
Eurographics Symposium on Geometry Processing 2013
Yaron Lipman and Richard Hao Zhang
(Guest Editors)

Volume 32 (2013), Number 5

Dirichlet Energy for Analysis and Synthesis of Soft Maps

Justin Solomon Leonidas Guibas Adrian Butscher

Geometric Computing Group, Stanford University, Stanford, CA

Abstract

Soft maps taking points on one surface to probability distributions on another are attractive for representing surface
mappings in the presence of symmetry, ambiguity, and combinatorial complexity. Few techniques, however, are
available to measure their continuity and other properties. To this end, we introduce a novel Dirichlet energy for
soft maps generalizing the classical map Dirichlet energy, which measures distortion by computing how soft maps
transport probabilistic mass from one distribution to another. We formulate the computation of the Dirichlet energy
in terms of a differential equation and provide a finite elements discretization that enables all of the quantities
introduced to be computed. We demonstrate the effectiveness of our framework for understanding soft maps arising
from various sources. Furthermore, we suggest how these energies can be applied to generate continuous soft or
point-to-point maps.

1. Introduction

Algorithms for tasks as varied as symmetry detection, motion
capture, and medical imaging require reliable methods for
mapping between surfaces. However, there are difficulties
with even the best mapping algorithms in the form of ambi-
guities and combinatorial complexity. Symmetry, slippage,
discretization issues, a lack of user guidance, and inappropri-
ate regularization assumptions like isometry or conformality
contribute to the near-impossibility of finding smooth maps.

One way to overcome these issues is to develop a new
representation of maps that is better suited for continuity and
acknowledges ambiguity. Of particular interest is the proba-
bilistic representation called soft mapping. Rather than com-
mitting to exact correspondences, a soft map assigns to each
point on a source surface a continuous, non-parametric proba-
bility distribution representing likely matches on a target sur-
face. This contrasts with graphical approaches that perform in-
ference on a predefined class of distributions, e.g. [ASP∗04].

Soft maps have several advantages over conventional maps:
(1) probability densities can encode superpositions of map-
ping targets and express uncertainty when the exact target is
unknown; (2) probability densities are positive scalar func-
tions that can be discretized easily; (3) there are convex strate-
gies for measuring soft map continuity, descriptor matching,
bijectivity, and other desiderata. Moreover, we expect this
representation to enjoy a sparsity property: a good soft map
has strong peaks near a few targets and is zero elsewhere.

Soft maps can arise in many ways. Most commonly, they
can be derived from shape similarity measures such as de-
scriptor differences. On the computationally expensive end,
recent methods like [KLM∗12, SNB∗12] compute soft maps
using optimizations balancing different desirable properties.
Even so, few theoretical or computational tools exist for ana-
lyzing soft maps. Most prominently, the notion of continuity
must be redefined appropriately. A key theoretical contribu-
tion of this paper is a convex continuity measure based on
the theory of optimal transportation, along with a principled
discretization of this measure using a finite elements solution
of a differential equation.

Measuring map continuity is a well-explored topic in dif-
ferential geometry through the use of the classical Dirichlet
energy expressing “intrinsic stretching." Although maps min-
imizing this energy are closely related to conformal maps and
have appeared in the geometry processing literature for map-
ping to simple domains (e.g. planar parametrizations), the for-
mulation of a straightforward and convergent discretization
of the Dirichlet energy for maps between non-flat surfaces
has received little attention.

In this paper, we introduce a generalized Dirichlet energy
for measuring the continuity of soft maps. We use this energy
together with a bijectivity energy to analyze the structure of
soft maps arising from different sources. We also suggest how
these quantities can be used to regularize the generation of
soft maps from an optimization perspective.

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.



J. Solomon, L. Guibas, & A. Butscher / Dirichlet Energies

1.1. Contributions

The introduction of a soft map Dirichlet energy advances
theory and practice in the field of surface mapping. Some of
the ideas and techniques we introduce are listed below.

Theory: We define the Dirichlet energy for soft maps using
ideas from optimal transportation and discuss its properties.
Writing the energy in differential form also reveals finer tools
for analyzing soft maps. Secondly, we define a bijectivity
energy for soft maps.

Discretization: The soft map Dirichlet energy has a finite
elements discretization for maps on triangle meshes. To make
the computations tractable, we introduce a partition of unity
basis for expressing probabilistic maps.

Map evaluation: We show how our energies and their
associated densities can be used to analyze and visualize
properties of soft maps. Such methodology is demonstrated
on soft maps arising from a variety of sources.

Map generation: We show how soft maps can be used to
extract point-to-point images of paths given a single match.
Also, we suggest how optimizing our energies can produce
continuous soft maps given a few ground truth matches.

1.2. Overview

After discussing related work (§2), we introduce the con-
tinuous soft map Dirichlet energy and show how it can be
computed using a PDE (§3); we also introduce the continu-
ous bijectivity energy (§3.8). We discretize these objects for
computation on a triangle mesh (§4). With the basic theory in
place, we consider three applications. First, we use solutions
of the equations defining the Dirichlet energy to trace local-
ized correspondences using path integration (§5.1). We then
discuss how the Dirichlet and bijectivity energies can be used
to analyze soft and point-to-point maps (§5.2) and suggest
how they can be optimized to generate soft maps (§5.3).

