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Figure 1: We present an interactive approach to functional map computation that finds smooth maps between semantically similar but
geometrically different shapes. The user prescribes corresponding feature curves, which can be computed automatically from their endpoints
(bottom row). We incorporate feature curve preservation into functional map computation and show that descriptors are no longer required.
We subsequently obtain point correspondences from the curve-based functional map using [ESBC18] (top row).

Abstract

Functional maps have gained popularity as a versatile framework for representing intrinsic correspondence between 3D shapes
using algebraic machinery. A key ingredient for this framework is the ability to find pairs of corresponding functions (typically,
feature descriptors) across the shapes. This is a challenging problem on its own, and when the shapes are strongly non-isometric,
nearly impossible to solve automatically. In this paper, we use feature curve correspondences to provide flexible abstractions
of semantically similar parts of non-isometric shapes. We design a user interface implementing an interactive process for
constructing shape correspondence, allowing the user to update the functional map at interactive rates by introducing feature
curve correspondences. We add feature curve preservation constraints to the functional map framework and propose an efficient
numerical method to optimize the map with immediate feedback. Experimental results show that our approach establishes
correspondences between geometrically diverse shapes with just a few clicks.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computer graphics—Computational
Geometry and Object Modeling

1. Introduction

Three-dimensional shape correspondence is essential to geometry
processing, serving as a basic component of algorithms for statis-

tical shape analysis, texture transfer, shape interpolation, and other
tasks. Correspondence tools enable transfer of information from
one shape to another, usually guided by geometric and semantic

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



Gehre, Bronstein, Kobbelt, & Solomon / Interactive Curve Constrained Functional Maps

cues suggesting which features on one shape should be matched to
features on another.

Solving the correspondence problem directly for a point-
to-point map, however, is difficult to pose and often
leads to computationally-intensive algorithms. Functional
maps [OBCS∗12] provide an efficient alternative structure to relate
shapes. Rather than matching points directly, functional maps
transport functions, represented in a low-dimensional basis on the
two shapes. The operators transporting functions from one shape
to another are linear, leading to fast algorithms for computing
functional maps using linear algebra and convex optimization.

Most functional map algorithms rely strongly on the ability
to provide pairs of corresponding descriptor functions over the
two shapes. For this reason, they are based on the assumption
that functions e.g. local point signatures, which are computed in-
dependently on both shapes, are comparable. Reliance on high-
quality descriptors becomes a key limitation in difficult correspon-
dence settings: functional maps are effective for shapes for which
it is straightforward to extract pairs of matching descriptors—e.g.
nearly-isometric surfaces—and otherwise can become unreliable.

When shapes vary significantly, the assumption that point signa-
tures or segmentations can be matched breaks down. In this regime,
automatically-computed descriptors can be misleading for map
computation and can give unsatisfying results. Finding a match-
ing set of descriptors for a given pair of shapes becomes tedious
and nearly as difficult as the correspondence problem itself. Algo-
rithms designed to handle this scenario often iteratively recompute
the map, adjust pointwise signatures, or add constraints that make
the problem difficult to solve efficiently. Recent attempts at con-
structing descriptors with deep learning [LRR∗17] show promising
results but require a training set of shapes with known correspon-
dences, which is not always available.

In this paper, we compute functional maps between extremely
non-isometric shapes by incorporating curve constraints in an in-
teractive feedback loop; these constraints disambiguate poor or
misleading geometric cues without incurring significant computa-
tional cost. Our technique is based on the observation that seman-
tically similar shapes can be abstracted by feature curve networks,
in which corresponding feature curves describe related parts. This
representation is extremely flexible, since the shape of the curve
along the geometry as well as its length suggest how the shapes
relate without imposing hard isolated point constraints.

We develop a graphical user interface, allowing to interactively
and iteratively build and refine the correspondence between a pair
of shapes. In our system, the user provides sparse input indicating
the shapes or start- and end-points of matching feature curves along
two surfaces. This input is simple and can be provided by non-
experts; furthermore, the intermediate connectivity of the curves
can be constructed automatically. Behind the scenes, we incorpo-
rate feature curve constraints into the functional map optimization
problem and are able to update the map using an efficient iterative
algorithm to provide interactive feedback to the user. We demon-
strate that high-quality functional maps can be created using only
feature curve constraints (resulting from just a few user clicks), re-
moving the reliance on computation of point signatures.

1.1. Contributions

Our contributions can be summarized as follows:

• We present an interactive method to compute functional maps
based on feature curve correspondences.

• For the computation of the functional maps, we propose
descriptor-free feature curve constraints and demonstrate that
they are sufficient to extract a high-quality map.

• We present a conjugate gradients optimization procedure to up-
date the functional map efficiently.

• To show the effectiveness of our method, we use our maps to
compute point correspondences and evaluate quality by perform-
ing correspondence accuracy tests.

