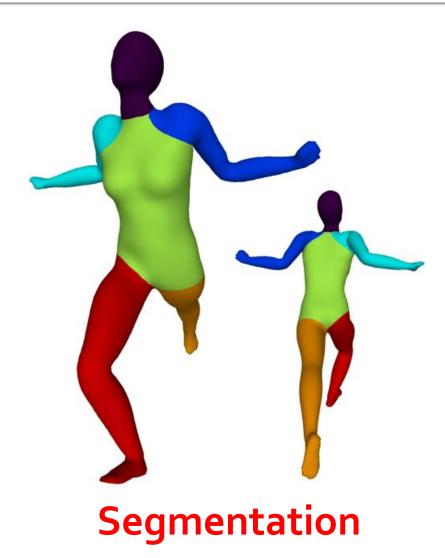


Discovery of Intrinsic Primitives on Triangle Meshes

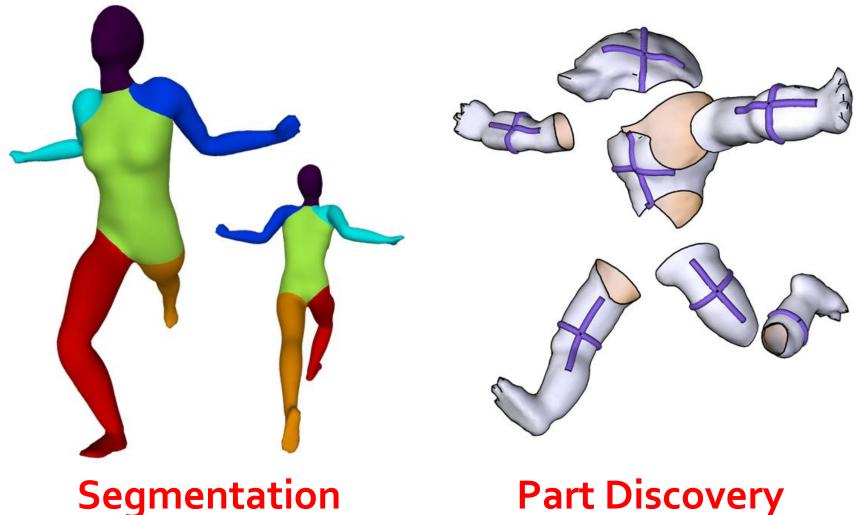
Justin Solomon, Mirela Ben-Chen, Adrian Butscher, and Leo Guibas