2. Previous Work

Our main object of study is the soft map. Soft maps
have existed implicitly in geometry and vision for some
time [WL78]. In geometry processing, soft maps have been
used to track correspondences before constructing a dense
map [BBM05,LF09]; objects like soft maps also appear when
relaxing 0/1 integer programs for mapping [WSSC11]. Most
recently, works like [TBW∗11, KLM∗12, SNB∗12] consider
the problem of constructing soft (or “fuzzy”) maps inde-
pendently of a pipeline for point-to-point correspondence,
optimizing for alignment, continuity, or descriptor preserva-
tion at least at a coarse scale. [HZG∗12] also constructs soft
maps to analyze a collection of shapes.

Other than the neighborhood continuity penalties used
in [SNB∗12, HZG∗12], few methods encourage continu-
ity while computing soft maps. By contrast, continuity and

stretch are key components for point-to-point mapping meth-
ods. For example, isometric and conformal mapping models
can lead to successful point-to-point mapping algorithms un-
der these strong assumptions [OMMG10,KLF11,OBCS∗12].
Other methods optimize extrinsic stretching directly but suf-
fer with respect to efficiency and convexity due to combinato-
rial issues [ZSCO∗08]. Methods like [CPSS10] also measure
stretch for surface deformation, focusing on extrinsic motions
of a single surface rather than maps between distinct objects.

The Dirichlet energy is a popular map stretching energy in
the mathematical literature [HW08] but is less explored in ge-
ometry processing except for special cases where it simplifies.
For instance, [BCWG09] computes harmonic maps — critical
points of the Dirichlet energy — between volumetric domains
for surface deformation. Techniques for planar and spherical
parameterization use Dirichlet energies to minimize distor-
tion [EDD∗95,DMA03,FH05]. A more general discretization
appears in [Bar10], but this approach remains challenging for
application in geometry processing. While harmonic maps
between surfaces of spherical topology are exactly the confor-
mal maps [GY02], little is understood computationally about
the behavior of these maps under additional constraints, in
more general topologies, or with additional energy terms.

We discuss work related to optimal transportation in §3.4.

3. The Mathematics of Soft Maps

We assume that we have two smooth, compact surfaces em-
bedded in R3, namely a “source” M0 and a “target” M. De-
note their gradient operators by∇0 and∇, respectively. Sup-
pose that M0 and M are normalized to have unit area.

3.1. Background: The Dirichlet Energy of a Map

The Dirichlet energy of a conventional map φ : M0→M is
analogous to the Dirichlet energy of a scalar function; i.e.

ED(φ) :=
ˆ

M0

‖∇0φ‖2dx . (1)

The extrema of (1) are called harmonic maps and can be
characterized as the maps from M0 into M causing the “least
intrinsic stretching.” The field of harmonic maps is a long-
standing area of research in mathematics. We refer the inter-
ested reader to [HW08] for a recent survey.

REMARK: An important distinction between the map and
scalar cases is that the derivatives in (1) are covariant and so
‖∇0φ‖2 involves the metrics of M0 and M. Thus apart from
some special cases (e.g. either M0 or M is Euclidean) it is
not known how to discretize (1) in a principled yet simple
manner when M0 and M are replaced by triangle meshes.

3.2. Soft Maps

A soft map from M0 to M is a function µ : x 7→ µx assigning
a probability measure µx ∈ Prob(M) to each x ∈ M0. Thus
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if U ⊆M we interpret the number µx(U) as the probability
that a randomly sampled y ∈ U corresponds to x. In this way,
correspondences can be expressed with a degree of uncer-
tainty. For all x ∈M0 and U ⊆M, we require that µx(U)≥ 0
and µx(M) = 1. A soft map as defined here is the continuous
analog of the soft map defined in [SNB∗12].

Soft maps generalize conventional point-to-point maps
between surfaces. In particular, every map φ : M0→M yields
soft map µ by requiring that µx(U) = 1 if and only if φ(x)∈U .
That is, µx is a unit Dirac mass centered at φ(x).

Soft maps can encode a wider variety of mapping behavior
than conventional maps. For example, the precise location of
the point corresponding to x might not be known. Then µx
would have a peak at φ(x) with nonzero width representing un-
certainty in the location of φ(x). If M admits self-symmetries,
then x might correspond equally well to multiple points on
M. Then µx would be the convex combination of two or more
peaked probability measures, as in Fig. 4(a).

A second advantage of soft maps is that they can be rep-
resented by positive scalar functions, i.e. their densities. The
density of the soft map µ is the function ρ : M0×M→ R+

satisfying µx(U) =
´
U ρ(x,y)dy for all x ∈ M0 and U ⊆ M.

Here dy is the area measure of M. Note
´

M ρ(x,y)dy = 1
must hold for all x ∈M0. Henceforth, we will use the abbrevi-
ation dµx(y) := ρ(x,y)dy. This scalar function representation
makes it straightforward to discretize soft maps.

REMARK: Recall that not all probability distributions admit
densities. But we consider in this paper only distributions
that are at least weak limits of smooth densities. Our analysis
below remains valid with this assumption.

3.3. Dirichlet Energy for Soft Maps

Let µ be a soft map from M0 to M. We would like to quantify
the degree of smoothness of the function x 7→ µx in the x-
variable. To do so, we construct a Dirichlet energy for soft
maps in line with the general framework suggested in [Jos94]
for Dirichlet energies in metric spaces. We choose a distance
metric for Prob(M), namely the 2-Wasserstein distanceW2 :
Prob(M)×Prob(M)→ R+ (discussed below).