2. Related Work

There is a vast amount of research on nonrigid shape matching;
see e.g. [VKZHCO11] for a broad survey. Here, we focus on those
techniques most comparable or relevant to our approach.

Point signatures. A classical approach for finding correspon-
dences between shapes involves constructing a local descriptor
(point signature) at each point and then matching points with the
most similar descriptors. Also region correspondences [GSTOG16]
can be found by analyzing the rank of descriptor values. Somewhat
ad hoc but often effective techniques for designing shape descrip-
tors include constructions like collecting histograms of orientations
or curvature values within a fixed radius around points of interest;
see [STDS14, LWWS15] for recent examples.

In applications involving deformable shapes, many modern tech-
niques are designed to be invariant to isometric deformations.
A large variety of isometry-invariant descriptors is based on in-
trinsic constructions such as geodesic distances [LGB∗13], lo-
cal polar coordinates [KBLB12], or eigenvectors and eigenvalues
of the Laplace-Beltrami operator [Rus07, SOG09, BK10, ASC11,
OMMG10]. Among spectral techniques, the heat kernel signature
(HKS) [SOG09], measuring heat auto-diffusion of each point of
the shape, and the wave kernel signature (WKS) measuring the
evolution of a quantum particle on the surface [ASC11] are espe-
cially popular. Modifications of these descriptors incorporate scale-
invariance [BK10], learning [LB14], and anisotropy [BMR∗16].

Most recently, intrinsic versions of convolutional neural net-
works (CNNs) automatically learn descriptors from collections
of shapes with annotated correspondences [MBBV15, BMRB16].
Such methods can be superior to handcrafted features but require a
large training set of corresponding shapes.

Curve networks. In this paper, we use feature curve networks
(FCNs) to provide hints about significant parts of a shape and
its underlying structure. Feature curves are relatively well-studied
in computer graphics and geometry processing with a number
of approaches for their extraction. Classical approaches include
finding curvature extrema [WB01], tracing ridges and ravines
[HPW05] and crest lines [YBS05], and constructing the feature
skeleton [WG09]. Denoising methods from FCNs were proposed
in [GLK18]. For an in-depth overview of FCN detection methods,
we refer the reader to [LZH∗07, DVVR07].
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Functional maps. Traditional methods for shape correspondence
rely on a point-to-point map representation. Working with such rep-
resentation often leads to algorithms with high computational com-
plexity. Instead, functional maps [OBCS∗12] model correspon-
dences as operators between functional spaces. These operators can
be efficiently expressed with respect to bases for function spaces on
the shapes; typically, the orthogonal Laplace–Beltrami eigenbases
are used. In the simplest setting, functional map computation boils
down to a least-squares problem for the map representation coef-
ficients that best preserve a collection of descriptors [OBCS∗12].
These descriptors include point signatures as well as segment or
point correspondences encoded e.g. using wave kernel maps with
fixed source points/regions.

Functional maps can be improved by introducing various priors.
[KBB∗13, EKB∗15] use joint diagonalization to develop compati-
ble bases on the two surfaces in the near-isometric case. [PBB∗13]
use ideas from sparse recovery to improve the functional mapping
pipeline and associated bases. [ERGB16] use coupled functional
maps to obtain consistent mappings from the source to the tar-
get shape and vice versa. Also, partial functional maps [RCB∗17]
to overcome the problem of missing data in case a full scan of
the source or target is not provided. [HWG14] extend to col-
lections of more than two shapes, computing consistent maps in
shape collections. Finally, descriptor preservation can be improved
by promoting commutativity with pointwise multiplication opera-
tors [NO17] and by approximately preserving of products of func-
tions [NMR∗18].

The applicability of the framework is heavily restricted by the
need for compatible descriptors across shapes, which practically
limits the technique to nearly-isometric shapes. When the geometry
differs and the point signatures do not reliably match, it is hard to
find accurate maps automatically.

While map computation is easier in the functional maps frame-
work (a linear system as opposed to a combinatorial problem), the
resulting map does not take points to points. Conversion of func-
tional maps into point-wise maps while preserving geometric prop-
erties like bijectivity or smoothness is a challenging problem that
continues to be studied. In [OBCS∗12], this conversion is done
by searching nearest neighbors or by an ICP-type rigid alignment
in the target shape basis. Recent alternatives include methods for
functional maps denoising [EBC17], kernel density estimation on
the product of the two shapes [VLR∗17], and alternating diffu-
sion/sharpening [B∗17]. Finally, recent work [ESBC18] achieves
the best results in our experiments by optimizing for a nearly-
harmonic map which is reversible with geodesic consistency.

