

Laplacian Operators

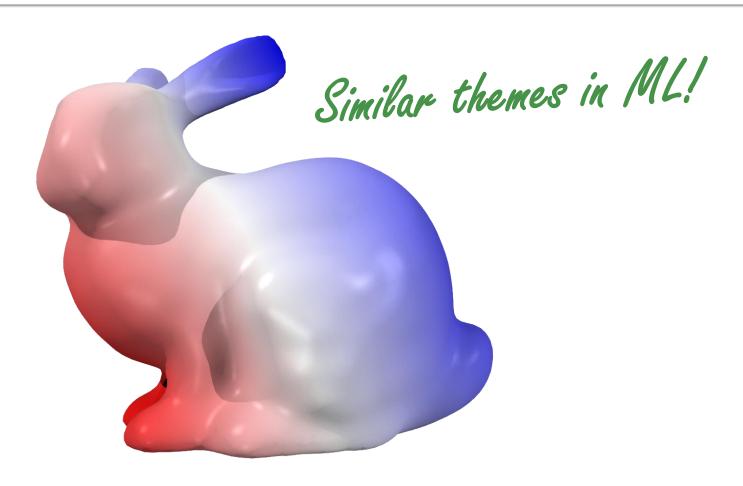
Justin Solomon

Stanford University

"Laplace-Beltrami: The Swiss Army Knife of Geometry Processing"

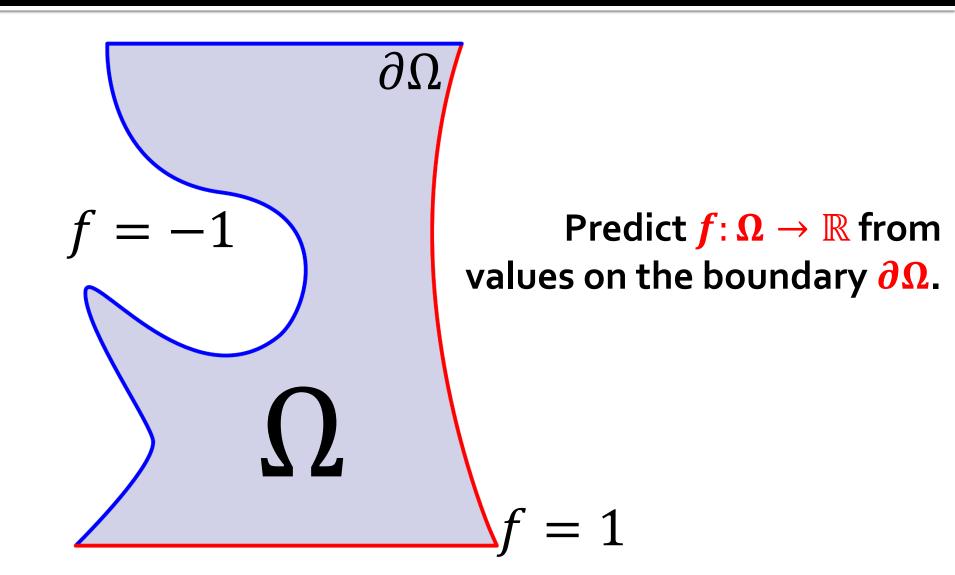
SGP 2014 tutorial J. Solomon, K. Crane, and E. Vouga