Stanford University

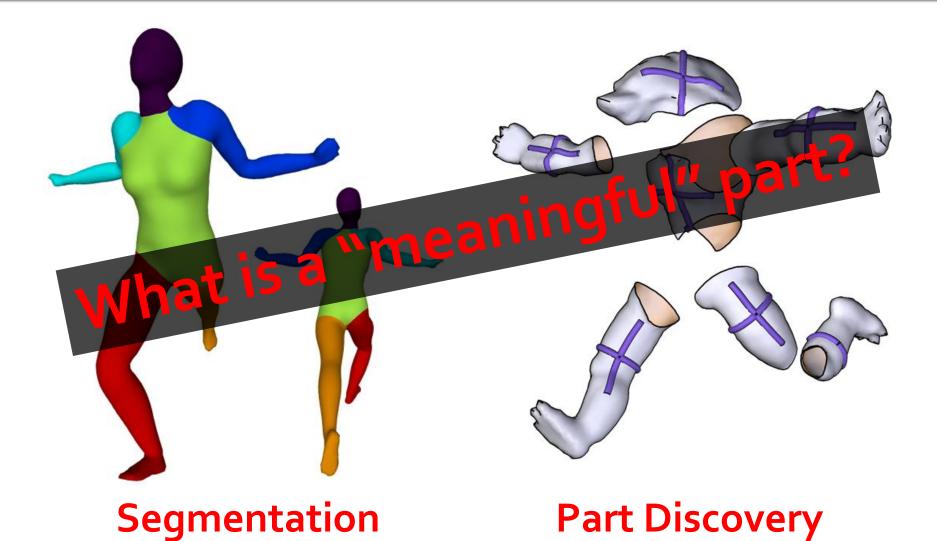
Two Related Problems



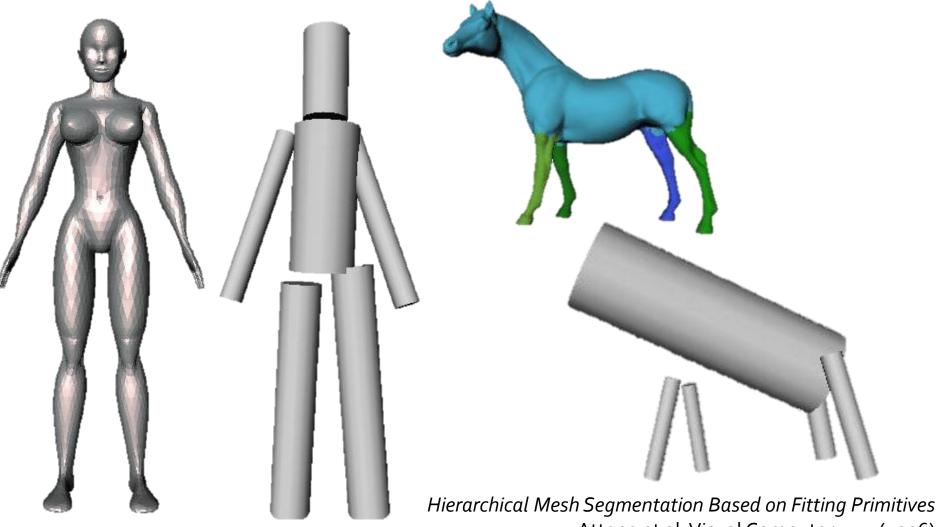
Two Related Problems



Two Related Problems

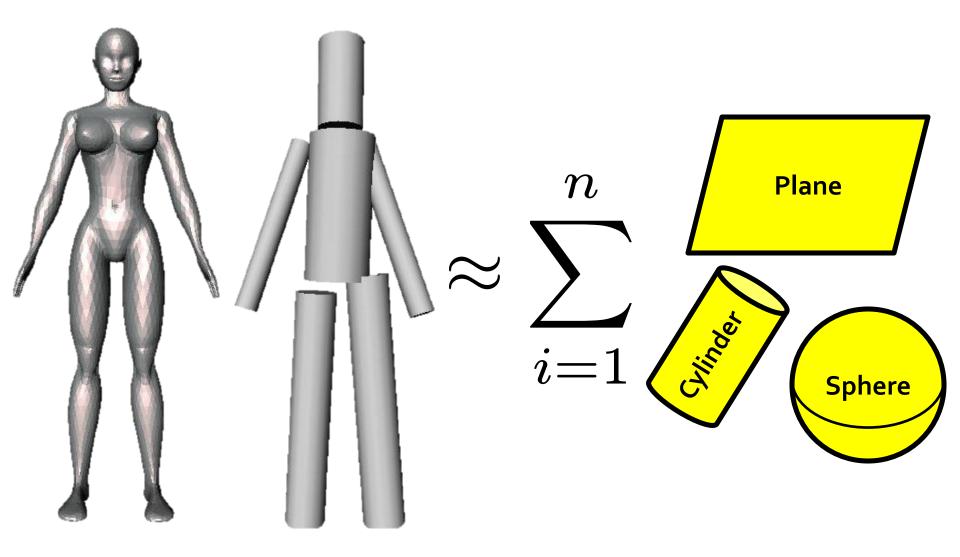


"Meaningful" Parts?

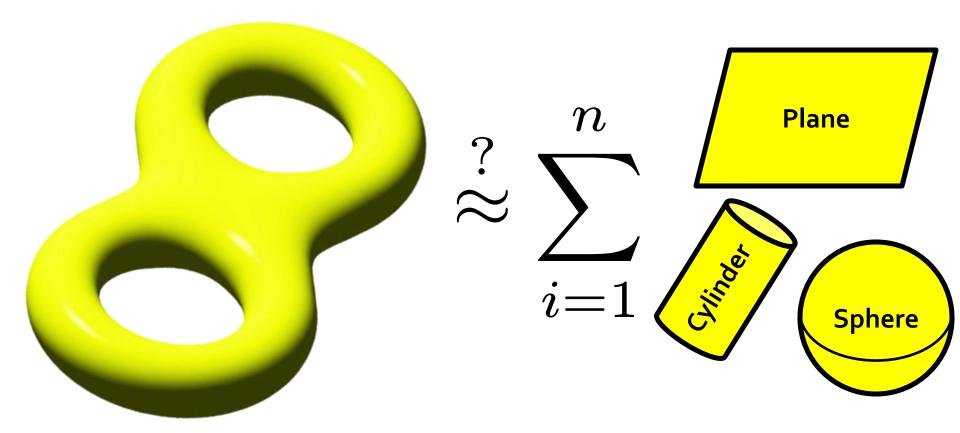


Attene et al, Visual Computer 22.3 (2006)

"Meaningful" Parts?



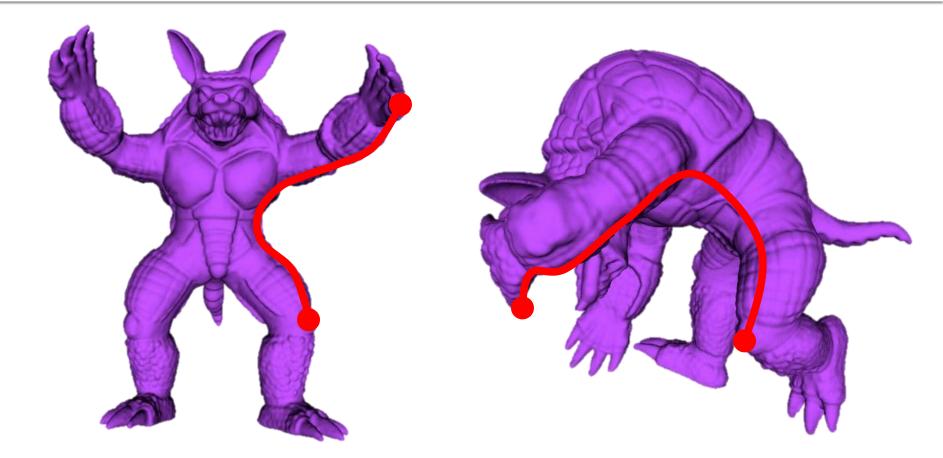
Problem



How do you choose?

Idea: Let Parts Bend

Isometric Deformation

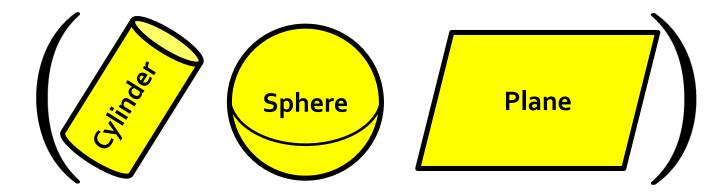


Preserves Pairwise Distances

Near-Isometric Deformation

Segmentation and part-finding invariant to near-isometry

Segmentation and part-finding invariant to near-isometry



Approach

Find symmetries using approximate Killing vector fields

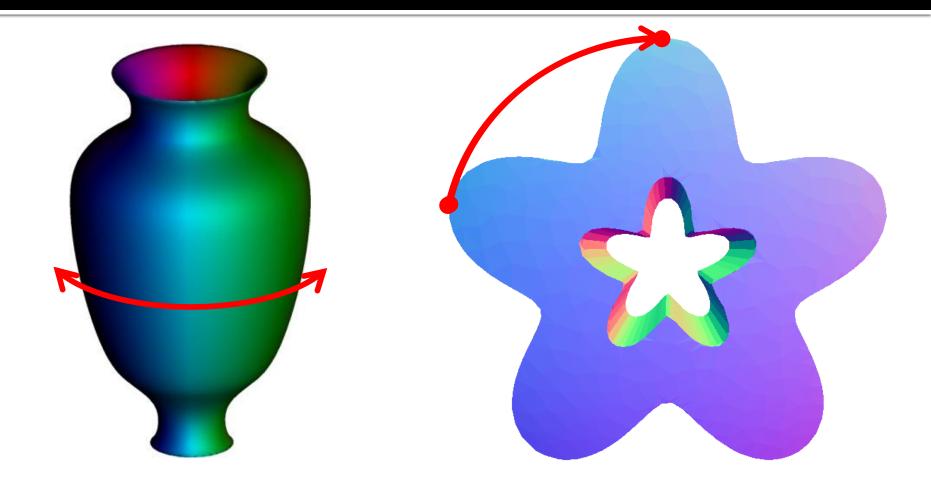
Compute and cluster isometry-invariant point signatures