3. Background

Given a pair of shapes (modeled as surfaces M and N), correspon-
dence algorithms seek a map τ : M→ N that preserves some struc-
ture, e.g. a pointwise geometric quantity like curvature or a seg-
mentation into semantically-meaningful parts. Additional proper-
ties can be imposed on τ, e.g. bijectivity or smoothness. Two classes
of relationships between M and N distinguish settings of the corre-
spondence problem:

Geometric similarity: When M and N are nearly isometric, the

desired correspondence preserves the metric as well as intrinsic
structures like geodesic distances and Laplacian spectra. The isom-
etry assumption is used widely in nonrigid correspondence, since it
holds approximately for inelastic and articulated deformation. Cor-
respondence quality in this setting can be quantified by measuring
intrinsic distortion, giving a natural objective function for corre-
spondence algorithms.

Semantic similarity: More generally, shapes are not necessarily
isometric but rather have semantically corresponding structures that
should be preserved by the map τ. For example, dogs and cats are
quadrupeds; a meaningful correspondence would map legs to legs,
the tail to tail, and so on. This notion of similarity is less precise and
can be hard to quantify; correspondence is often guided by aesthetic
considerations and may need manual user annotation.

Functional maps. The key idea of functional maps is to replace
pointwise correspondences τ : M→ N with operators T : L2(M)→
L2(N). The former is a particular setting of the latter when τ is bi-
jective, since one can define Tτ f = f ◦ τ

−1. T , however, is of inter-
est independently, admitting a matrix representation with respect
to (usually orthogonal) bases {φi}i≥1 ⊆ L2(M) and {ψ j} j≥1 ⊆
L2(N) taking the coefficients of a function f in the φi basis on M to
those of T f in the ψ j basis on N.

It is common to use the eigenfunctions of the Laplace–Beltrami
operator ∆Mφi = λiφi as an orthogonal basis for L2(M) (respec-
tively, L2(N)); here, 0 = λ1 ≤ λ2 ≤ . . . denote the corresponding
eigenvalues. After truncating the correspondence matrix to the first
k coefficients in the two bases, the functional map is represented
by a k×k matrix C = (ci j). Unless otherwise noted, henceforth we
will assume functional maps are written in the Laplace–Beltrami
basis.

Given a set of q≥ k corresponding functions f1, . . . , fq ∈ L2(M)
and g1, . . . ,gq ∈ L2(N) such that T fi ≈ gi, it is possible to recover
C by solving the linear system of equations

CF̂ = Ĝ,

where F̂ = (〈 fi,φ j〉L2(M))
> and Ĝ = (〈gi,ψ j〉L2(N))

> are k ×
q matrices containing as columns the coefficients of the func-
tions fi and gi in the Laplace–Beltrami eigenbases. If the map is
area-preserving, it can be shown to commute with the Laplace–
Beltrami operator, resulting in additional constraints CΛΛΛM = ΛΛΛNC
[OBCS∗12], with ΛΛΛ = diag(λ1, . . . ,λk).

In the discrete setting, manifolds M and N are discretized as
triangular meshes with m and n vertices vi, respectively. Func-
tions on M can be identified with m-dimensional column vec-
tors f = ( f (v1), . . . , f (vm))

>, and inner products are written as
f>AMg, where AM = diag(a1, . . . ,am) is the diagonal matrix of lo-
cal area elements. The (truncated) Laplace–Beltrami operators as-
sume the form ∆∆∆M ≈ ΦΦΦΛΛΛMΦΦΦ

>AM and ∆∆∆N ≈ ΨΨΨΛΛΛNΨΨΨ
>AN , where

ΦΦΦ = (φφφ1, . . . ,φφφk) and ΨΨΨ = (ψψψ1, . . . ,ψψψk) contain the eigenvectors.
Fourier decomposition can be written in matrix-vector form as
F̂ = ΦΦΦ

>ANF and Ĝ = ΨΨΨ
>AMG, where matrices F and G of size

m× q and n× q, respectively contain descriptors as columns. The
functional map is discretized as an n×m matrix T, and its repre-
sentation in the truncated basis can be considered as a k-rank ap-
proximation: T≈ΨΨΨCΦΦΦ

>AM .
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The crucial part of of the functional maps framework is the re-
quirement to provide pairs of corresponding functions. Automati-
cally constructing such functions, by computing local descriptors,
is often practically limited to the near-isometric setting. When these
strong geometric assumptions are violated, it is difficult to detect
similar structures automatically. In this paper, we instead lever-
age sparse user guidance to provide semantic information; we will
demonstrate cases in which a meaningful smooth map can be ex-
tracted between shapes even if their intrinsic geometric structures
differ considerably.

