Suppose A is invertible,
so that we can evaluate ~y = A−1~v by solving A~y = ~v using techniques covered in previous
chapters.

If A~x = λ~x, then ~x = λA−1~x, or equivalently

A−1~x =
1
λ
~x.

Thus, we have shown that 1/λ is an eigenvalue of A−1 with eigenvector ~x. Notice that if |a| ≥ |b|
then |b|−1 ≥ |a|−1 for any a, b ∈ R, so the smallest-magnitude eigenvalue of A is the largest-
magnitude eigenvector of A−1. This observation yields a strategy for finding λn rather than λ1
called inverse power iteration:

1. Take ~v1 ∈ Rn to be an arbitrary nonzero vector.

2. Iterate until convergence for increasing k:

(a) Solve for ~wk: A~wk = ~vk−1

(b) Normalize: ~vk =
~wk
‖~wk‖

We repeatedly are solving systems of equations using the same matrix A, which is a perfect
application of factorization techniques from previous chapters. For instance, if we write A = LU,
then we could formulate an equivalent but considerably more efficient version of inverse power
iteration:

1. Factor A = LU

2. Take ~v1 ∈ Rn to be an arbitrary nonzero vector.

3. Iterate until convergence for increasing k:

(a) Solve for ~yk by forward substitution: L~yk = ~vk−1

(b) Solve for ~wk by back substitution: U~wk = ~yk

(c) Normalize: ~vk =
~wk
‖~wk‖

5.4.3 Shifting

Suppose λ2 is the eigenvalue with second-largest magnitude of A. Given our original derivation
of power iteration, it is easy to see that power iteration converges fastest when |λ2/λ1| is small,
since in this case the power (λ2/λ1)k decays quickly. Contrastingly, if this ratio is nearly 1 it may
take many iterations of power iteration before a single eigenvector is isolated.

10

If the eigenvalues of A are λ1, . . . , λn, then it is easy to see that the eigenvalues of A− σIn×n are
λ1 − σ, . . . , λn − σ. Then, one strategy for making power iteration converge quickly is to choose σ
such that: ∣∣∣∣λ2 − σ

λ1 − σ

∣∣∣∣ < ∣∣∣∣λ2

λ1

∣∣∣∣ .

Of course, guessing such a σ can be in art, since the eigenvalues of A obviously are not known
initially. Similarly, if we think that σ is near an eigenvalue of A, then A− σIn×n has an eigenvalue
close to 0 that we can reveal by inverse iteration.

One strategy that makes use of this observation is known as Rayleigh quotient iteration. If we
have a fixed guess at an eigenvector ~x of A, then by NUMBER the least-squares approximation of
the corresponding eigenvalue σ is given by

σ ≈ ~x>A~x
‖~x‖2

2
.

This fraction is known as a Rayleigh quotient. Thus, we can attempt to increase convergence by
iterating as follows:

1. Take ~v1 ∈ Rn to be an arbitrary nonzero vector or initial guess of an eigenvector.

2. Iterate until convergence for increasing k:

(a) Write the current estimate of the eigenvalue

σk =
~v>k−1A~vk−1

‖~vk−1‖2
2

(b) Solve for ~wk: (A− σk In×n)~wk = ~vk−1

(c) Normalize: ~vk =
~wk
‖~wk‖

This strategy converges much faster given a good starting guess, but the matrix A − σk In×n is
different each iteration and cannot be prefactored using LU or most other strategies. Thus, fewer
iterations are necessary but each iteration takes more time!

5.4.4 Finding Multiple Eigenvalues

So far, we have described techniques for finding a single eigenvalue/eigenvector pair: power it-
eration to find the largest eigenvalue, inverse iteration to find the smallest, and shifting to target
values in between. Of course, for many applications a single eigenvalue will not suffice. Thank-
fully we can extend our strategies to handle this case as well.

Deflation

Recall our power iteration strategy: Choose an arbitrary ~v1, and iteratively multiply it by A until
only the largest eigenvalue λ1 survives. Take ~x1 to be the corresponding eigenvector.

We were quick to dismiss an unlikely failure mode of this algorithm, however, when~v1 ·~x1 = 0.
In this case, no matter how many times you premultiply by A you will never recover a vector

11

parallel to ~x1, since you cannot amplify a zero component. The probability of choosing such a ~v1
is exactly zero, so in all but the most pernicious of cases power iteration remains safe.

We can turn this drawback on its head to formulate a strategy for finding more than one eigen-
value. Suppose we find ~x1 and λ1 via power iteration as before. Now, we restart power iteration,
but before beginning project ~x1 out of ~v1. Then, power iteration will recover the second-largest
eigenvalue!

Due to numerical issues, it may be the case that applying A to a vector introduces a small
component parallel to ~x1. In practice we can avoid this effect by projecting in each iteration. In
the end, this strategy yields the following algorithm for computing the eigenvalues in order of
descending magnitude:

• For each desired eigenvalue ` = 1, 2, . . .

1. Take ~v1 ∈ Rn to be an arbitrary nonzero vector.

2. Iterate until convergence for increasing k:

(a) Project out the eigenvectors we already have computed:

~uk = ~vk−1 − projspan{~x1,...,~x`−1}~vk−1

(b) Multiply A~uk = ~wk

(c) Normalize: ~vk =
~wk
‖~wk‖

3. Add the result of iteration to the set of ~xi’s

The inner loop is equivalent to power iteration on the matrix AP, where P projects out~x1, . . . ,~x`−1.
It is easy to see that AP has the same eigenvectors as A; its eigenvalues are λ`, . . . , λn with the
remaining eigenvalues taken to zero.

More generally, the strategy of deflation involves modifying the matrix A so that power itera-
tion reveals an eigenvector you have not yet computed. For instance, AP is a modification of A
so that the large eigenvalues we already have computed are zeroed out. Other deflation strategies
make use of Householder transformations and other projections for removing subspaces.

QR Iteration

Krylov Subspace Methods

5.5 Sensitivity and Conditioning

5.6 Problems

12

	Eigenvectors
	Motivation
	Statistics
	Differential Equations

	Spectral Embedding
	Properties of Eigenvectors
	Symmetric and Positive Definite Matrices
	Specialized PropertiesThis section can be skipped if readers lack sufficient background but is included for completeness.

	Computing Eigenvalues
	Power Iteration
	Inverse Iteration
	Shifting
	Finding Multiple Eigenvalues

	Sensitivity and Conditioning
	Problems