Definition 1. The Dirichlet energy density of a soft map µ
from M0 to M at x ∈M0 is

eµ(x) := lim
r→0

1
Area(Br(x))

ˆ
Br(x)

[
W2(µx,µx′)

dist0(x,x′)

]2

dx′ (2)

where dist0 is the geodesic distance of M0. The Dirichlet
energy of µ is then

ED(µ) :=
1

Area(M0)

ˆ
M0

eµ(x)dx . (3)

3.4. Wasserstein Distances

Wasserstein distances between probability measures arise
in the theory of optimal transportation and are suitable for

our purposes because they take the geometry of the underly-
ing space M into account. We summarize briefly the theory
behind these distances.

The optimal transportation problem, first posed by
Monge [Mon81], defines the distance between probability dis-
tributions as the minimal amount of “work” it takes to carry
mass from one distribution to the other. Work is measured
by a cost function such as a power of the distance traveled
during the transport. To be precise, let µ,ν ∈ Prob(M) and let
p ∈ [0,∞). The p-Wasserstein distance is defined as

Wp(µ,ν) := inf
π∈Π(µ,ν)

(¨
M×M

[dist(y, ȳ)]pdπ(y, ȳ)
) 1

p

, (4)

where Π(µ,ν) is the set of measure couplings of µ and ν, i.e.
the distributions π ∈ Prob(M×M) marginalizing to µ and ν:ˆ

x∈M
dπ(x,y) = dν(y) and

ˆ
y∈M

dπ(x,y) = dµ(x) .

We interpret π as a “transport plan" for moving an infinites-
imal mass dπ(x,y) from x to y, with cost [dist(x,y)]p. The
p-Wasserstein distance is the total cost of the optimal plan.

In computer science, the 1-Wasserstein distance is the
“Earth Mover’s Distance” introduced to the vision com-
munity in [RTG98] and applied to geometry problems in
[LD11, LPD11, Mém11, dGCSAD11]. We choose the 2-
Wasserstein distance because it generalizes the traditional
Dirichlet energy for point-to-point maps (see Prop. 2), and
because the solution of the optimal transportation problem
for this distance is theoretically well-understood and extends
to compact, non-flat surfaces (see §3.6).

REMARK: Distances in Prob(M) can be measured in other
ways, e.g. Lp distances or diffusion distances like [LO06,
YWL∗07]. However, these distances are insufficiently aware
of the underlying geometry of M for our purposes.

3.5. Properties of the Dirichlet Energy

We will appeal to three important properties of the Dirichlet
energy for soft maps in this paper. We state the first two here
and give a more thorough discussion of the key third property
in the next section. Please see the Appendix for proofs.

Proposition 2. The behavior of the Dirichlet energy in two
special limiting cases is as follows.

1. Let µ be a soft map from M0 to M with constant density,
i.e. ρ(x,y) = ρ(y) for all x ∈M0. Then ED(µ) = 0.

2. Let φ : M0 → M be a map. The Dirichlet energy of the
associated soft map equals the Dirichlet energy of φ.

Proposition 3. The Dirichlet energy is convex under linear
combination. That is, if µ1 and µ2 are soft maps from M0 to
M and α ∈ [0,1], then

ED((1−α)µ1 +αµ2)≤ (1−α)ED(µ1)+αED(µ2) .

c© 2013 The Author(s)
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3.6. Simplification of the Dirichlet Energy

The expression in (2) for the Dirichlet energy density is un-
wieldy and does not adapt well to a discrete setting. In par-
ticular, the infimum introduces many auxiliary variables for
representing measure couplings. Therefore, the discretiza-
tion of the Dirichlet energy in this form scales poorly with
problem size — a key limitation of methods like [SNB∗12].

By exploiting the properties of the 2-Wasserstein distance,
however, we can simplify the Dirichlet energy density (2)
into a form that enables a tractable discretization. To do so,
we must introduce a new mathematical object, which we call
the transportation potential and denote by Q. This object
takes as input a point x ∈M0 and a tangent vector V ∈ TxM0
and outputs a function on M, with linear dependence on V .
Given (x,V ) we write y 7→ Q(x,y) ·V for the output function.

Proposition 4. Let dµx(y) := ρ(x,y)dy be a soft map from
M0 to M satisfying a suitable regularity condition. Then its
Dirichlet energy satisfies

ED(µ) =
ˆ

M0

ˆ
M

ρ(x,y)‖∇Q(x,y)‖2 dydx , (5)

where Q is the transportation potential of µ. It is found by
solving the partial differential equation

∇·
(
ρ(x,y)∇Q(x,y) ·V

)
=−〈∇0ρ(x,y),V 〉ˆ

M
ρ(x,y)Q(x,y) ·V dy = 0

(6)

for every x ∈M0 and V ∈ TxM0.

The derivation of (5) uses properties of the solution of the
optimal transportation problem for the 2-Wasserstein distance
[Vil03, Ch. 2] and will be sketched in the Appendix.

REMARK: The differential operator in (6) is linear and has
the constant functions in its kernel. The second equation
in (6), however, ensures that solutions are transverse to the
constant functions. Thus the solutions of (6) are unique.