4. Interactive Functional Maps

We propose incorporating human interaction into the correspon-
dence process, allowing for efficient interactive functional map de-
sign. Several desiderata inform our design:

• INPUT: The user should be provided with a simple, fast, and ef-
fective method to input semantic information. For this purpose,
we use ordered curve networks that are computed automatically
from user-provided endpoints; effectively, this reduces the user
input to a few mouse clicks.
• OUTPUT: The feedback to the user should be given in a way that

he or she can assess the map quality and edit the set of feature
curves accordingly.
• SPEED: The functional map computation and display of the feed-

back to the user must be provided at interactive rates.

Curve networks. The input provided by the user is in the form
of a set of q corresponding curves on M and N, which we denote
by γ1, . . . ,γq and η1, . . . ,ηq, respectively. Since drawing curves on
surfaces is challenging, the user is requested to provide only the
endpoints of the curves, which are connected automatically.We use
Dijkstra’s shortest path algorithm along mesh edges to connect the
endpoints, with two options for weights:

• GEODESIC DISTANCE: The weight for an edge e= (p1, p2) is its
length in R3, providing an approximation of a geodesic curve.
• ANISOTROPIC DISTANCE: The weight for an edge e is biased

to prefer ridge and valley curves by incorporating the curvature
tensor as in [CHK13].

For simplicity, our segments coincide with triangle edges. Our
method, however, extends easily to the general case, simply requir-
ing a generalized definition of the restriction operators below; we
found that the increased precision from this more complex compu-
tation was negligible.

Functional maps with curve constraints. Let γ : [0,1]→ M and
η : [0,1]→ N be two corresponding curves on M and N. Denote by
PM

γ : L2(M)→ L2([0,1]) the restriction operator taking a function
on M and outputting its values along the curve γ, defined as PM

γ f =
f ◦ γ. Then, the fact that γ and η correspond can be expressed as

PM
γ f = PN

η T f , (1)

for any function f ∈ L2(M). In particular, applying (1) to the basis
functions themselves, we get

PM
γ φi
²̄

φ
γ

i

= PN
η

k

∑
`=1

c`iψ` =
k

∑
`=1

c`i PN
η ψ`
²̄

ψ
η

`

, (2)

which can be thought of as the restriction of the functional map to
the curve.

In the discrete setting, we assume that the curves are uniformly
sampled at s samples. Then, the restriction operators can be repre-
sented as sparse s×m and s×n matrices PM

γ and PN
η , respectively.

Equation (2) can be rewritten in matrix form as

PM
γ ΦΦΦ = PN

η ΨΨΨC (3)

Φ̄ΦΦ
γ
= Ψ̄ΨΨ

ηC, (4)

where Φ̄ΦΦ
γ and Ψ̄ΨΨ

η are s×k matrices representing the basis functions
restricted to the respective curves.

Given a collection of q corresponding curves γ1, . . . ,γq and
η1, . . . ,ηq, we apply the constraint (3) in the form of a penalty to-
gether with the commutativity penalty, to find the functional map
matrix C minimizing the energy

E(C) = α‖CΛΛΛM−ΛΛΛNC‖2
F +

q

∑
`=1
‖Ψ̄ΨΨ`C− Φ̄ΦΦ`‖2

F, (5)

where Φ̄ΦΦ` = Φ̄ΦΦ
γ` and Ψ̄ΨΨ` = Ψ̄ΨΨ

η` .

Iterative update. To give immediate feedback to the user after
adding, deleting, or updating a curve, we present an efficient tech-
nique to update the functional map with a new objective term in (5).
Each user input updates the second (data) term of the energy E(C).
Since this is a least-squares problem, implicitly we need to solve a
linear system Hx = b in each iteration (here x is the k2-dimensional
vectorized form of the k×k functional map matrix C), which has a
complexity of O(k6) for a dense H ∈ Rk2×k2

.

Since we can reuse previous map estimates as initial guesses,
in our implementation iterative solvers converge quickly and lead
to a performance improvement over direct solvers. Our linear sys-
tem is guaranteed to be positive-definite since it comes from a
least-squares problem. Hence, we formulate an efficient optimiza-
tion procedure adapting the conjugate gradients (CG) algorithm for
positive definite systems.

The conjugate gradients algorithm finds minima of convex func-
tions of the form f (x) = 1

2 x>Hx−x>b+c [HS52,Sol15]; the first-
order optimality condition is the linear system ∇ f (x) = Hx−b =
0. It requires multiplication by the positive-definite matrix H (the
linear part of ∇ f ) as well as access to the elements of b (the con-
stant part of ∇ f ); it does not require direct access to elements of
H.

In our case, computing the matrix derivative of E(C) with respect
to C yields the gradient in the canonical form

∇CE(C) =−2
q

∑
`=1

Ψ̄ΨΨ
>
` Φ̄ΦΦ`

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

+2α

(
ΛΛΛ

2
NC−ΛΛΛMCΛΛΛN −ΛΛΛNCΛΛΛM +CΛΛΛ

2
M

)
+2

q

∑
`=1

Ψ̄ΨΨ
>
` Ψ̄ΨΨ`C

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
H(C)

where H(C) and B denote the linear and constant terms, respec-
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Figure 2: Iterations in the user interface. From left to right the user adds more feature curve correspondences to improve the quality of the
functional map. The texture is updated after new curves are included by transporting per-vertex texture coordinates with the functional map.