Killing Vector Fields

Killing Vector Fields

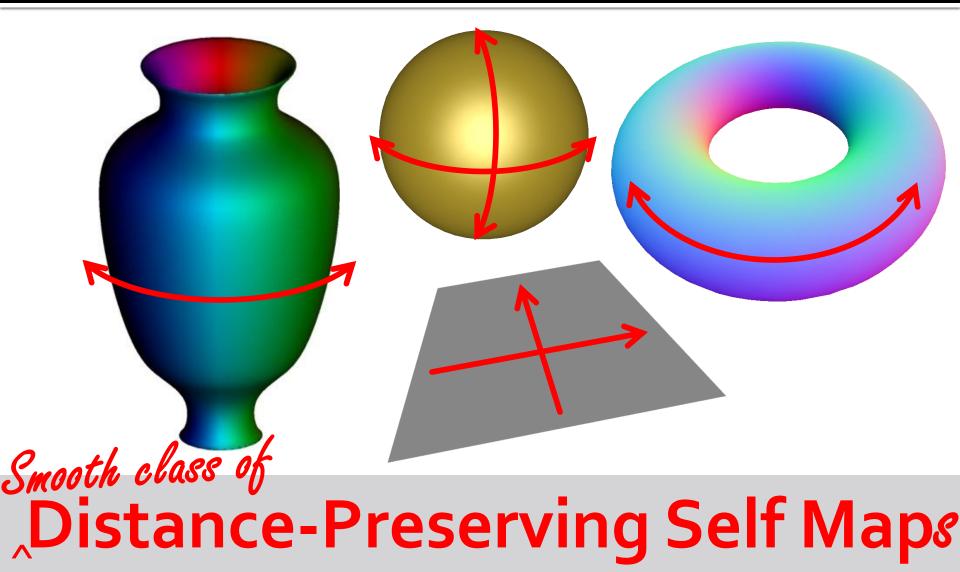
Wilhelm Killing 1847-1923

Self-Isometry

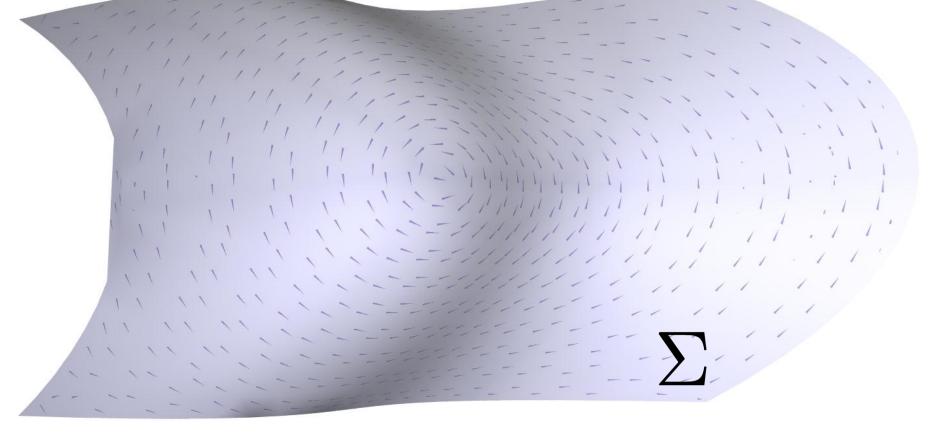


Distance-Preserving Self Map

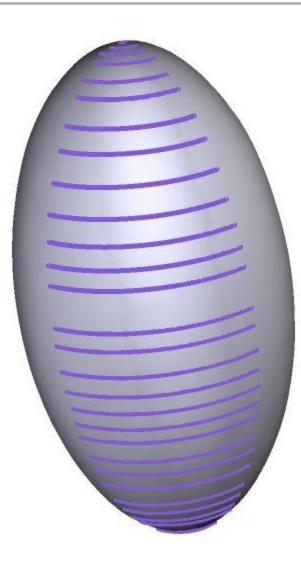
Continuous Self-Isometry



Tangent Vector Field

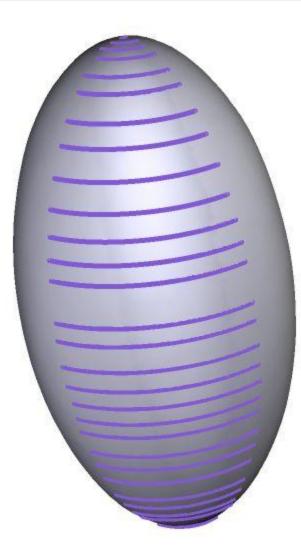


Killing Vector Fields (KVFs)



Continuous self-isometry $\phi_t: \Sigma \to \Sigma$

Killing Vector Fields (KVFs)



Continuous self-isometry $\phi_t: \Sigma \to \Sigma$ Killing vector field $\frac{d\phi_t}{dt}: \Sigma \to T\Sigma$

Discrete Approximate KVFs

Eurographics Symposium on Geometry Processing 2010 Olga Sorkine and Bruno Lévy (Guest Editors) Volume 29 (2010), Number 5

On Discrete Killing Vector Fields and Patterns on Surfaces

Mirela Ben-Chen

Adrian Butscher Justin Solomon

Leonidas Guibas

Stanford University

Abstract

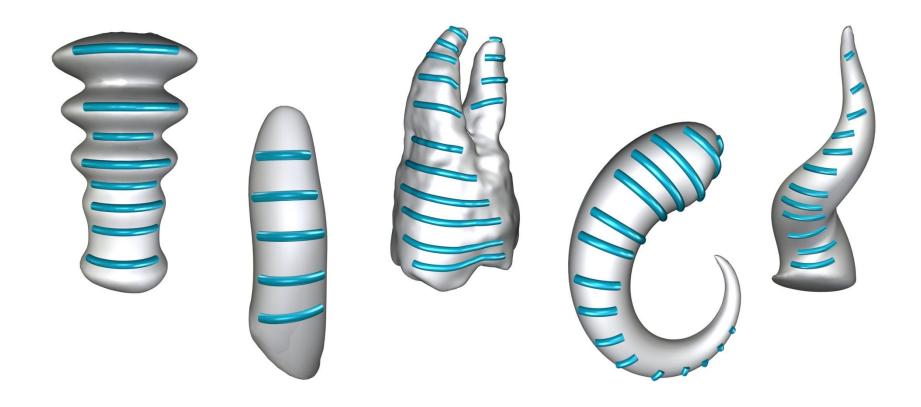
Symmetry is one of the most important properties of a shape, unifying form and function. It encodes semantic information on one hand, and affects the shape's aesthetic value on the other. Symmetry comes in many flavors, amongst the most interesting being intrinsic symmetry, which is defined only in terms of the intrinsic geometry of the shape. Continuous intrinsic symmetries can be represented using infinitesimal rigid transformations, which are given as tangent vector fields on the surface – known as Killing Vector Fields. As exact symmetries are quite rare, especially when considering noisy sampled surfaces, we propose a method for relaxing the exact symmetry constraint to allow