3.7. Discussion of the Transportation Potential

Intuition. Despite its involved mathematical definition, the
intuition for Q is straightforward. For each x ∈ M0, we vi-
sualize the distribution dµx(y) = ρ(x,y)dy as a collection
of particles on M whose density near y is proportional to
ρ(x,y). If we choose a small vector V ∈ TxM0 and displace x
to x′ := expx(V ), we can track the motion of these particles
on M as they rearrange themselves in a Wasserstein-optimal
manner from µx to µx′ . The vector field ρ(x,y)∇Q(x,y) ·V is
the momentum of these particles as they move and the cost (5)
is twice their kinetic energy. This interpretation aligns with
the Benamou-Brenier formulation of optimal transportation
in terms of fluid flow [BB00], see also [Vil03, Ch. 8].

The nature of the defining equation. The partial differen-
tial equation (6) satisfied by Q is an anisotropic version of

Poisson’s equation. We can invoke standard theory when
ρ > 0 to establish existence and uniqueness of Q. If this
inequality does not hold, these properties can fail. Then, solv-
ability of (6) can be restored by considering the ε→ 0 limit
of the equation for (1− ε)ρ+ ερ0 where ρ0(x,y) is uniform
on M for all x ∈M0, see [AGS05, Ch. 8]. We return to this
point in Sec. 4.4 when we discuss the discretization of (6).

3.8. Bijectivity Energy for Soft Maps

A bijectivity energy for soft maps should promote the equal
distribution of probabilistic mass pushed forward under
the soft map. To this end, let dµx(y) := ρ(x,y)dy be a
soft map between M0 and M, and consider the quantity
b(y) :=

´
M0

ρ(x,y)dx. Note that b(y)≥ 0 and
´

M b(y)dy = 1
so b(y)dy is a probability measure on M. Indeed

´
U b(y)dy

gives the probability that a randomly sampled y ∈ U ⊆ M
receives mass from somewhere in M0. We view b as a bijectiv-
ity energy density whose square integral yields the bijectivity
energy, a convex quadratic function of µ.

Definition 5. The bijectivity energy of a soft map µ from M0
to M, with dµx(y) := ρ(x,y)dy is

Eb(µ) :=
ˆ

M

[ˆ
M0

ρ(x,y)dx
]2

dy . (7)

We can see that µ has small bijectivity energy when b(y)
is nearly constant and b(y)dy is as spread out as possible.
Thus for such µ, most y ∈M receive mass from M0 and no y
receives a large amount of mass. A final desirable property
of the bijectivity energy is that it has the “correct" limit for
soft maps arising from conventional maps.

Proposition 6. Suppose φ : M0 → M is a diffeomorphism
and let µ be the associated soft map. Then

Eb(µ) =
ˆ

M

[
det(∇0φ)

]−2 ◦φ
−1(y)dy .

See the Appendix for proof. Therefore a conventional map
for which det(∇0φ) is too small will have large bijectivity
energy, and so Eb penalizes the failure of local injectivity.
Moreover, the formula

det(∇0φ(x)) = lim
r→0

Area(φ(Br(x))
Area(Br(x))

,

where Br(x) is the ball of radius r centered at x, tells us
that energy-optimal maps will be such that det(∇0φ(x)) is
as spread out as possible, which promotes non-zero relative
values of Area(φ(Br(x)) for each x, i.e. local surjectivity.

4. Discretization

With the theory of soft map Dirichlet energies in place, we
derive in this section a suitable discretization using finite
elements. Henceforth we will assume that the “source” sur-
face M0 and the “target” surface M are represented as tri-
angle meshes with unit area. We first construct larger-scale

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



J. Solomon, L. Guibas, & A. Butscher / Dirichlet Energies

Figure 1: (left) One hundred geodesic farthest point samples
on a mesh colored by distance to the closest sample; (right)
partition of unity basis functions corresponding to the three
red samples.

piecewise-linear bases on M0 and M to decrease the degrees
of freedom during our calculations (§4.2). We expand ρ and
Q on these bases and pose a family of linear systems for the
discretized Q allowing computation of the Dirichlet energy
(§4.5). Finally, we discretize the bijectivity energy (§4.6).

4.1. Preliminaries

At the finest level we represent functions on a triangle mesh as
linear combinations of piecewise linear “hat” functions whose
coefficients equal function values at the vertices. Gradients of
these functions are per-face vector fields; the inner product of
two such vector fields is taken with respect to the Euclidean
metric of the face. We represent a density on a triangle mesh
as a set of positive weights per triangle integrating to one.
These choices are the simplest possible given the orders of
differentiability required to compute Q from ρ.

4.2. Basis Elements

Since soft maps are represented by scalar functions on M0×
M, the space of soft maps will have dimensionality on the
order of the product of the number of triangles of the two
surfaces. This is often a prohibitively large number from the
point of view of storage and optimization.