My Background



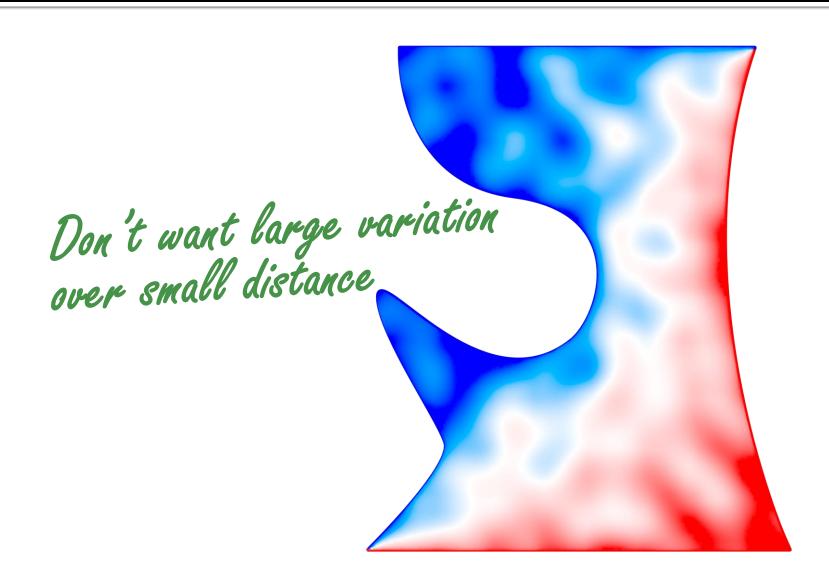
Geometry processing

Motivation: Interpolation Problem

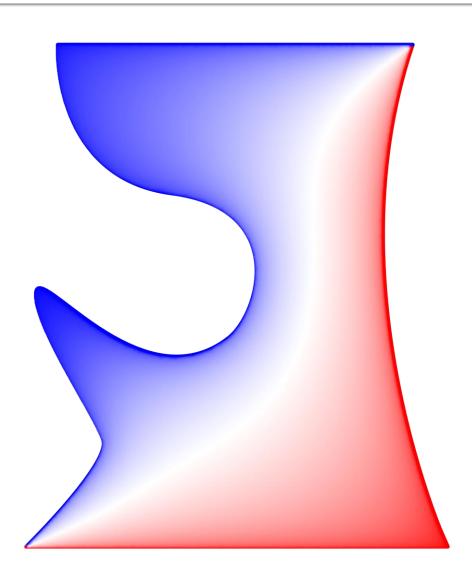


Desired: Smooth Functions

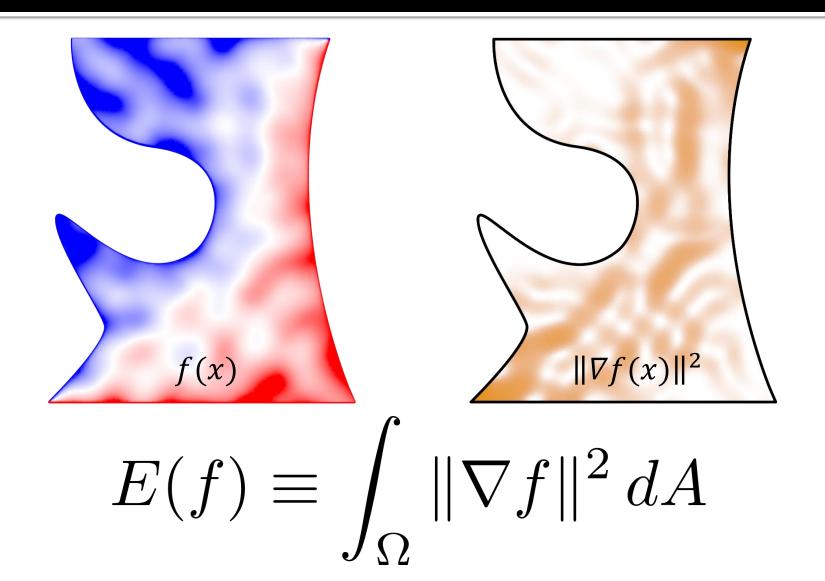
Desired: Smooth Functions



Desired: Smooth Functions



Dirichlet Energy



Dirichlet Energy

$$E(f) \equiv \int_{\Omega} \|\nabla f\|^2 \, dA$$

- Nonnegative
- Zero for constant functions
- Measures smoothness

Dirichlet Problem

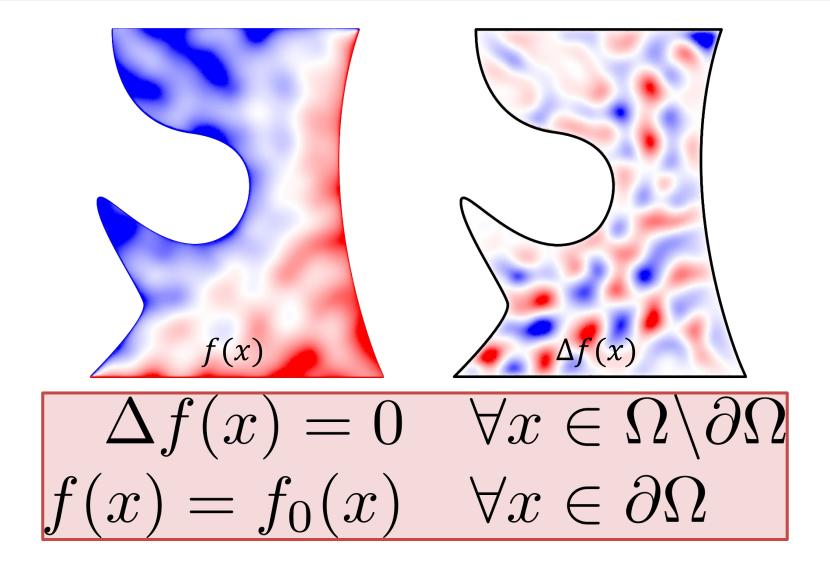
$$\min_{f} E(f) \equiv \int_{\Omega} \|\nabla f\|^2 dA$$