AKVFs: Main Idea

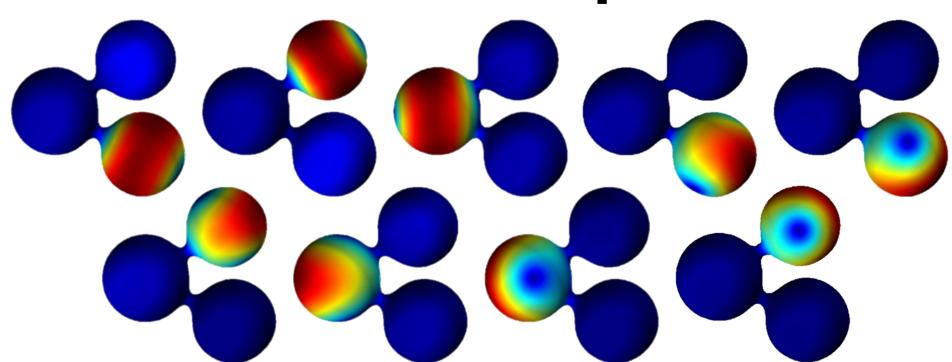
Vector field: $\omega \in \mathbb{R}^E$ Operator (matrix) K measuring deviation from isometry

Want to minimize $||K\omega||^2$ subject to $||\omega|| = 1$ \updownarrow Find eigenvectors ("eigenfields") of K

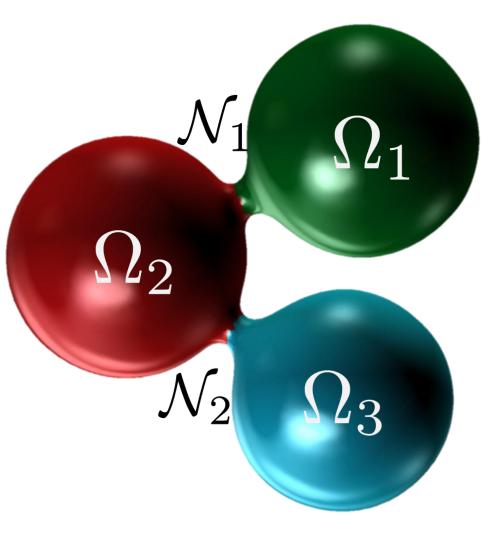
AKVF Examples



Eigenfields of *K* are localized on parts!



Composite Shape



- $_{i}$ = component i- $_{i} \subseteq$ surface Σ_{i} \mathcal{N}_{i} = neck i

Proposition 1. There exist constants $\varepsilon_0, C > 0$ depending only on the eigenvalues of Σ_1 , Σ_2 and a number $M(\varepsilon)$ with $\lim_{\varepsilon \to 0} M(\varepsilon) = \infty$ so that the spectral data of P^*P satisfies: 1. If $\varepsilon < \varepsilon_0$ then for all $n \text{ s.t. } \lambda_n < M(\varepsilon)$ we have

$$|\lambda_n - \mu_n| \leq C/|\log(\varepsilon)|.$$

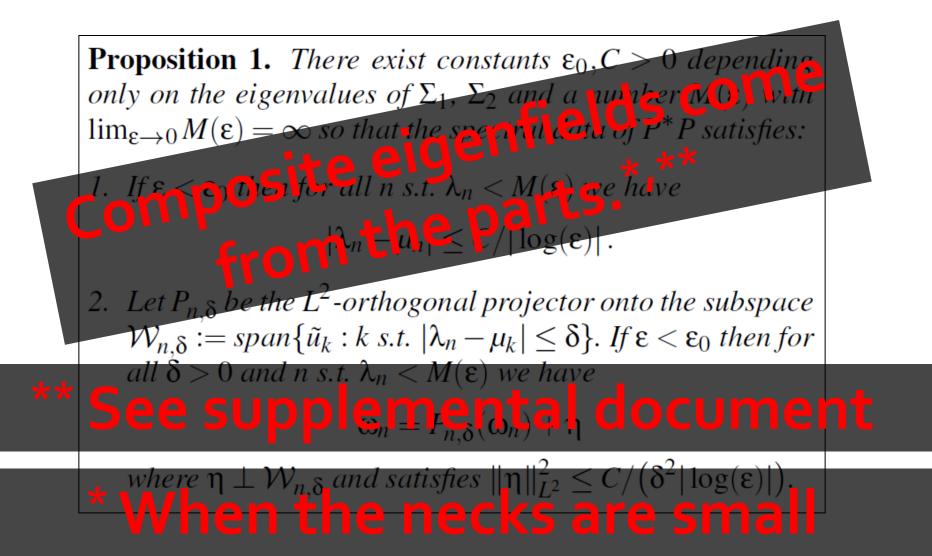
2. Let $P_{n,\delta}$ be the L^2 -orthogonal projector onto the subspace $\mathcal{W}_{n,\delta} := span\{\tilde{u}_k : k \ s.t. \ |\lambda_n - \mu_k| \le \delta\}$. If $\varepsilon < \varepsilon_0$ then for all $\delta > 0$ and $n \ s.t. \ \lambda_n < M(\varepsilon)$ we have

 $\omega_n = P_{n,\delta}(\omega_n) + \eta$

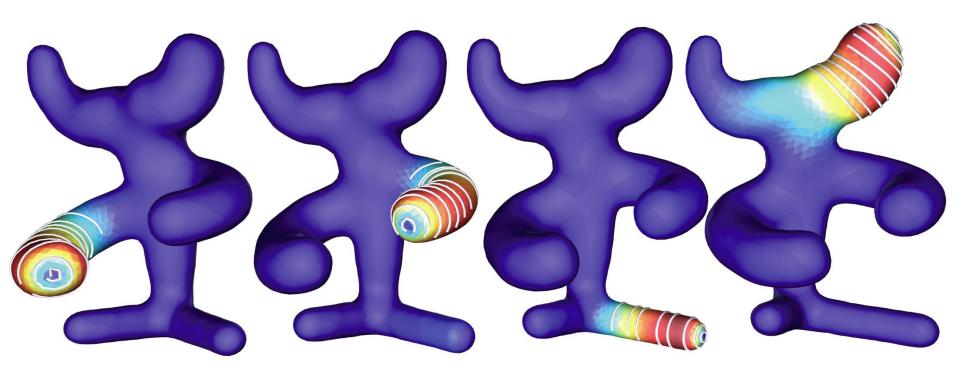
where $\eta \perp W_{n,\delta}$ and satisfies $\|\eta\|_{L^2}^2 \leq C/(\delta^2 |\log(\varepsilon)|)$.