We therefore employ smaller bases for our computations.
We obtain these from partitions of unity (POUs) — collec-
tions of smooth, positive functions with overlapping supports
whose sum is equal to one at each point. To construct these,
we partition the surface into geodesic farthest-point Voronoi
cells and solve Poisson’s equation ∆ f = −1 on each cell’s
one-ring with Dirichlet boundary conditions. The result is
a nonnegative f , strictly positive on the original cell by the
maximum principle. Denote the minimum value by m. To
remove values of f smaller than εm, we take ε ∈ (0,1) and
replace f by γ ◦ f where γ : R→ R is smooth and mono-
tone, with γ(x) = x for x≥ m and γ(x) = 0 for x < εm. After
performing these steps for all cells, we have a collection of
smooth, positive functions supported in their one-rings; and
at least one function is non-zero at each vertex. We normalize
by the sum of the values of the functions at each vertex to
obtain the desired POU. Examples are shown in Fig. 1.

Applying this procedure to M0 and M yields two POU
bases {β0i : i = 1, . . . ,n0} and {β j : j = 1, . . . ,n} for M0 and
M, respectively. We can assume that both sets of functions
are linearly independent (but not orthogonal) in the L2 sense.

Additionally, we introduce a per-face version of the POU
on M by averaging the values at the three vertices of each
triangle, which we subsequently re-normalize to have integral
one. Denote this new set of densities by {µ j : j = 1, . . . ,n}.

REMARK: Previous approaches make use of a variety of
strategies for dimensionality reduction. [OBCS∗12] uses
low-frequency Laplace-Beltrami eigenfunctions for repre-
senting maps. This basis is suboptimal for nonnegative and
sparse probability distributions because of negative lobes,
non-locality, and ringing effects. Alternatively, [SNB∗12]
uses a basis of indicator functions relative to a coarse surface
partition. These functions are nonnegative and local; but their
non-smoothness makes them undesirable in our setting.

4.3. Discrete Soft Maps

We express a discrete soft map from M0 to M in terms of its
density function as dµx(y) = ρ(x,y)dy and expand ρ on the
basis elements as

ρ(x,y) := ∑
i j

Ci jβ0i(x)µ j(y)

where Ci j ≥ 0 ∀ i, j and ∑
j

Ci j = 1 ∀ i
(8)

Thus ρ(x,y) is non-negative and integrates to one for each x.

4.4. Discrete Transportation Potential

Representation. The discrete transportation potential Q
takes as input a vector tangent to a face of M0 and outputs
a function on M. To discretize this functionality, we choose
an orthonormal basis {V s

f : s = 1,2} for each f ∈ F0 (the set
of faces of M0) and introduce the one-form ω

s
f defined by

ω
s
f (X) := 〈V s

f ,X〉 for any vector X tangent to f . Now we can
expand Q with coefficients qs

f j ∈ R as

Q( f ,y) := ∑
s=1,2

∑
j

qs
f jω

s
f β j(y) . (9)

Defining equation. The discretization of the differential
equation (6) involves straightforward algebra. We substitute
the expansions for ρ and Q and integrate (by parts on the left
hand side) against the test function βk(y). We then project
onto each face f and direction V s

f . This yields

∑
i j j′

Ci jW j j′kB+
0i f qs

f j′ = ∑
i j

Ci jU jkB−0i f s (10)

for all f ∈ F0 and s = 1,2, where

B+
0i f :=

ˆ
f
β0i(x)dx

B−0i f s :=
ˆ

f
〈∇0β0i(x),V

s
f 〉dx

U jk :=
ˆ

M
µ j(y)βk(y)dy

W j j′k :=
ˆ

M
µ j(y)

〈
∇β j′(y),∇βk(y)

〉
dy .

(11)

c© 2013 The Author(s)
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Note that the quantities in (11) depend only on the geometry
of M0 and M and can be pre-computed easily using triangle
areas and inner products of hat functions.

The uniqueness constraint. For the constraint appearing in
(6), we proceed as above to find

∑
i j j′

qs
f j′Ci jU j j′B

+
0i f = 0 (12)

for all f ∈ F0 and s = 1,2.

The linear solve. The majority of the computation time in
our pipeline is spent solving the system (10) subject to (12).
As we have seen in §3.7, if the strict inequality ρ > 0 holds
then the equation for Q is uniquely solvable. This condition
corresponds to a positive definite solve for Q in the discrete
system. When ρ is near-zero, the system becomes poorly
conditioned and eventually admits a null space. We avoid this
by computing Q for (1−ε)ρ+ερ0 as discussed in §3.7, with
ε = 10−5 in our implementation. Also note that the system
for Q decouples over faces. Thus, we solve a linear system
per face sized proportionally to the number of basis functions.

4.5. Discrete Dirichlet Energy

For the discrete Dirichlet energy we again substitute the ex-
pansions for ρ and Q and integrate over both surfaces, giving

ED(C) = ∑
i jkk′

∑
s=1,2

∑
f∈F0

Ci jq
s
f kqs

f k′B
+
0i f W jkk′ . (13)

For optimization, we also need the gradient of the discrete
Dirichlet energy (13). This is complicated since qs

f j depends
on Ci j via the defining equation (10). Thus we state the result
here and defer the proof for the Appendix. Note that the
gradient is easy to evaluate given Q.

Proposition 7. The gradient of the energy (13) is

Di j := ∑
k′

∑
s=1,2

∑
f∈F0

(
2U jk′B

−
0i f s−∑

k
qs

f kW jkk′B
+
0i f

)
qs

f k′ .

4.6. Discrete Bijectivity Energy

We discretize the bijectivity energy by substituting the expan-
sion (8) into (7). The resulting expression is

Eb(C) := ∑
ii′ j j′

Ci jCi′ j′B0iB0i′V j j′

where B0i =
´

M0
β0i(x)dx and V j j′ :=

´
M µ j(y)µ j′(y)dy.

