Wasserstein Propagation for Semi-Supervised Learning

Justin Solomon* • Raif Rustamov* • Leonidas Guibas* • Adrian Butscher†

*Stanford Department of Computer Science • †Autodesk Research

Motivating Example

Suppose we have a website consisting of three pages connected by links. We collect traffic on two of three pages as **histograms over the clock**:

We wish to predict traffic statistics on the second page. If traffic flows along links, we might assume that adjacent histograms are similar and minimize:

$$\min_{h} \sum_{(v,w)=e} d^2(h_v, h_w)$$

But, the **measure of divergence** $d(h_v, h_w)$ between histograms matters. For example, if d comes from the KL divergence [Subramanya & Bilmes 2011], the predicted distribution is:

This result is **bimodal** and does not slide along the clock as we might expect.

Instead, we propose **Wasserstein propagation**, which uses the quadratic **Wasserstein** or **earth mover's distance** as the measure of divergence:

Now, the predicted distribution of web traffic is **single-peaked** at the **intermediate time**.

Our model respects the **geometry of the domain** and reduces to **Dirichlet label propagation** [Zhu et al. 2003] as the fixed boundary histograms become peaked about single values. We provide a **general linear programming formulation** and show that a common case can be solved using **positive definite linear machinery**.

Optimal Transportation Distances

Our technique is built using the **Wasserstein distance** between probability distributions. Take ρ_v , $\rho_w \in \text{Prob}(\mathbb{R}^2)$. Then, this distance is given by:

$$\mathcal{W}_2(\rho_v, \rho_w) := \inf_{\pi \in \Pi(\rho_v, \rho_w)} \left(\iint_{\mathbb{R}^2} |x - y|^2 d\pi(x, y) \right)^{1/2}$$

 $\Pi(\rho_v, \rho_w)$ denotes the set of distributions over $\mathbb{R}^2 \times \mathbb{R}^2$ marginalizing to ρ_v and ρ_w , resp. Intuitively, this distance measures the **minimum work moving** the mass of ρ_v to ρ_w with quadratic ground distance.

Wasserstein Propagation

We study semi-supervised propagation of probability distribution labels associated with nodes of a graph G = (V, E) given labels on a subset $V_0 \subseteq V$.

For a **distribution-valued map** $\rho: V \to \operatorname{Prob}(D)$ we define a **Dirichlet energy** measuring smoothness along edges:

$$\mathcal{E}_D[\rho] := \sum_{(v,w)\in E} \mathcal{W}_2^2(\rho_v, \rho_w)$$

Then, our technique for learning the missing histograms can be described as:

WASSERSTEIN PROPAGATION

Minimize $\mathcal{E}_D[\rho]$ in the space of distribution-valued maps with prescribed distributions at all $v \in V_0$.

Computation on $Prob(\mathbb{R})$

Suppose $\rho_v, \rho_w \in \operatorname{Prob}(\mathbb{R})$ with **cumulative distribution functions (CDFs)** F_v, F_w . Then, $W_2(\rho_v, \rho_w) = \|F_v^{-1} - F_w^{-1}\|_2$, the Euclidean distance between inverse CDFs [Villani 2003]. Starting from this formula, we prove:

Proposition. For each $v \in V_0$, let F_v be the CDF of ρ_v . For each $s \in [0,1]$ determine $g_s: V \to \mathbb{R}$ as the solution of the **classical Dirichlet problem** $\Delta g_s = 0 \ \forall v \in V \setminus V_0$ with $g_s(v) = F_v^{-1}(s) \ \forall v \in V_0$. Then, for each v, the function $s \mapsto g_s(v)$ is the inverse CDF of a probability distribution ρ_v , and the resulting map $v \mapsto \rho_v$ minimizes the Dirichlet energy.

This proposition shows that our problem becomes **linear** in inverse CDF space:

Theoretical Properties

For $Prob(\mathbb{R})$, we can prove many theoretical properties that **may not hold for direct propagation** of bin values:

- Means and variances of propagated distributions are bounded by those on the boundary.
- If the boundary distributions are **delta functions**, so are the propagated distributions; the underlying map comes from Dirichlet label propagation.

Experiments

We compare to direct propagation of probability distribution functions (PDFs), first using synthetic **distributions in Prob**(\mathbb{R}) **over a line graph**:

Wasserstein propagation moves probability **across** the domain rather than "teleporting" it across. We carry out similar experiments in $Prob(S^1)$ with fixed blue boundary distributions using a linear program:

We apply our technique to predicting histograms of temperatures:

We similarly predict histograms of wind directions.

Application to Manifold-Valued Learning

For manifold M, we can **encode maps** $\phi: V \to M$ probabilistically as $\rho_{\phi}: V \to Prob(M)$ using **delta functions** $\delta_{\phi(v)}$. Then, we can use our pipeline:

We test this method for predicting periodic **wind directions** on the unit circle S^1 from a set of sparse samples over a map of Europe (% error shown):

References

- A. Subramanya & J. Bilmes. "Semi-supervised learning with measure propagation." JMLR 12, 2011.
- X. Zhu et al. "Semi-supervised learning using Gaussian fields and harmonic functions." ICML, 2003.
- C. Villani. Topics in Optimal Transportation. 2003.