s.t. $f|_{\partial\Omega}$ given

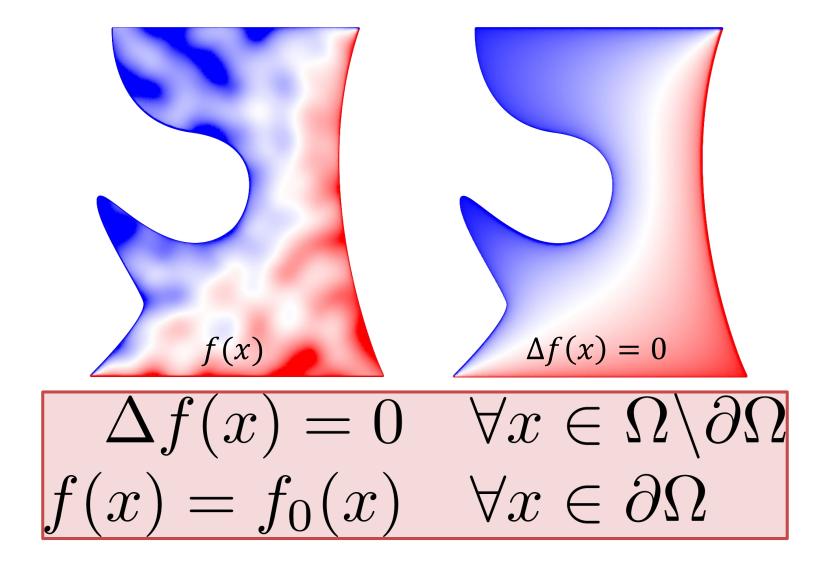
Set derivative to zero

$$\Delta f(x) = 0 \quad \forall x \in \Omega \backslash \partial \Omega$$
$$f(x) = f_0(x) \quad \forall x \in \partial \Omega$$

Laplacian Operator

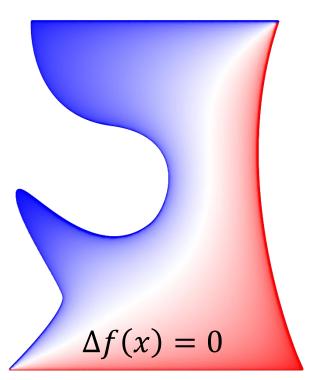


Laplacian Operator



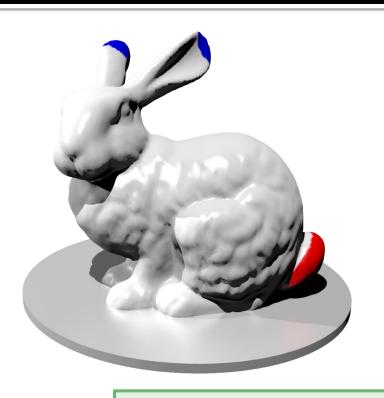
Intuition

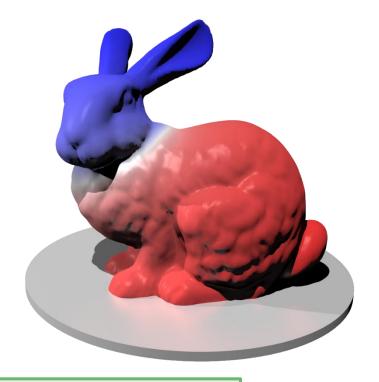
Temperature at steady state



$$\Delta f(x) = 0 \quad \forall x \in \Omega \backslash \partial \Omega$$
$$f(x) = f_0(x) \quad \forall x \in \partial \Omega$$

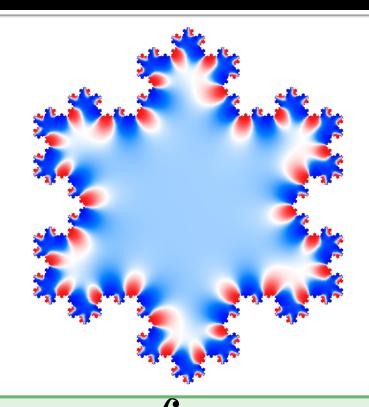
Dirichlet on Other Domains





$$E(f) \equiv \int_{\Omega} \|\nabla f\|^2 \, dA$$

Dirichlet on Other Domains



$$E(f) \equiv \int_{\Omega} \|\nabla f\|^2 \, dA$$

Pattern for Finding Laplacian

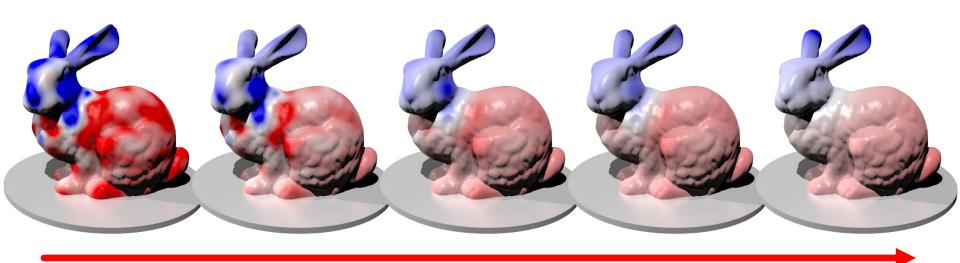
$$\min_f \quad E(f) \equiv \int_{\Omega} \|\nabla f\|^2 dA$$

s.t. $f|_{\partial\Omega}$ given

Set derivative to zero

$$\Delta f(x) = 0 \quad \forall x \in \Omega \backslash \partial \Omega$$
$$f(x) = f_0(x) \quad \forall x \in \partial \Omega$$