Proposition 1. There exist constants ε_0 , C > 0 depending only on the eigenvalues of Σ_1 , Σ_2 and a number M(0) with $\lim_{\epsilon \to 0} M(\epsilon) = \infty$ so that the spectral value of P^*P satisfies: $If \varepsilon < OUS for all n s.t. \lambda$ rom < M(s) me SureDomesine (c) me Surelog(c)2. Let $P_{n,\delta}$ be the L^2 -orthogonal projector onto the subspace $\mathcal{W}_{n,\delta} := span\{\tilde{u}_k : k \text{ s.t. } |\lambda_n - \mu_k| \leq \delta\}.$ If $\varepsilon < \varepsilon_0$ then for all $\delta > 0$ and *n* s.t. $\lambda_n < M(\varepsilon)$ we have $\omega_n = P_{n,\delta}(\omega_n) + \eta$ where $\eta \perp \mathcal{W}_{n,\delta}$ and satisfies $\|\eta\|_{L^2}^2 \leq C/(\delta^2 |\log(\varepsilon)|)$.

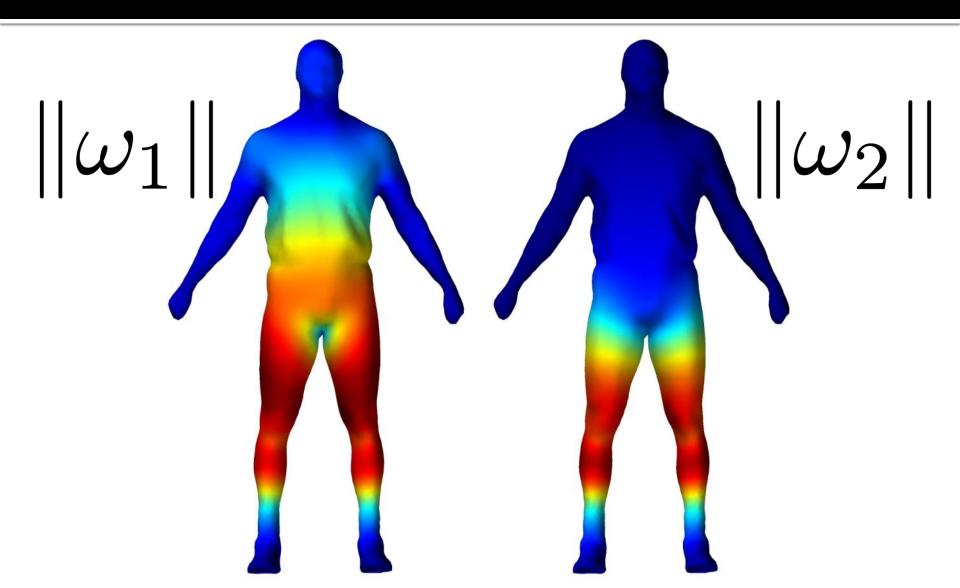
Proposition 1. There exist constants ε_0 . C >0 depending only on the eigenvalues of Σ_1 , Σ_2 and a number M(0) with $\lim_{\epsilon \to 0} M(\epsilon) = \infty$ so that the spectrum d and d. If s post ell n s 2. Let $P_{n,\delta}$ be the L²-orthogonal projector onto the subspace $\mathcal{W}_{n,\delta} := span\{\tilde{u}_k : k \text{ s.t. } |\lambda_n - \mu_k| \leq \delta\}.$ If $\varepsilon < \varepsilon_0$ then for all $\delta > 0$ and *n* s.t. $\lambda_n < M(\varepsilon)$ we have $\omega_n = P_{n,\delta}(\omega_n) + \eta$ $\mathcal{W}_{n,\delta}$ and satisfies $\|\eta\|_{L^2}^2 \leq C/(\delta^2 |\log(\varepsilon)|)$ the necks are small hen