Figure 3: Corresponding feature curves (red) on a set of cups with
texture coordinates mapped by the functional map. The left object
is the source shape while the other shapes are target meshes.

Algorithm 1 Interactive Functional Maps
1: function INTERACTIVE FUNCTIONAL MAPS(ΛΛΛM , ΛΛΛN , α)
2: T1← 2αΛΛΛ

2
N

3: T2← 2αΛΛΛ
2
M

4: B ← 0
5: initialize C
6: while user inputs a pair of curves γin, ηin do
7: Φ̄ΦΦin← PM

γin ΦΦΦ

8: Ψ̄ΨΨin← PN
ηin ΨΨΨ

9: T1← T1 +2nsΨ̄ΨΨ
>
in Ψ̄ΨΨin

10: B ← B+2Ψ̄ΨΨ
>
in Φ̄ΦΦin

11: C← CONJ GRAD(C, ΛΛΛM , ΛΛΛN , α, T1, T2, B)

tively, and we used the fact that ΛΛΛM ,ΛΛΛN are diagonal to simplify
expressions.

A new curve provided by the user adds the (q + 1)-st terms
Ψ̄ΨΨ
>
q+1Ψ̄ΨΨq+1C and Ψ̄ΨΨ

>
q+1Φ̄ΦΦq+1 to the summations in H(C) and B,

respectively. Furthermore, the q matrix products Ψ̄ΨΨ
>
` Ψ̄ΨΨ` and Ψ̄ΨΨ

>
` Φ̄ΦΦ`

of size k× k can be precomputed as they do not change in a typical
workflow in which the user adds curves. With these observations,
we can formulate the conjugate gradients algorithm to find the opti-
mal functional map matrix C. Algorithm 1 describes the interactive
update procedure discussed above. The conjugate gradients algo-
rithm is elaborated in Algorithm 2.

User feedback. After updating the functional map, the user needs
to be able to assess the quality of the resulting map. Unfortunately,
conversion into a pointwise map of sufficient quality is not possible
at interactive rates using the current available methods (in particu-

Algorithm 2 Conjugate Gradients
1: function CONJ GRAD(C, ΛΛΛM , ΛΛΛN , α, T1, T2, B)
2: R1← B - H(C, T1, T2, ΛΛΛM , ΛΛΛN , α)
3: P1← R1
4: γ1← ∑i j(R1�R1)i j
5: for k← 1 . . .niter do
6: αk←

γk

∑i j(Pk�H( Ck, T1, T2, ΛΛΛM , ΛΛΛN , α ))i j
7: Ck+1← Ck +αk ·Pk
8: Rk+1← Rk−αk·H(Pk, T1, T2, ΛΛΛM , ΛΛΛN , α )
9: γk+1← ∑i j(Rk+1�Rk+1)i j

10: if γk+1 ≤ 10−6 then return Ck+1
11: else
12: βk =

γk+1
γk

13: Pk+1← Rk+1 +βk ·Pk

14: return Cn

15: function H(C, T1, T2, ΛΛΛM , ΛΛΛN , α)
16: return T1C+CT2−α(ΛΛΛMCΛΛΛN +ΛΛΛNCΛΛΛM)

lar, the method of [ESBC18] that we use in our system). It is possi-
ble, however, to visualize the functional map by directly transport-
ing texture mapping coordinates from the source shape M to the
target shape N.

We assume that the source shape M has associated texture map-
ping coordinates represented as a vector-valued function (u,v) :
M→ [0,1]2 on the manifold. In the discrete setting, texture map-
ping coordinates are represented as an m×2 matrix U. Application
of the functional map is performed by first computing the repre-
sentation in the Laplace basis of the texture mapping coordinates
on M, applying the matrix C to the obtained coefficients, and then
reconstructing them on the manifold N:

TU = ΨΨΨCΦΦΦ
>AMU.

This operation is cheap and can be performed at interactive rates.

Visualizing the transported texture on the target mesh directly
gives the user feedback about where the map needs to be improved.
For example, in Figure 3 the user has added several curves and
the texture that is transported by the resulting functional map, ade-
quately maps semantically corresponding parts onto each other. If
the user is satisfied with the quality of the map, the interface has

c© 2018 The Author(s)
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Source Our method[ESBC18][NO17]

Figure 4: Qualitative comparison of our method (rightmost col-
umn) to [NO17] and [ESBC18] on non-isometric shapes, visual-
ized with texture mapping. The reference shape is shown in the left-
most image. The magenta curves/dots indicate the user-input given
to the respective method The correspondences recovered with our
method are more accurate as it is able to deal with significant met-
ric distortions.

an option allowing to run the slower higher-quality point-to-point
conversion method of [ESBC18].