These quantities can also be pre-computed.

5. Applications for Soft Map Analysis and Synthesis

In this section, we show how the transportation potential
Q and the Dirichlet energy can be used for analyzing and
synthesizing soft maps.

(a) (b)

(c) (d)

Figure 2: (a) An ant model with three source points and
directions; (b,c,d) corresponding momentum fields for a soft
map from the heat kernel signature. The blue shading of the
targets shows the magnitude of the soft map in each case.

Figure 3: (left) The soft map (lower left) in blue does not
distinguish between the two legs of the wolf, nor between
radial points at the same height on a given leg. The velocity
vector field∇Q, however, deduces second-order information
from the soft map. Given a path (upper left) on the source,
corresponding paths (middle left) can be integrated along
∇Q from a single match; the soft map encodes forward and
orientation-reversing maps, which can be traced depending
on the initial match shown in yellow. (right) Following∇Q
transfers the path on the left model to the path on the right
model. Path integration disambiguates the soft map, which
does not differentiate points on rings around the arms.

5.1. Extracting Correspondences

The soft map density ρ is a function on the four-dimensional
product space M0 ×M and is therefore hard to visualize.
Picking a few salient source points x ∈ M0 and showing
the corresponding distributions on M gives some sense of
the correspondence behavior suggested by ρ. But it remains
difficult to see dynamic behavior in these correspondences as
a source point is moved in a given direction.

As discussed in §3.7 however, the momentum field ρ∇Q
of ρ captures exactly this type of behavior. In Figures 2, and 4,
we illustrate how the momentum might be used to illustrate
the dynamics of a soft map.

In particular, the fluid flow interpretation of optimal trans-
portation views the probability density ρ as a collection of
particles whose aggregate motion is by advection under the
momentum field. We leverage this idea to extract pointwise
correspondences from a soft map as follows. Suppose we are
given a soft map density ρ from M0 to M and a single point-to-
point correspondence x ∈M0 7→ y ∈M. We can assume that

c© 2013 The Author(s)
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(a) (b) (c) (d) (e)

Figure 4: (a) Soft maps are capable of representing superpositions of uncertain point-to-point maps. We simulate such a soft map
(the average two soft maps representing the identity and an orientation-reversing map of the sphere); the momentum field ρ∇Q
in red tracks the motion of both peaks of the map simultaneously (source point and direction boxed). (b) Four points marked
along a geodesic on a source surface; (c) the corresponding images of a soft map from (b) constructed using the wave kernel
signature [ASC11] on the target shaded from light to dark and with the momentum vector field in red; (d) the Dirichlet energy
density of the map in log scale; (e) the reciprocal of the bijectivity energy density. Note in (c) that ρ∇Q shows where mass of the
soft map moves: up and down the target fingers and along the hand; the WKS cannot distinguish between the index and middle
fingers. The Dirichlet energy density (c) is highest exactly where the map induces distortion at the joints.

y is near a peak of µx. Now given a path γ0(t) : [0,T )→M0
starting at x, we can trace a path γ : [0,T )→M of correspond-
ing points on M using the soft map velocity as a guide. In
particular, we obtain an ordinary differential equation (ODE)
for γ by substituting γ0 for x and its derivative γ̇0 for V into
the expression for the velocity:

γ̇ =∇Q(γ0,γ) · γ̇0 with γ(0) = y (14)

This ODE can be integrated in t using Euler’s method. Q in
the right hand side of (14) can be found rapidly since the only
qs

f j needed are those for the face f containing γ0(t). Fig. 3
show two examples of this process. The left subfigure also
shows that different choices of y ∈M yield different paths;
this provides a strategy for isolating symmetries in ρ.

5.2. Analyzing Maps

The transportation potential, Dirichlet energy density, and
bijectivity energy density all can be used to visualize and
analyze characteristics of soft maps. We demonstrate our
visualization techniques on maps from two sources.

First, when we are given a point-to-point map φ : M0→
M. Prop. 2 shows that the traditional Dirichlet energy of φ

is approximated by the Dirichlet energy of any sufficiently
“close” soft map. This suggests that a strategy for analyzing
the traditional Dirichlet energy of φ is to construct a soft map
approximating φ and computing its Dirichlet energy. To do
so, we represent φ at the finest level using a density ρ

fine that
is sparse in the basis of hat functions on M0 and per-triangle
densities on M. For efficiency, we then project into the bases
{β0i} and {µ j} using a discretization of the formula

ρ
coarse(x,y) := ∑

i j
β0i(x)µ j(y)

ˆ
M

ρ
fine(x, ȳ)β j(ȳ)dȳ

This formula is justified by a simple sampling strategy that
assigns weight in proportion to the height of the basis function
and avoids negative values and ringing that would arise from

Figure 5: Four sphere maps illustrated by transferring tex-
tures. The Dirichlet energies of the approximating soft maps
is indicated. The identity, rotation, and conformal maps yield
nearly the same energy while the stretched map is larger. We
expect low values for the first three maps because they are
critical points of the point-to-point Dirichlet energy; the only
map with exactly zero Dirichlet energy in the point-to-point
case sends the entire source to a single point on the target.

least-squares projection. Fig. 5 shows how the behavior of
the traditional Dirichlet energy for maps aligns with that of
the Dirichlet energy of the projected soft maps.