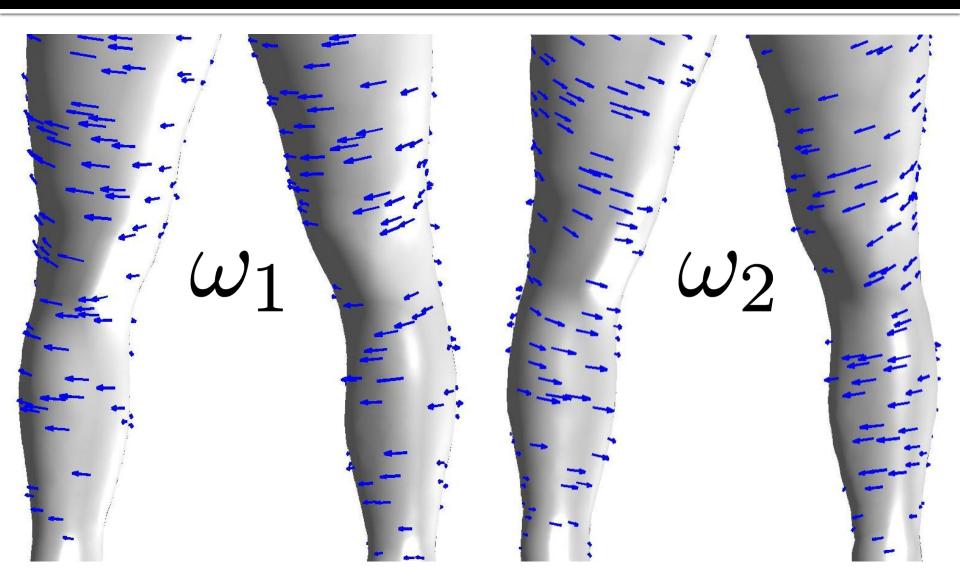
Larger Necks



Problem: Linear Combination



Problem: Linear Combination



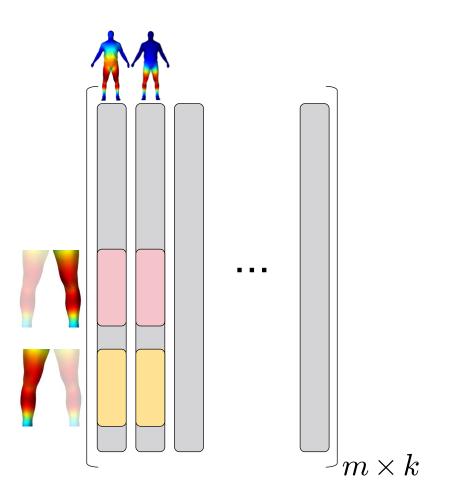
Problem: Linear Combination

 $\|\omega_1 - \omega_2\|$ $\|\omega_1 + \omega_2\|$

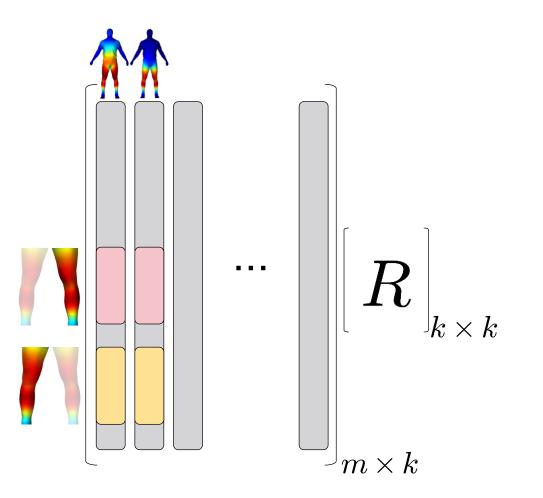
Tangling Energy

$$E(\omega_1, \omega_2) = \int_{\Sigma} \|\omega_1\|^2 \|\omega_2\|^2$$
$$\downarrow$$
$$E(\omega_1, \dots, \omega_N) = \sum_i \sum_{j>i} E(\omega_i, \omega_j)$$