Related Equations

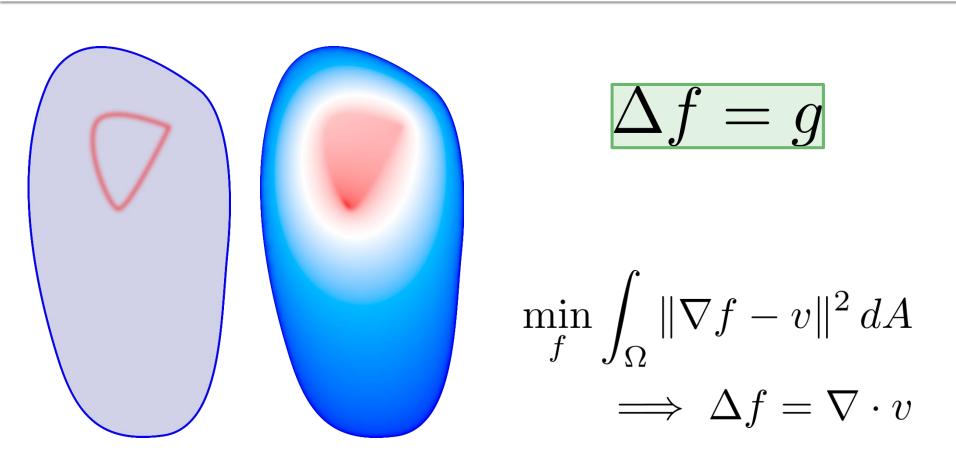


$$rac{\partial f}{\partial t} = \Delta f$$
 Gradient descent on Dirichlet energy

Heat equation

+t

Related Equations



Poisson equation

Algebraic Properties

• linearity:
$$\Delta (f(x) + \alpha g(x)) = \Delta f(x) + \alpha \Delta g(x)$$

• constants in kernel: $\Delta \alpha = 0$

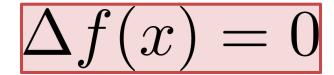
for functions that vanish on ∂M :

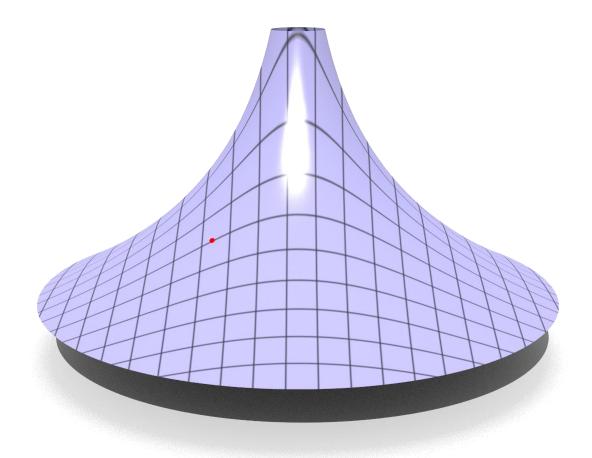
• self-adjoint:
$$\int_{M} f \Delta g \, dA = -\int_{M} \langle \nabla f, \nabla g \rangle \, dA = \int_{M} g \Delta f \, dA$$

• negative:
$$\int_{M} f \Delta f \, dA \leq 0$$

(intuition: $\Delta \approx$ an ∞ -dimensional negative-semidefinite matrix)

Harmonic Functions





Harmonic Functions

$$\Delta f(x) = 0$$

- Smooth and analytic
- Mean value property:

$$f(x) = \frac{1}{\pi r^2} \int_{B_r(x)} f(y) dA$$

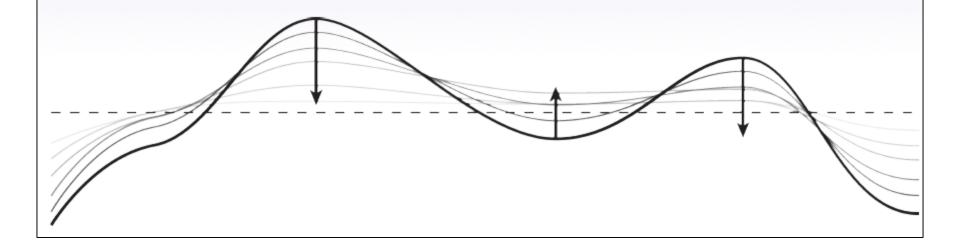
 Maximum principle: No local maxima or minima

(can have saddles)

