

Earth Movers Distances on Discrete Surfaces

Justin Solomon, Raif Rustamov, Leonidas Guibas Stanford University Adrian Butscher Autodesk Research

Distances in Geometry Processing

Torus by M. Irons, signed distance by R. Kolluri, curve distance by C. Wu

Probabilistic Geometry

"Somewhere over here."

Probabilistic Geometry

"Exactly here."

Probabilistic Geometry

"One of these two places."

Fuzzy Distances

Which is closer, 1 or 2?

Typical Measurement

Fuzzy Distances

Which is closer, 1 or 2? Equidistant.

What Went Wrong?

Alternative: Earth Mover's Distance

Cost to move mass *m* from *x* to *y*:

 $m \cdot d(x, y)$

Move mass from one distribution to the other

Alternative: Earth Mover's Distance

Move mass from one distribution to the other

Earth Mover's Distance

Many names

Wasserstein distance, transportation distance, Mallows distance

Theoretically sound

Regularity properties, continuous and discrete formulations

Popular option

Computer vision, machine learning, operations, graphics

Computer Graphics Applications

Our approach: Use Eulerian Flow

Probabilities *advect* along the surface

New discretization, optimization, and (consequently) applications!

Think of probabilities like a fluid

Alternative Formulation

Scales linearly

Hodge Decomposition of **J**

Fast Optimization

1.
$$\Delta f =
ho_1 -
ho_0$$
 Sparse SPD linear solve for f

2.
$$\inf_g \int_M \|\nabla f(x) + \mathcal{R} \cdot \nabla g(x)\| dx$$

Unconstrained and convex optimization for $m{g}$

Fast Optimization

1.
$$\Delta f =
ho_1 -
ho_0$$
 Sparse SPD linear solve for f

2.
$$\inf_g \int_M \|\nabla f(x) + \mathcal{R} \cdot \nabla g(x)\| dx$$

Unconstrained and convex optimization for g

Piecewise-linear FEM, optimized via ADMM
 Spectral approximation (optional)

$$g(x) = a_1\phi_1(x) + a_2\phi_2(x) + a_3\phi_3(x) + \cdots$$
$$\Delta\phi_k = \lambda_k\phi_k$$

Satisfies triangle inequality!

Fast Optimization

function ADMM-WASSERSTEI $\triangleright \rho_0, \rho_1$ have one value per ver \triangleright Concatenate B_t 's vertically t	$N(\rho_0, \rho_1)$ rtex to obtain <i>B</i>	
$ \begin{array}{l} f \leftarrow \Delta^+(\rho_1 - \rho_0) \\ v \leftarrow \nabla f \end{array} $	 Solve for gradient part Compute gradient vector field 	
for $i \leftarrow 1, 2, 3, \dots$ $z_t \leftarrow B_t c + w_t - \frac{y_t}{\beta}$	 Iterate until convergence Update vector field J 	
$\alpha_t \leftarrow \begin{cases} 1 - \frac{1}{\beta \ z_t\ } & \beta \ z_t \\ 0 & \text{otherw} \end{cases}$ $J_t \leftarrow a_t z_t$	> 1 wise	terations are fast and
$\triangleright \text{ Update coefficients; can pr} \\ c \leftarrow \left(\sum_t B_t^\top B_t\right)^{-1} \left[\sum_t B_t^\top B_t\right]^{-1} \right]$	$ \begin{array}{c} \text{re-factor} \\ T \\ t \end{array} \left(\frac{y_t}{\beta} + J_t - w_t \right) \end{array} $	easy to implement
$y_t \leftarrow y_t + \beta (J_t - B_t c - w_t)$	$(t) \qquad \qquad \triangleright \text{ Update dual}$	
return $J_t \ \forall t \in T$		

Pointwise Distance

Pointwise Distance

Proposition: Satisfies triangle inequality.

Pointwise Distance

Proposition: Satisfies triangle inequality.

Volumetric Distance

Use barycentric coordinates (mean value)

Volumetric Distance

EMD in Optimization

Barycenter Computation

Variations of EMD

Distance to feature

What's Next?

Quadratic ground distance

Other representations Point clouds? Polygon soup? Graphs?

Faster optimization

Earth Movers Distances on Discrete Surfaces

Thanks!

Matlab code online!

Timings

Mesh	$n_{ m vert}$	d_g	d_h	d_b	$d^0_{\mathcal{W}}$	$d^{20}_{\mathcal{W}}$	$d_{\mathcal{W}}^{100}$
Bearing	3182	0.050	0.002	3.52	3.86	30.8	41.4
David	5197	0.096	0.003	10.09	6.18	86.5	121.2
Dog	3716	0.056	0.002	4.66	3.27	38.7	59.8
Teapot	3900	0.063	0.002	6.25	3.87	45.2	57.9
Man	10050	0.18	0.006	42.2	23.2	312.0	511.9

Single-source all-targets

Timings

Mesh size		M for d_g		M for d_h		M for d_b		M for $d_{\mathcal{W}}^0$	
$n_{ m vert}$	$n_{ m tri}$	2	100	2	100	2	100	2	100
2k	4k	0.06	2.60	0.03	0.23	0.03	0.58	0.03	1.22
4k	9k	0.13	6.25	0.05	0.45	0.06	1.42	0.06	2.84
8k	16k	0.24	11.76	0.10	0.97	0.14	4.97	0.14	7.33
16k	32k	0.70	34.93	0.20	1.97	0.33	13.07	0.34	18.45
53k	105k	2.74	121.94	0.71	10.36	1.03	51.99	0.97	68.53
111k	222k	8.06	432.28	2.04	15.14	10.91	289.02	11.00	322.11

All-pairs for sample of *M* points

Robustness

Triangle Inequality

Fix p and q; red points are where $d(p,\cdot) + d(\cdot,q) < d(p,q)$.