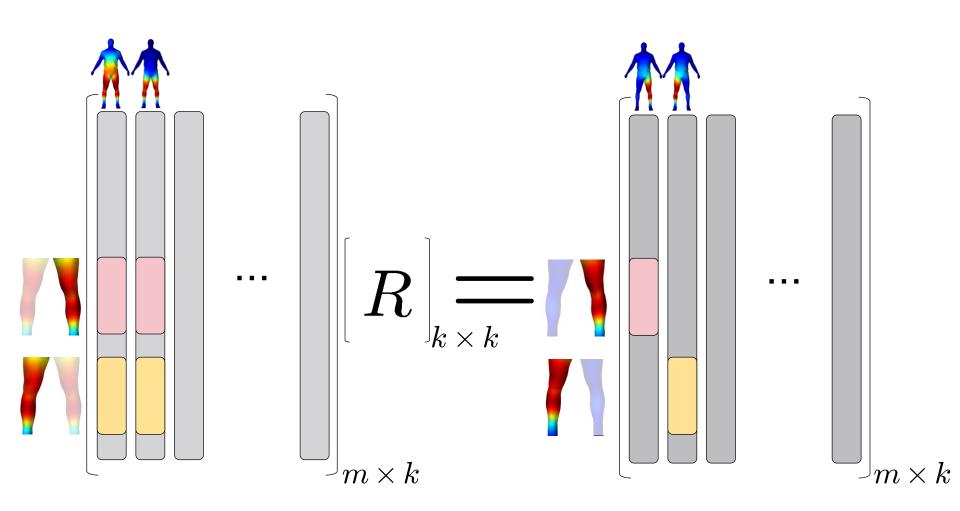
How to Untangle



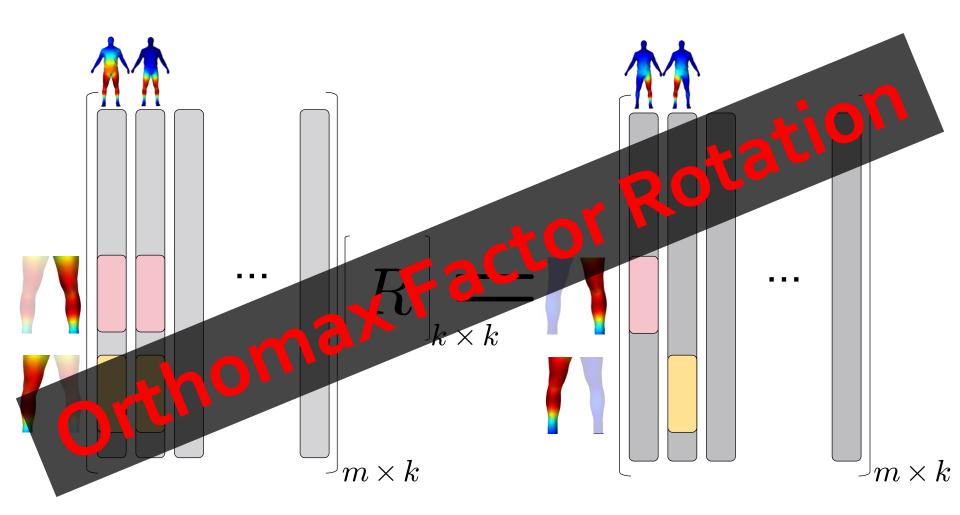
How to Untangle



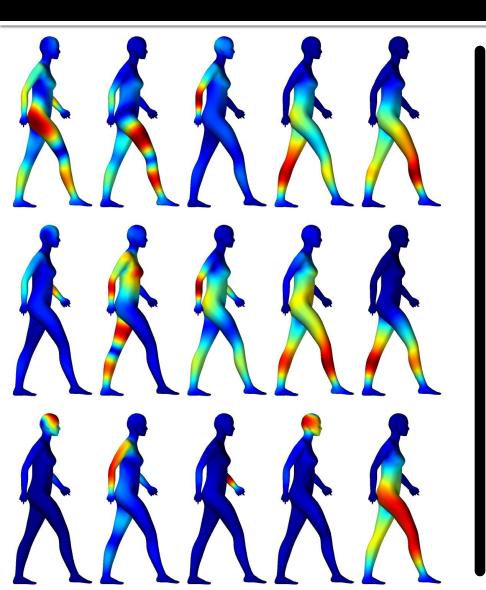
How to Untangle



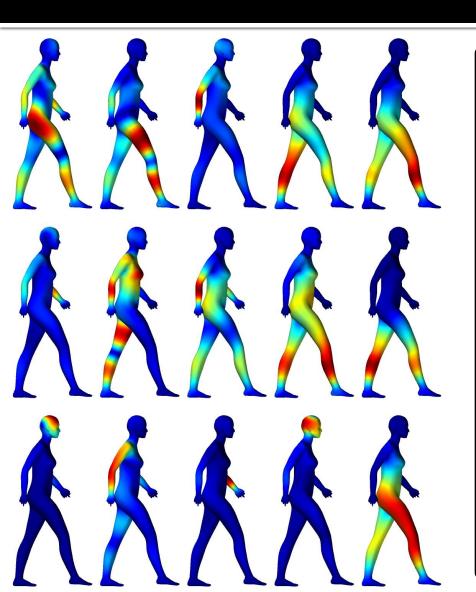
How to Untangle

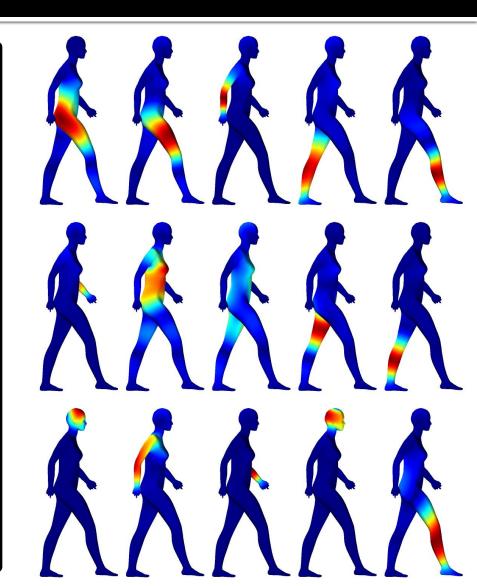


Untangling Example

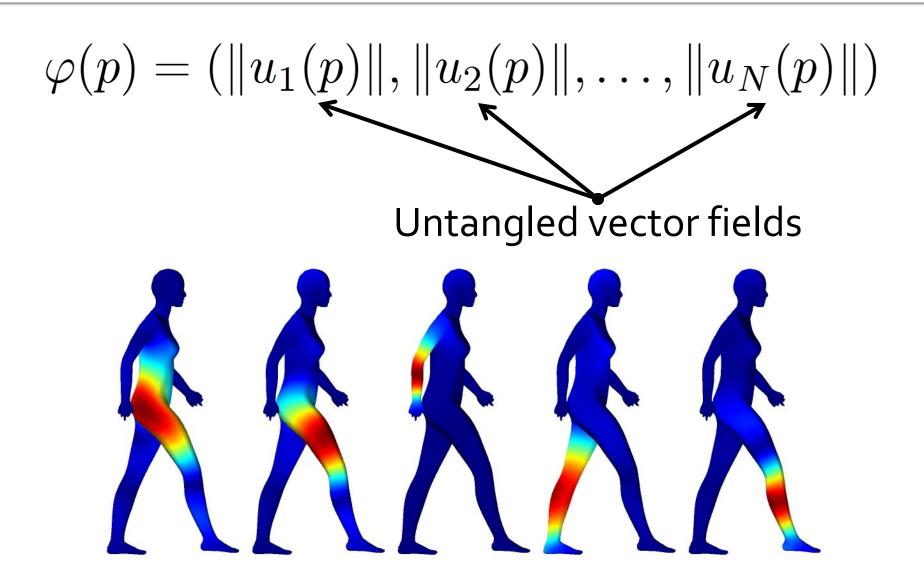


Untangling Example

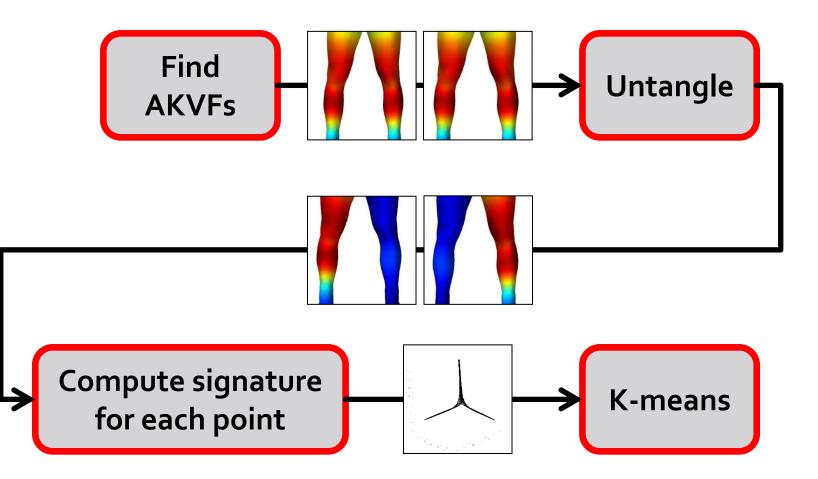




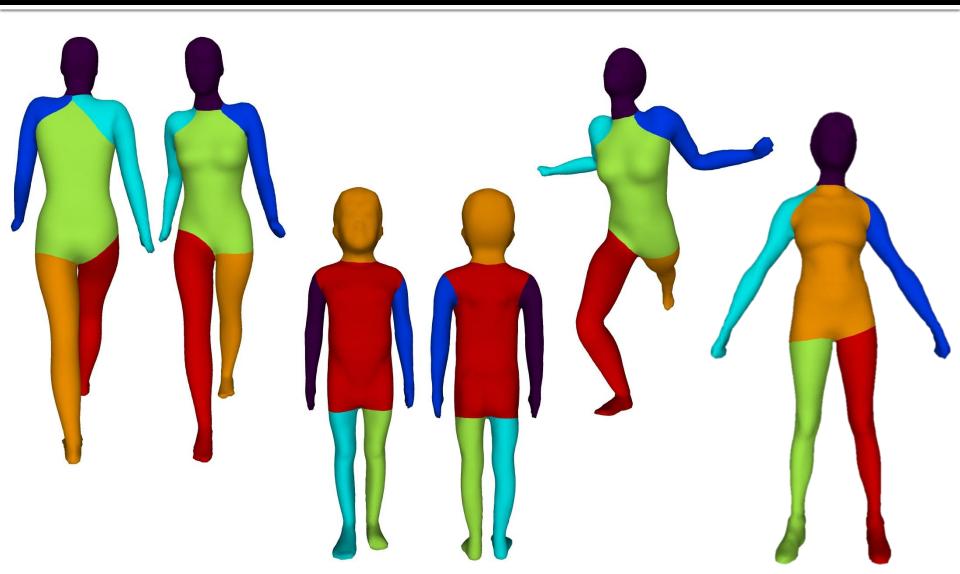
Signatures for Part Discovery



Segmentation Algorithm

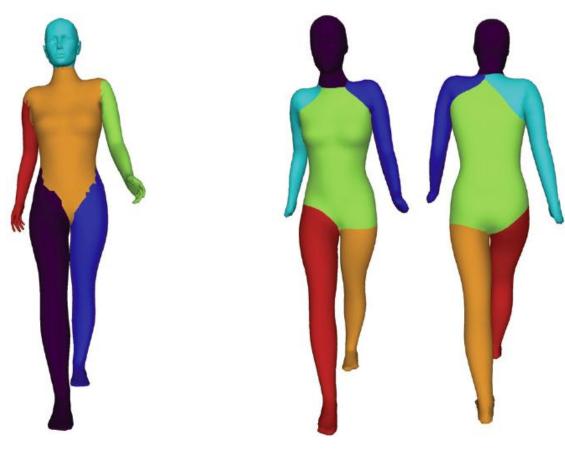


Segmentation Results



Segmentation Results