Geometric Properties

for a curve $\gamma(u) = (x[u], y[u]) : \mathbb{R} \to \mathbb{R}^2$

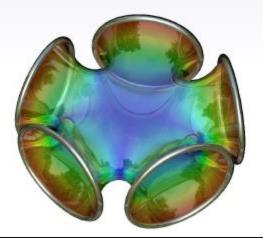
- total Dirichlet energy $\int \|\nabla x\|^2 + \|\nabla y\|^2$ is arc length
- $\Delta \gamma = (\Delta x, \Delta y)$ is gradient of arc length
- $\Delta \gamma$ is the curvature normal $\kappa \hat{n}$
- minimal curves are harmonic (straight lines)



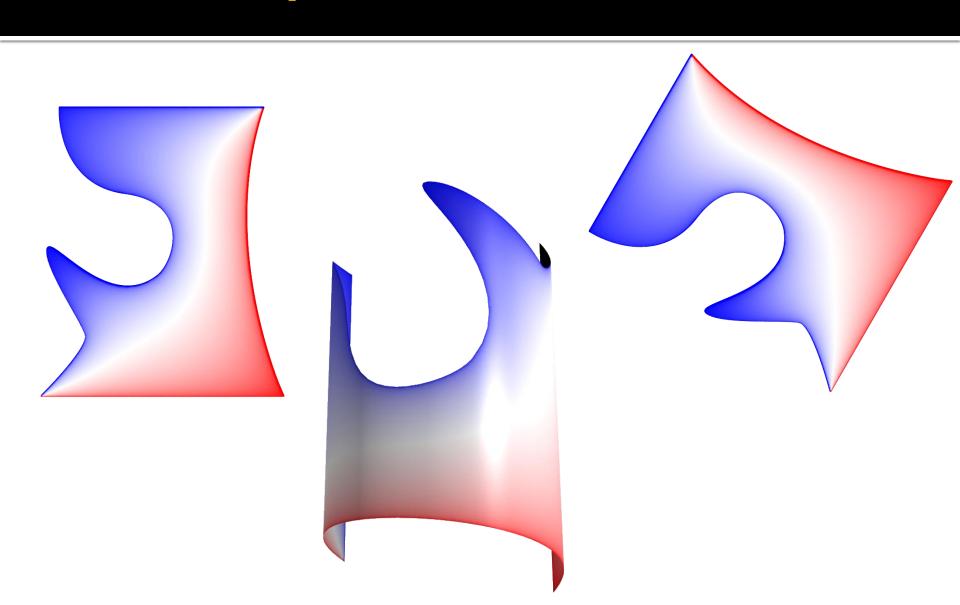
Geometric Properties

for a surface $r(u, v) = (x[u, v], y[u, v], z[u, v]) : \mathbb{R} \to \mathbb{R}^3$

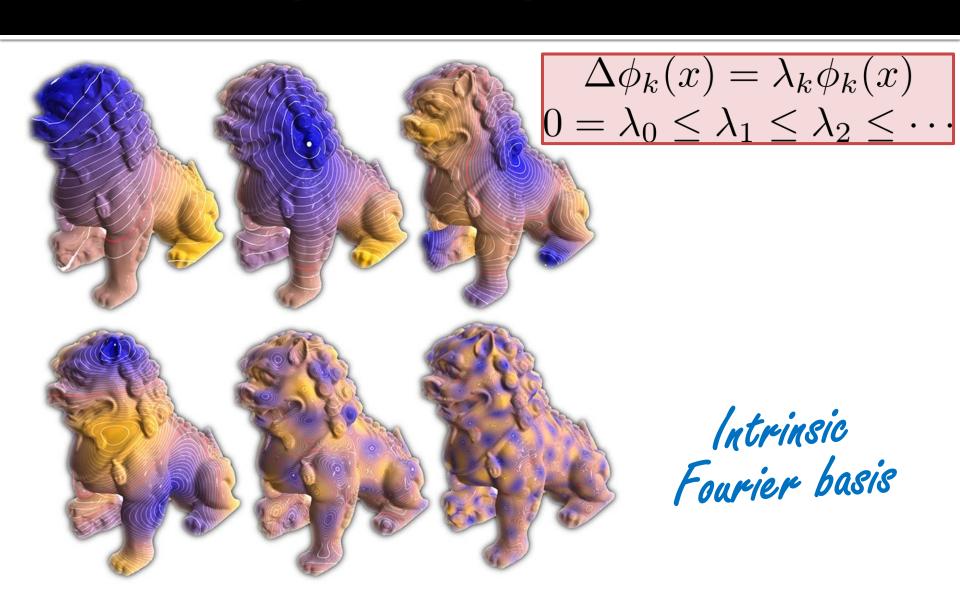
- total Dirichlet energy is surface area
- $\Delta r = (\Delta x, \Delta y, \Delta z)$ is gradient of surface area
- Δr is the mean curvature normal $2H\hat{n}$
- minimal surfaces are harmonic!