5. Applications and Results

In this section, we show how curve-constrained functional maps
can be used to obtain high quality point-to-point correspondences
(Section 5.1). Furthermore, we provide qualitative and quantita-
tive evaluation of our method and compare to previous approaches
(Section 5.2). In all the qualitative correspondence results shown,
unless indicated otherwise, the final pointwise correspondences are
obtained from functional maps with the method of [ESBC18]. For
our results we set k = 120 (number of eigenfunctions) and α = 0.5.

5.1. Point-to-point correspondences

As with previous work on functional maps, our functional maps
can be used as input to pointwise correspondence computation. Be-
yond the simple map recovery technique proposed in the original
functional maps paper [OBCS∗12], Ezuz et al. [ESBC18] propose
a method that, given pointwise correspondences from M to N and
vice versa, refines them by minimizing a harmonic-style energy. We
use their method as the final stage of our pipeline as follows. First,
we compute the functional maps CMN and CNM in both directions
between the shapes. Second, we extract an initial pointwise cor-
respondence by nearest neighbor search as in [OBCS∗12]. Finally,
we refine the initial correspondences with the method of [ESBC18].
Results are shown in Figures 1, 4, 5, and 6.

In Figure 4, we provide a qualitative comparison to [ESBC18]
and [NO17]. These are automatic approaches which are based
on surface descriptors and require only sparse user input in form

Figure 5: Correspondences between surfaces with extremely dis-
torting constraints and varied geometry, visualized with texture
mapping. Feature curves used as the input to our optimization pro-
cedure are shown in red. Note in the left example that we map the
head of the wolf onto the tail of the cat and vice versa.

of point correspondences. We use the authors implementations to
compute the results. For the comparison to [ESBC18] (Figure 4),
we use their entire pipeline, employing 200-dimensional wave ker-
nel signatures (wks) and wave-kernel map (wkm) functions (200 di-
mensions each) constructed on 21 landmark points picked by hand,
leading to 4400 function-preservation constraints. For the method
of [NO17] (Figure 4), we used the authors’ implementation based
on 200 wave-kernel signature functions and 6 wave-kernel-map
functions (with 200 dimensions each, also provided by hand), i.e.
with 1400 function preservation constraints, to compute the func-
tional maps in both directions, and then proceed as in our method
(first compute the initial correspondence as in [OBCS∗12] and then
refine with [ESBC18]). The functional map computed with our
method gets as input 18 feature curve constraints shown in Figure
4. Methods for recovering pointwise correspondences from func-
tional maps like [ESBC18] are usually computationally intensive.
Since our method allows the user to control the quality of the func-
tional map at runtime, the initialization of the pointwise correspon-
dence recovery methods is reliable, implying that the user would
typically have to run it only once at the end of the interactive ses-
sion. Even though the corresponding parts are very non-isometric
(see e.g. the legs of the bear and the human in Figure 4), the cor-
respondence obtained with our curve-based approach is accurate.
In contrast, automatic methods with little user input (usually in the
form of point correspondences for the wave-kernel map) output in-
accurate correspondences when shapes vary strongly in terms of
conformal factor and other distortion measures.

Figure 5 shows maps between very challenging mesh pairs, in-
cluding extremely non-isometric deformations and high-frequency
details. While we do not expect to find low-distortion maps in these
cases, our correspondences obey the curve constraints and are rela-
tively meaningful.

5.2. Correspondence Accuracy

To evaluate the quality of the correspondence, we first recover the
pointwise correspondence from the functional maps using nearest
neighbors [OBCS∗12], and then plot the percentage of correspon-
dences found within a certain geodesic radius (in % of the target
shape geodesic diameter) using the Princeton benchmark [KLF11].
The results are depicted in Figure 10 and 11, where we show the
average correspondence accuracy on the high-resolution TOSCA
[BBK08] and FAUST [BRLB14] datasets, as well as a far-from-
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Figure 6: Examples of correspondence results produced by our method, visualized with texture mapping. Feature curves used as the input to
our optimization procedure are shown in red.

isometric dataset containing a pair of horse and elephant shapes
(cf. Figure 7) (Figure 12). These datasets contain pre-labeled point-
correspondences with which we are able to evaluate the quality of
our computed maps. In Figure 7, we show the labeled feature curve
correspondences. The texture is transported from the source shape
(indicated by a box) to the target shapes with the functional map
computed based on the feature curve constraints.