Comparison



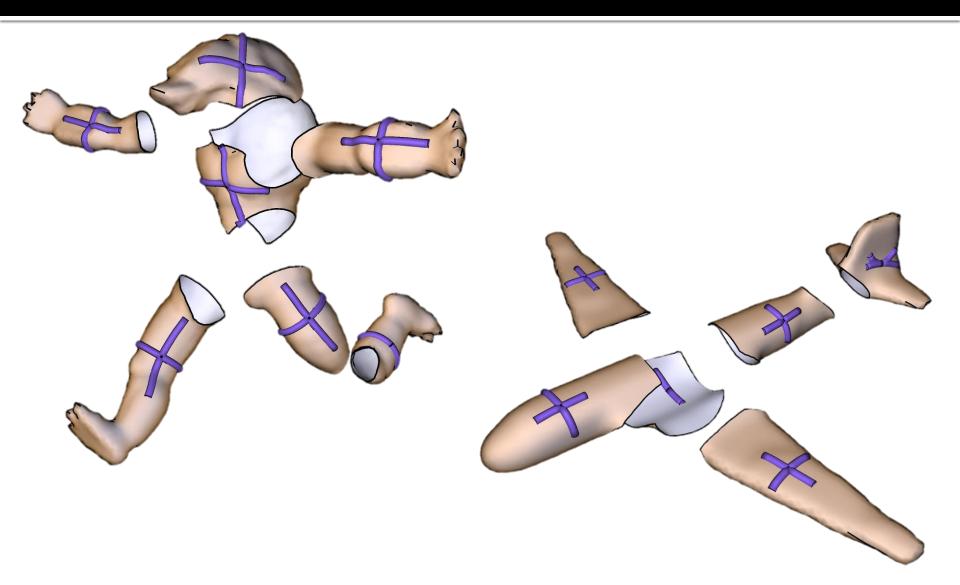
Shape Diameter [Shapira et al. 2008] Randomized Cuts [Golovinskiy et al. 2008] **Intrinsic Primitives**

Comparison

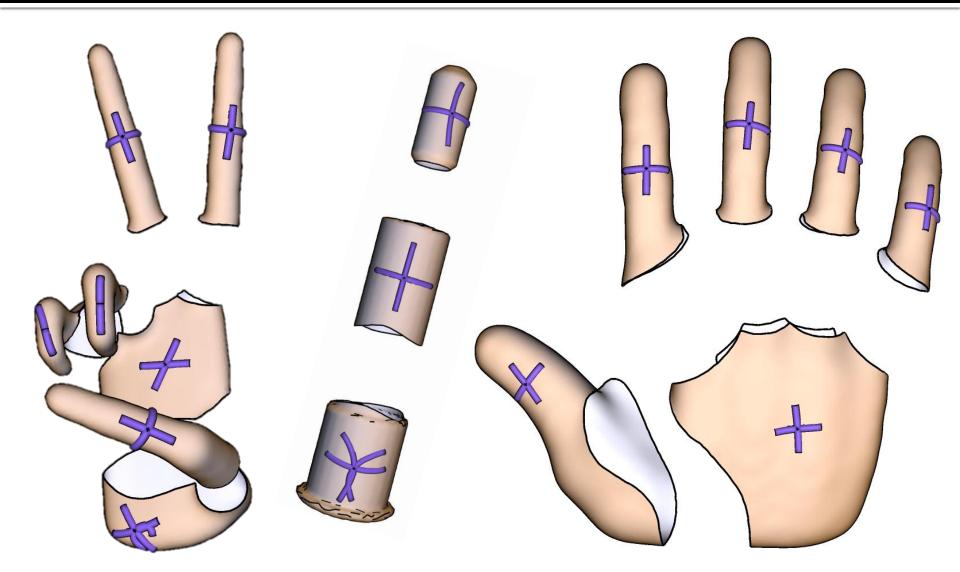
Shape Diameter [Shapira et al. 2008] Randomized Cuts [Golovinskiy et al. 2008]

Intrinsic Primitives

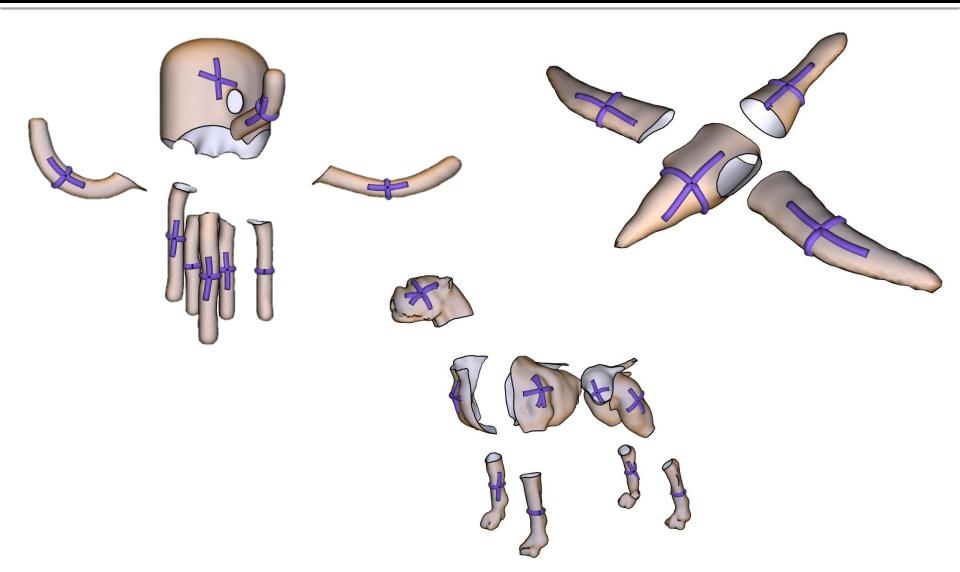
Part Discovery



Part Discovery



Part Discovery



Conclusions

- Segmentation into intrinsically symmetric parts
- KVFs of a composite come from KVFs of its parts

3. Untangle KVFs for better localization

Special Thanks

Questions?