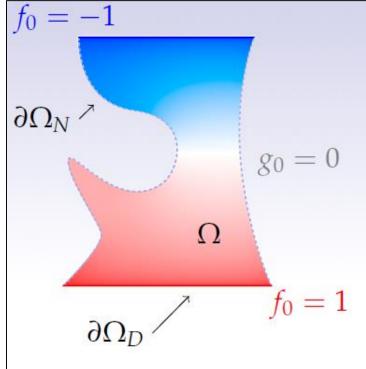
Laplacian is Intrinsic



Laplacian Spectrum



Boundary Conditions



• can specify $\nabla f \cdot \hat{n}$ on boundary instead of f:

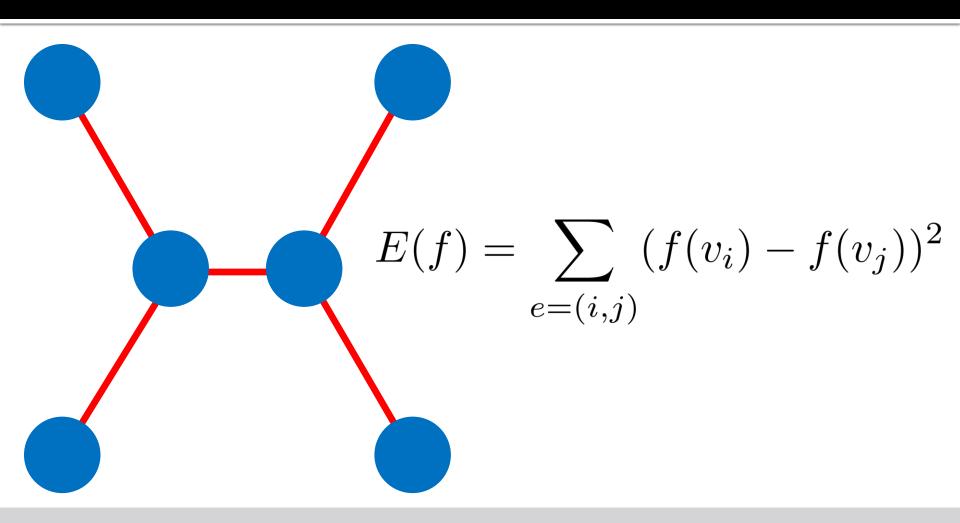
$$\Delta f(x) = 0$$
 $x \in \Omega$
 $f(x) = f_0(x)$ $x \in \partial \Omega_D$ (Dirichlet bdry)
 $\nabla f \cdot \hat{n} = g_0(x)$ $x \in \partial \Omega_N$ (Neumann bdry)

- usually: $g_0 = 0$ (natural bdry conds)
- physical interpretation: free boundary through which heat cannot flow

Numerical Linear Algebra

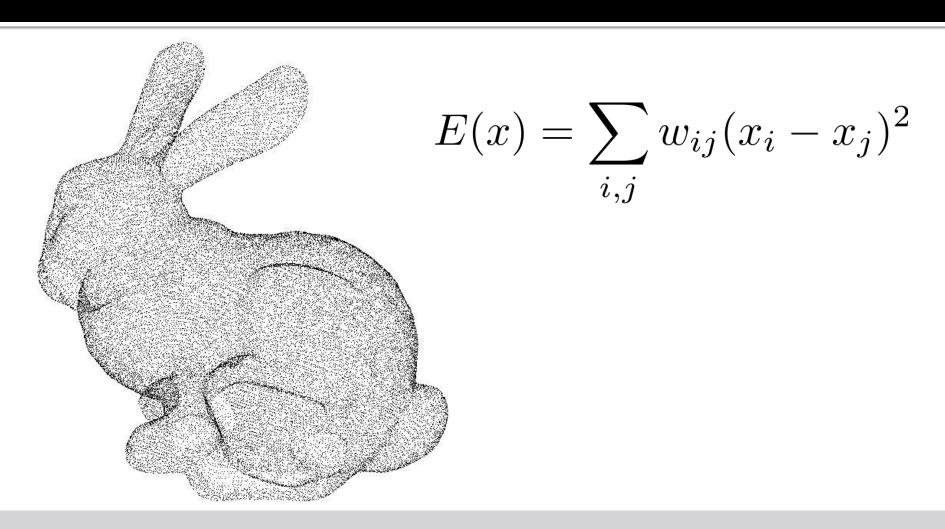
- Laplacian matrices should be:
 - Sparse
 - Positive (semi-)definite
- Typical solvers
 - Direct: LDLT
 - Iterative: Conjugate gradients

