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Motivating Example Wasserstein Propagation Experiments
Suppose we have a website consisting of three pages connected by links. We We study semi-supervised propagation of probability distribution labels We compare to direct propagation of probability distribution functions (PDFs),
collect traffic on two of three pages as histograms over the clock: associated with nodes of a graph G = (V, E) given labels on a subsetV, € V. first using synthetic distributions in Prob(R) over a line graph:
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We wish to predict traffic statistics on the second page. If traffic flows along -
links, we might assume that adjacent histograms are similar and minimize: For a distribution-valued map p:V - Prob(D) we define a Dirichlet energy
- d2(h.,. h,, measuring smoothness along edges:
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But, the measure of divergence d(h,, h,,) between histograms matters. For
example, if d comes from the KL divergence [Subramanya & Bilmes 2011], the
predicted distribution is:
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Then, our technique for learning the missing histograms can be described as:

“teleporting” it across. We carry out similar experiments in Prob(S') with
fixed blue boundary distributions using a linear program'
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We apply our technique to predlctmg hlstograms of temperatures:

WASSERSTEIN PROPAGATION

Minimize £p|p| in the space of distribution-valued
maps with prescribed distributions at all v € V.

Computation on Prob(R)

This result is bimodal and does not slide along the clock as we might expect.

Suppose p,, pw € Prob(R) with cumulative distribution functions (CDFs) RSt BN ST e BN
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Instead, we propose Wasserstein propagation, which uses the quadratic F,, F,. Then, Wy(py, pw) = ||F, ™ — F, ‘2, the Euclidean distance between R o “PDF wm%éﬁwg *‘-.. 3 gv o e
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5 inverse CDFs [Villani 2003]. Starting from this formula, we prove: g £
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Proposition. For each v € V,, let E, be the CDF of p,. For each s € [0,1]
determine g.:V — R as the solution of the classical Dirichlet problem
Ag, = 0Vv € V\V, with g,(v) = E;1(s) Vv € V,. Then, for each v, the
function s » g.(v) is the inverse CDF of a probability distribution p,,, and the
resulting map v » p, minimizes the Dirichet energy.

Average error

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 3'-',225“,&'-';}’"-‘:.":,,,1’," %
Percent of labeled nodes . -'ﬁ?r’.-ﬁ

PDF (std. dev.)

Wasserstein (Std. ev.)

Ground truth o(std. d.)
We similarly predict histograms of wind directions.

Now, the predicted distribution of web traffic is single-peaked at the
intermediate time.

This proposition shows that our problem becomes linear in inverse CDF space:

Application to Manifold-Valued Learning

For manifold M, we can encode maps ¢:V — M probabilistically as pg:V —
Prob(M) using delta functions 6 4,). Then, we can use our pipeline:

Input Delta encoding Propagation Extract peaks

Our model respects the geometry of the domain and reduces to Dirichlet
label propagation [Zhu et al. 2003] as the fixed boundary histograms become
peaked about single values. We provide a general linear programming
formulation and show that a common case can be solved using positive
definite linear machinery.
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Linear program

We test this method for predicting periodic wind directions on the unit circle

Linear solve
| S1 from a set of sparse samples over a map of Europe (% error shown):

http://realgl.blogspot.com/2013/01/pdf-cdf-inv-cdf.html
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For Prob(R), we can prove many theoretical properties that may not hold for
direct propagation of bin values:

Our technique is built using the Wasserstein distance between probability
distributions. Take p,, p,, € Prob(R?%). Then, this distance is given by:

1/2
Ws(po, pw) :=  inf // x — y|* dr(z, y)
TE€Il(pov,pw) R2

[1(p,, py,) denotes the set of distributions over R? x R* marginalizing to p,
and p,,, resp. Intuitively, this distance measures the minimum work moving
the mass of p,, to p,, with quadratic ground distance.

* Means and variances of propagated distributions are bounded by those on
the boundary.

Ground truth PDF (19%) Wasserstein (15%)

 |If the boundary distributions are delta functions, so are the propagated

distributions; the underlying map comes from Dirichlet label propagation. References
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