We compare our results to [NO17] and to an interactive alter-
native using just the descriptor-based linear solver in [OBCS∗12].
[NO17] is the recent state-of-the-art automatic functional map
computation method. While it achieves high correspondence accu-
racy, this approach is computationally heavy and cannot run at in-
teractive speeds. A possible interactive alternative to our approach
can be implemented by solving the linear system CF̂ = Ĝ, i.e. the
descriptor preservation constraints presented in [OBCS∗12]. For
the functional map computation we provide the methods with 1400
wks/wkm-function preservation constraints as described above.

We vary the following test parameters in evaluating correspon-
dence accuracy:

Increasing number of feature curves. We plot the correspon-
dence accuracy for functional maps based on an increasing num-
ber of curves. These pre-labeled corresponding curves follow fea-
tures on the mesh (cf. Figure 7). For a given number of curves we
run the correspondence test multiple times by selecting a random
subset from the prelabled feature curves. Examples for all datasets
are given in Figure 7. Increasing the number of curves used as in-
put, the correspondence accuracy is improved. We also observe that
functional maps based on only one pair of corresponding curves al-
ready produces more accurate correspondences than that based on
descriptor preservation solving CF̂ = Ĝ.

By increasing the number of curves we can even achieve a higher
match rate than [NO17], even though the shapes in the TOSCA
and FAUST datasets are nearly isometric deformations of one an-
other. For these nearly-isometric pairs, state-of-the-art functional
map methods are expected to perform well.

Imperfect correspondence information. The solid curves in Fig-
ure 11 use perfectly corresponding curves (i.e. they follow the same

path of point-correspondences). In contrast, the dashed plots are
found by selecting the same start- and end-point and tracing the
intermediate path with shortest path search. We observe that there
is no significant difference in the results: The shortest path search
provides a reliable method to select corresponding curves.

To evaluate the effect of imperfect correspondence informa-
tion we plot the geodesic error for correspondences found with
[OBCS∗12] based on functional maps with imperfect input curve
correspondences. In Figure 9 the 3 blue curves are perfectly corre-
sponding while the magenta curves on the target are found by short-
est path search on the target mesh between corresponding start- and
end-points. Since start- and end-points lie far apart the correspon-
dences are inexact. We show the geodesic error in a range from 0
(white) to 0.5 (red) which is obtained from the functional maps with
exact (top row) and inexact (bottom row) feature curve correspon-
dences for an increasing number of curves (left to right). In regions
where the curves deviate a lot the geodesic error is higher (e.g. the
belly of the cat). However, although locally the error is higher, the
average geodesic distance is still quite low (0.029 with inexact cor-
respondence information and 0.0043 with exact correspondences
for 3 curves).

Far from isometric and baseline test. We plot the correspon-
dence quality for the horse-elephant dataset in Figure 10(c), where
we show the match characteristics up to a total geodesic distance
of 0.5. With the curve-constrained functional maps we can achieve
much higher match accuracy compared to previous methods. This
dataset is especially challenging due to large distortion (see Figure
8 for a visualization of the ground-truth map).

In Figure 12 we show the match characteristics on the SHREC
[VtH07] dataset. We use all meshes from the SHREC dataset where
a user can unambiguously label 10 corresponding curves without
the need to see the ground truth (e.g. we did not use rotationally
symmetric vases). As above we compare to [NO17] with 1400
function preservation constraints (wkm and wks). Secondly, we
perform a baseline comparison by providing the 10 feature curves
as functions to [NO17]. The functions are set to −1 everywhere,
but at the vertices along the feature curve. To each vertex along the
curve we assign the value of the arc-length parametrization (nor-
malized to a total length of 1). Correspondences computed with
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Figure 7: TOSCA, FAUST, and horse-elephant dataset labeled with corresponding feature curves. Since these datasets have prelabled point-
correspondences, matching feature curves can be defined by following the same vertices’s along the curve. The texture coordinates are
mapped by the functional map that is computed based on the feature curve constraints. The source shape for each shapes group is indicated
by a box. We only show half of the FAUST shapes here.
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Figure 8: Ground-truth correspondences of the far from isometric
elephant-horse dataset.

source

target 1 curve 2 curves 3 curves

ex
ac

t
in

ex
ac

t

Curves 1 curve 2 curves 3 curves
exact 0.0387 0.0243 0.0043
inexact 0.0432 0.0368 0.0298

Figure 9: Geodesic error for imperfect correspondence informa-
tion with increasing number of curves. We select 3 curves with
distant start and end point. The blue curves indicate perfect corre-
spondence, while the magenta curves show the shortest path curves
found on the target mesh between start- and end-point. We visual-
ize the geodesic error for an increasing number of corresponding
curves in a range from 0 (white) to 0.5 (red). The geodesic error is
higher at points where the curves deviate a lot (e.g. at the belly of
the cat). The average geodesic error is given in the table above.

functional maps based on both the baseline test and the wave-kernel
descriptors show higher geodesic distances to the ground truth than
our method.