Constructing Laplacian Operators



Per-vertex functions on a graph

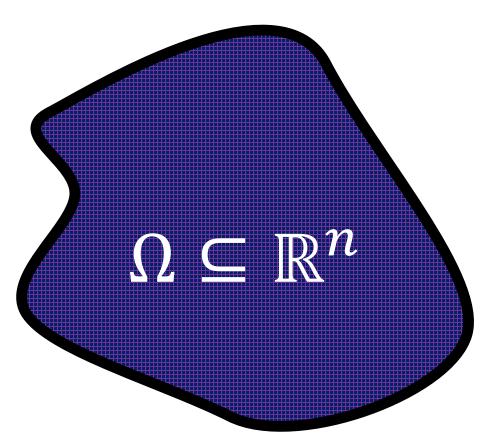
Constructing Laplacian Operators



Given pairwise similarity measure

Integration by Parts

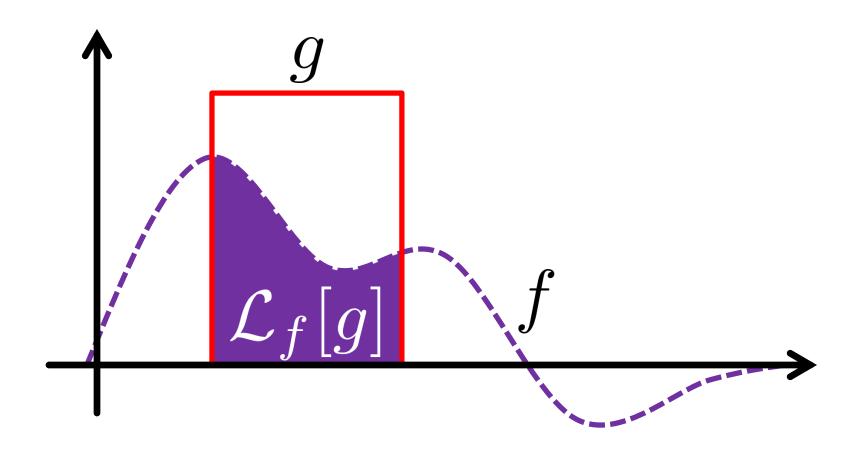
$$\int_{\Omega} f \Delta g \, dA = \text{boundary terms} - \int_{\Omega} \nabla f \cdot \nabla g \, dA$$



L² Dual of a Function

$$f:\Omega o\mathbb{R}$$
 \downarrow \downarrow $\mathcal{L}_f:L^2(\Omega) o\mathbb{R}$ $\mathcal{L}_f[g]\equiv\int_\Omega fg\,dA$ \uparrow Test function"

Observation



Can recover function from dual

Dual of Laplacian

$$\mathcal{L}_{\Delta f}[g] = \int_{\Omega} g \Delta f \, dA$$

$$= \text{const.} - \int_{\Omega} \nabla f \cdot \nabla g \, dA$$

Use Laplacian without evaluating it!

One derivative is enough

Galerkin's Approach

Choose one of each:

Function space

Test functions

Often the same!

First Order Finite Elements

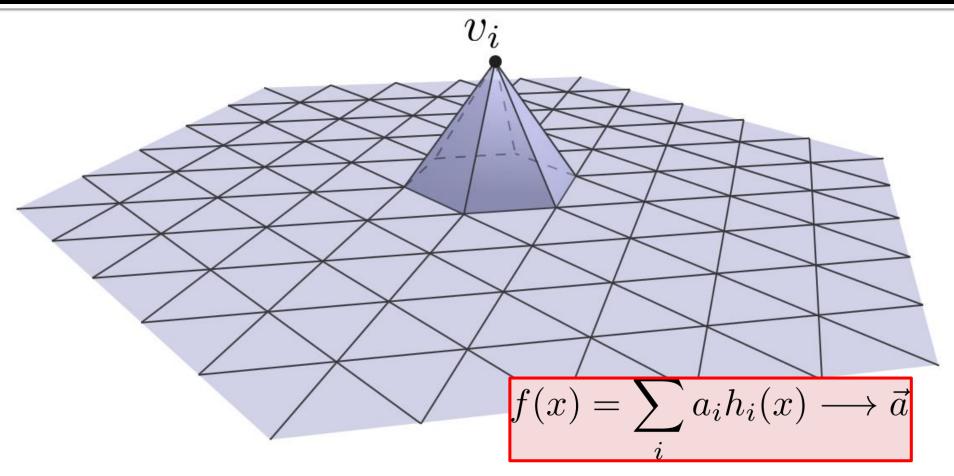
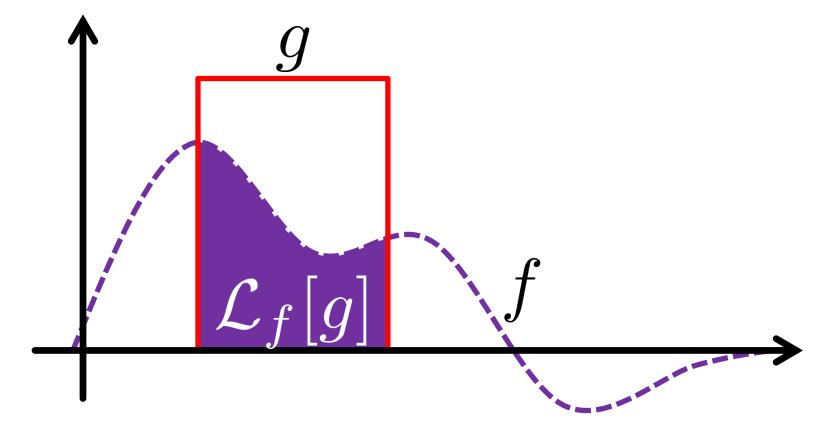