Second, soft maps can be obtained by constructing the
maximum-entropy probability distribution derived from de-
scriptor differences. That is, suppose f0 : M0 → Rd and
f : M→ Rd are descriptors for M0 and M. Then the distri-
bution we have in mind is ρ(x,y) = Z(x)−1 exp(−‖ f0(x)−
f (y)‖2/σ

2), where Z(x) is a normalization factor. We use
this as our soft map and project it onto the bases as above.
In our examples, we use the heat kernel and wave kernel
signatures [SOG09, ASC11], similar to [SNB∗12].

In Figs. 5 & 6, we use Dirichlet and bijectivity energy den-
sities to visualize and quantify point-to-point map continuity;
the remaining figures are constructed using descriptors. Fig. 4
shows the Dirichlet density as a function on a mesh. Fig. 7
shows how it can be used to find poorly-generated soft maps
and points where distortion is undesirably high.
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ED 0.75 0.77 0.80 0.81
Eb 1.01 1.03 1.03 1.03

Figure 6: Four deformations of the mesh on the left with
ground-truth correspondences colored by the reciprocal of the
bijectivity energy density. Below the meshes are the Dirichlet
energy ED and bijectivity energy Eb.

(a) (b) (c)
ED = 1102.9 Eb = 1.19

Figure 7: Constructing a soft map from (a) to (b) using the
wave kernel signature unexpectedly yields a large Dirichlet
energy ED. Examining the energy density (a; in log scale)
shows large distortion on the model’s forearms; examining
the map more closely in (c) reveals that the map inadvertently
stretches the source’s forearm to the target’s entire arm.

Figure 8: (top) A map constructed by optimizing E(µ) with
one constraint fixing the yellow point on the left; images of
the points on the red curve are shown to the right. (bottom)
The same after fixing three points; one yellow fixed point is
occluded. As might be expected, fixing one point yields rings
around the constraint since it is impossible to disambiguate
the rotational symmetry of the sphere. Fixing three points,
however, yields distributions with single peaks.

Figure 9: A soft map (right) between a straight and a bent
wolf model constructed by optimizing E(µ) after fixing three
points marked in red (left). The resulting distributions, con-
structed solely using continuity and constraints, are wide but
have peaks aligned with their counterparts on the source.

5.3. Generating Optimal Soft Maps

We have constructed and analyzed two convex energies that
encode desirable properties of a soft map. We now propose
a convex optimization strategy for generating soft maps by
minimizing these energies with geometric constraints.

To be precise, we consider soft maps minimizing E(µ) :=
ED(µ) + λEb(µ) where λ trades off between the Dirichlet
energy and the bijectivity energy. The behavior we expect
for minima of this energy can be characterized as follows.
The minimum of ED is zero and highly degenerate, achieved
by soft maps with constant density independent of x. When
λ > 0, this degeneracy is removed since EB favors a unique
minimum, the uniform distribution. Adding geometric con-
straints as correspondences between points or regions pulls
the optimum away from the uniform distribution, yielding
soft maps that are as spread out as possible while interpolating
continuously in the x-variable. ED and Eb are similarly scaled,
and we find that λ≈ 1 achieves a reasonable compromise.

We minimize E using the L-BFGS algorithm [NW06].
Figs. 8 and 9 show examples of output from the optimization;
computation of Q limits the speed of each iteration, so conver-
gence criteria were purposefully loose. Although the maps are
broad, clear peaks encode the likely correspondences from
which maps can be generated. Additional work, however,
will be required to evaluate the properties of this optimization
systematically. In particular, while the correspondence con-
straints prevent the map from reaching the minimum energy
achieved by constant or uniform mapping targets, sparsity
terms or sharper basis functions may be needed to yield op-
timal maps with clear peaks. Testing such hypotheses will
require more tuned optimization iterations or larger steps
without recomputing the full Q matrix.

6. Discussion

We have implemented the techniques discussed above in
MATLAB using C++ for matrix-tensor products. Finding the
full matrix of the transportation potential requires two sparse
positive definite linear solves per triangle of M0 as explained
in §4.5. On a 2.4 GHz i5 notebook processor with 4 GB of
memory, solving for Q takes approximately five minutes for
a mesh with 1300 vertices equipped with 300 basis functions.

The largest limitation in our setup is the time needed to
compute Q. While this paper focuses on the theory and ap-
plications of soft Dirichlet energies, there are two potential
engineering solutions to this problem that likely would al-
leviate timing issues. Most obviously, our implementation
uses threading to parallelize the calculations on a dual-core
processor, but in reality these solves are all independent and
could be carried out in parallel given a specialized implemen-
tation. A second alternative is to introduce broader bases for
one-forms on M0, bringing about savings similar to those
achieved using partitions of unity. This basis need not be
localized, so eigenbases of the one-form Laplacian [Hir03] or
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Killing operator [BCBSG10] would be acceptable. But now
the solves for the transportation potential no longer decouple,
so additional considerations will be needed.

Beyond timing, we find that our finite elements discretiza-
tion is relatively stable for many different types of soft maps.
Poorly-shaped triangles can create localized issues, but we
have not found them to affect the energies in question signifi-
cantly for the meshes we have used for testing. Noise in the
mapping matrix C also has little effect on computation.