5.3. Timing

In Figure 13, we compare our timings for optimization and prepro-
cessing to the results in [NO17] for a different number of curve
constraints. In this comparison we provide the same user input to
our method and to [NO17]. Results are computed on a commod-
ity laptop on meshes with 27,560 (pig) and 33,638 (dog) vertices.
For [NO17], we use 200 functions of the wave-kernel signature
and the start and endpoints of the feature curves (user input) for

the computation of the wave-kernel map with 200 functions each;
for [NO17], the selection of these points at interactive speeds is
not possible. The results with our method are obtained in under
a second. Furthermore, we can observe that with our method we
get slightly improved results (see e.g. the front foot and tail for 10
curves and the mouth and tail for 20 curves).

We compare the runtime of our conjugate gradients implemen-
tation with the quasi-Newton solver used by [NO17]. For this we
optimize our curve based functional map objective (5) with both
methods for a different number of curves. In contrast to [NO17]
our conjugate gradients implementation provides feedback at inter-
active rates.

Number of Curves Quasi-Newton Solver Conjugate Gradients
1 curve 3.955s 0.145s
10 curves 4.724s 0.624s
20 curves 5.077s 0.642s

Solving a dense linear system of the form Hx = b with H ∈ Rk

has a complexity ofO(k6). Our iterative implementation converges
quickly leading to interactive response times.

We show the runtime of the initialization and optimization pro-
cedure in Figure 14 for increasing k. The images (top) show the
texture coordinates transported with the respective functional map.
Although the map is slightly sharpened for increasing k, for k > 20
no significant changes are visible in the qualitative comparison. For
k = 200 the runtime increases beyond interactive rates. However,
for the visualization of the functional map less eigenfunctions are
sufficient.

6. Conclusion

In this paper, we presented an interactive approach to constructing
functional maps. While related work opts to find increasingly elab-
orate and computationally intensive approaches to functional maps,
we present a method which is both simple (easy to implement) and
efficient such that it runs at interactive speeds. In our tests we find
that by adding feature curve constraints we can outperform state-of-
the art automatic approaches in terms of correspondence accuracy.

This new interactive direction for functional maps has two ma-
jor benefits compared to previous work. First, it allows to compute
smooth maps between semantically similar objects, even if they
vary geometrically. Secondly, results are obtained at interactive
speeds and can be edited and evaluated by a user. For non-expert
users, feature curve based functional maps are especially useful,
since they avoid the requirement to engineer descriptors specific to
the regarded shape family.

Limitations and future work. One issue we observed is that
the feedback of the interactive tool given by the texture coordi-
nates mapped by the functional map can be inaccurate along (non-
smooth) seams in the texture. Nonetheless, it provides an effective
way to roughly evaluate the quality of the map during its design.
Then in a followup step, the user can compute an exact pointwise
map with the provided functional map.

Furthermore, our results show that several curve constraints are
required to obtain a meaningful functional map (i.e. one curve-
pair is usually not sufficient). However, the input the user has to
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Figure 10: Correspondence quality of different methods on TOSCA (left), FAUST (center), and the Horse-Elephant pair (right). Shown are
the results of our method, descriptor preservation constraints presented in [OBCS∗12], and [NO17]. Point correspondences were obtained
from the functional maps using nearest neighbors as in [OBCS∗12]. The advantage of our method is especially pronounced on non-isometric
shapes.
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Figure 11: Correspondence quality of our method on TOSCA (left), FAUST (center), and the Horse-Elephant pair (right). Point correspon-
dences were obtained from the functional maps using nearest neighbors as in [OBCS∗12]. We used perfectly corresponding curves (solid)
and shortest path curves computed between perfectly corresponding endpoints (dashed). Almost no degradation in performance is observed
in the latter case, allowing us to conclude that our shortest path method approximates the feature curves sufficiently well.

provide is still quite sparse. We have shown that inexact curve
constraints (based on automatically traced shortest paths between
user-provided endpoints) are sufficient to obtain high-quality maps.
Hence, curve tracing can be performed automatically given the
start- and end-points of the curves.

Since the computation of the maps is very efficient and the re-
sulting correspondence accuracy is comparable to state-of the art
methods, an interesting direction of research would be to automati-
cally detect semantically corresponding feature curves. Inspired by
previous work on functional maps, it would also be interesting to
investigate coupled functional maps where multiple objects are la-
beled with corresponding curves.

We also observe that is hard to provide meaningful curve-based
constraints if one shape has parts that are absent in another one
(e.g. elephant trunks) or very different from the corresponding parts
(e.g., elephant ears). In such cases it is hard to obtain a reasonable
bijective map. Previous work has dealt with the problem of par-
tial functional maps [RCB∗17]. An interesting direction for future
research might be to combine these approaches with our method.
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