Image by K. Crane

One "hat function" per vertex

Weak Solutions

$$\int_{\Omega} \phi \Delta f \, dA = \int_{\Omega} \phi g \, dA \, \forall \text{test functions } \phi$$



Finite Elements Weak Solutions

$$\int_{\Omega} h_i \Delta f \, dA = \int_{\Omega} h_i g \, dA \, \forall \text{hat functions } h_i$$

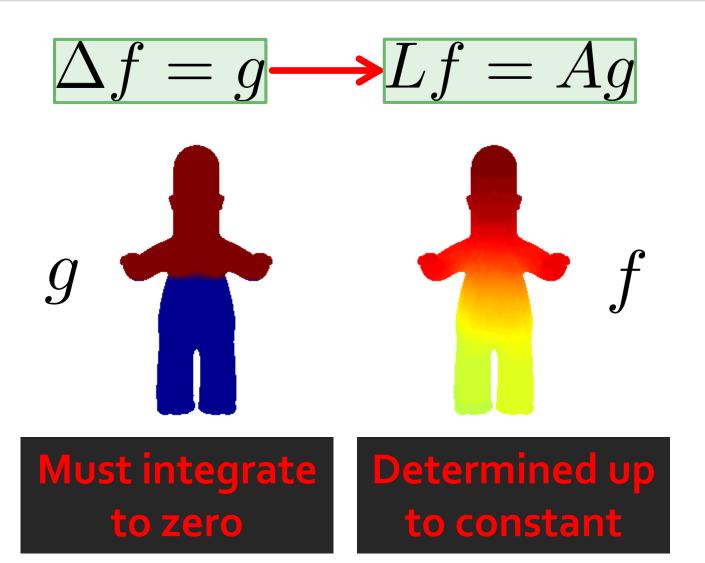
$$\int h_i \Delta f \, dA = -\int \nabla h_i \cdot \nabla f \, dA$$

$$= -\int \nabla h_i \cdot \left(\sum_j a_j h_j\right) \, dA$$

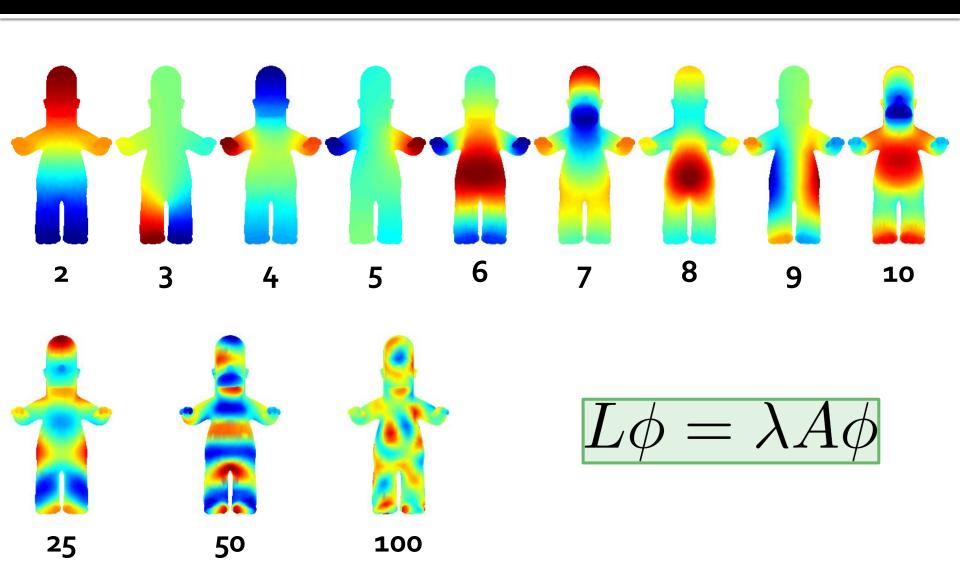
$$= -\sum_j a_j \int \nabla h_i \cdot \nabla h_j \, dA$$

$$\equiv \sum_i L_{ij} a_j \text{ (linear system!)}$$

Poisson Equation with FEM



(Generalized) Eigenhomers



Applications to Geometry

<other_slides>

Connections to Machine Learning

Most obvious:

Graph Laplacian

- Geometric structure for data points
- Use case: semi-supervised learning

Connections to Machine Learning

But:

Graph Laplacian is a weak notion of geometry.

- How do you construct the graph?
- How do you understand distances?

Connections to Machine Learning

Laplacians (and their inverses) come from "kernel matrices."

- Ingredients: Gradients and inner products
- PDE in high-dimensional point clouds?
- Can we learn Laplacians?
- Can we determine intrinsic dimensionality?
- Can you hear the shape of a dataset?

Laplacian Operators

Headed out tomorrow!