Finally, while our main focus is on analyzing preexisting
soft maps, our outlined mapping method in §5.3 shows con-
siderable promise but requires refinement. Our energies are
convex and nonlinear, and thus evaluating the Dirichlet en-
ergy must be accomplished as fast as possible to maximize
the feasible number of iterations of L-BFGS or any other
optimization. An additional sparsity term such as [PEC12]
would also encourage more localized mapping behavior.

7. Conclusion

Our techniques formulate a notion soft map continuity and
propose a Dirichlet energy for its measurement. This energy
is well-defined for smooth surfaces and has a principled dis-
cretization based on finite elements. We show how our ener-
gies and their associated densities can be used to analyze and
visualize soft maps arising from a variety of sources. They
also can be used to extract point-to-point correspondences
and suggest how an optimization framework could be used to
compute soft maps given a few geometric constraints.

Together, these methods provide a toolkit for exploring
and generating soft maps and indicate promising avenues
for future research in surface mapping and analysis. As sug-
gested earlier, many geometry processing algorithms implic-
itly make use of soft maps through descriptor differencing or
by accumulating potential matches, and our proposed tech-
niques can be used to understand the quality and structure
of these constructions, including their discontinuities and lo-
cations where additional mapping evidence might increase
bijectivity or sharpness. They also provide methods for dis-
playing local variations of soft maps using momenta rather
than small differences between probability distributions. With
more specialized optimizations, it also may be possible to
refine the technique in §5.3 to compute dense, continuous soft
maps in analogy to the coarse maps computed in [SNB∗12].
In the end, this work represents a considerable step toward
the design of a pipeline for generating and understanding soft
maps backed by a convergent theory characterizing discrete
and continuous behavior.
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Appendix A: Proofs

Proof of Prop. 2. If µ is a soft map from M0 to M with constant
density then µx = µx′ for all x,x′ ∈M0. ThusW2(µx,µx′) = 0
because the product distribution π := µx⊗ µx′ is a measure
coupling with zero cost. Next, if φ : M0→M is a map, then
the associated soft map is δφ(x)(y)dy where δp is the Dirac
δ-density centered at p. There is only on measure coupling of
δφ(x)(y)dy and δφ(x′)(y)dy, namely the product distribution
for which the cost is dist(φ(x),φ(x′)). The Dirichlet energy
density now reduces to the conventional Dirichlet energy
density in the limit as r→ 0.

Proof of Prop. 3. Let µ1, µ2 be soft maps, πk for k =
1,2 be optimal measure couplings of [µk]x, [µk]x′ , and
α ∈ [0,1]. Then πα := (1−α)π1 +απ2 is a measure cou-
pling of [(1−α)µ1 +αµ2]x and [(1−α)µ1 +αµ2]x′ . Since˜

M×M [dist(y, ȳ)]2dπα(y, ȳ) = (1 − α)W 2
2 ([µ1]x, [µ1]x′) +

αW 2
2 ([µ2]x, [µ2]x′), the proposition follows.

Proof of Prop. 4. Assume first that ρ > 0. We recall from
the theory of optimal transportation that the solution of the
optimal transportation problem for the 2-Wasserstein dis-
tance on a compact surface can be characterized as fol-
lows. The transport between two measures with positive
density µ1 and µ2 is achieved by a map ψ : M→ M of the
form ψ(y) := expy(∇q(y)) where q : M → R is a convex
function and expy : TyM → M is the geodesic exponential
map. Moreover, the transportation cost can be expressed as
[W2(µ1,µ2)]

2 =
´

M ‖∇q‖2dµ1. See [Vil03, Ch. 2] for de-
tails. We can use these ideas to simplify the Dirichlet density
(2) by setting µ1 := µx and µ2 := µx′ , yielding q := qx,x′

that achieves the transport from µx to µx′ . When x and x′

are sufficiently close, we can write x′ = expx(εV ) where ε =
dist0(x,x′) and V ∈ TxM0. To first order, qx,x′(y)≈ εQ(x,V,y)
where y 7→ Q(x,V,y) is a function on M. Also Q is linear V .
Substituting q into the expression for the cost given above
and differentiating in ε leads to the PDE (6) for each x ∈M0
and V ∈ TxM0. Finally, taking the limit as ε→ 0 in the expres-
sion for the Dirichlet energy density (2) yields the desired
simplification. Limiting arguments can be made to handle the
cases of densities which fail to be everywhere non-zero and
weak limits of smooth densities.

Proof of Prop. 6. Let dµx(y) := δφ(x)(y)dy and perform a
simple change of variables in the inner integral of (7).

Proof of Prop. 7. Write Cε := C + εX , where X has coef-
ficients Xi j satisfying ∑ j Xi j = 0 for all i. Also let qs

f ,ε :=
εY s

f +O(ε
2). Differentiating (10) with respect to ε yields an

expression for Y in terms of C, q f and X , namely

∑
i jk

Y s
f kCi jW jkk′B

+
0i f = ∑

i j
Xi j

(
U jk′B

−
0i f s−∑

k
qs

f kW jkk′B
+
0i f

)
for all f ∈F0 and s= 1,2. If we differentiate (13), we find that
d
dε
ED(Cε)

∣∣
ε=0 is a sum of two terms, one containing X and

the other containing Y . Eliminating Y using this expression
results the expression for the gradient of ED at C.
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