
Fast Quasi-Harmonic Weights for Geometric Data Interpolation

YU WANG and JUSTIN SOLOMON,Massachusetts Institute of Technology, USA

Ours (0.9 min) [Jacobson et al. 2011] (1.4 hr)

Fig. 1. Color interpolation using our skinning weights and bounded biharmonic weights [Jacobson et al. 2011]. Note the latter weights (and thus the blended
color) have a local extrema at the tail of the Asian dragon. Our weights are free from local extrema and have a slightly lower smoothness energy. More
importantly, our weights are many orders of magnitude faster to compute. Previous methods can take hours on this model, which has more than one million
tetrahedra. Our method takes less than a minute, with potential for further speedups.

We propose quasi-harmonic weights for interpolating geometric data, which

are orders of magnitude faster to compute than state-of-the-art. Currently,

interpolation (or, skinning) weights are obtained by solving large-scale

constrained optimization problems with explicit constraints to suppress

oscillative patterns, yielding smooth weights only after a substantial amount

of computation time. As an alternative, our weights are obtained as minima

of an unconstrained problem that can be optimized quickly using straight-

forward numerical techniques. We consider weights that can be obtained as

solutions to a parameterized family of second-order elliptic partial differen-

tial equations. By leveraging the maximum principle and careful parameter-

ization, we pose weight computation as an inverse problem of recovering

optimal anisotropic diffusivity tensors. In addition, we provide a customized

ADAM solver that significantly reduces the number of gradient steps; our

solver only requires inverting tens of linear systems that share the same

sparsity pattern. Overall, our approach achieves orders of magnitude ac-

celeration compared to previous methods, allowing weight computation in

near real-time.

CCS Concepts: • Computing methodologies → Animation.

Additional Key Words and Phrases: skinning animation, inverse problem,

optimal control, partial differential equations, geometric variational problem.

ACM Reference Format:
Yu Wang and Justin Solomon. 2021. Fast Quasi-Harmonic Weights for Geo-

metric Data Interpolation. ACM Trans. Graph. 40, 4, Article 73 (August 2021),
15 pages. https://doi.org/10.1145/3450626.3459801

1 INTRODUCTION
Skinning is perhaps the simplest and most popular method for shape

deformation. The difficulty of drawing skinning weights by hand,

Authors’ address: Yu Wang, wangyu9@mit.edu; Justin Solomon, jsolomon@mit.edu,

Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA,

02139, USA.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

0730-0301/2021/8-ART73

https://doi.org/10.1145/3450626.3459801

however, motivates automatic computation of skinning weights as a

critical way to make the animation pipeline more efficient. Beyond

their original application in animation, however, automatic skinning

weight computation has found application in graphics pipelines

beyond animation as a generic tool to interpolate geometric and

physical quantities smoothly across geometric domains.

The problem of computing skinning weights amounts to design-

ing a partition of unity, or set of functions that sums to 1 at every

point on the domain, that satisfies a few properties. There is one

skinning function per control handle of a deforming shape, which

typically equals 1 at the handle and decays as we move farther away;

this function indicates the influence of displacing that handle on

the deformation of the rest of the shape. Other desirable properties

for skinning weights include smoothness, nonnegativity, and a lack

of local optima away from the handles.

Typically, automatic skinning weights are computed as solutions

to certain geometric variational problems. Linear partial differential

equations (PDEs) yield weights that are fast to compute, such as

harmonic weights [Joshi et al. 2007]. These weights, however, have

undesirable properties for animation, notably spike artifacts and

nonsmoothness at control handles. Higher-order PDEs like the bi-

harmonic equation [Botsch and Kobbelt 2004] remove some issues

while introducing new ones, such as oscillation, negative values,

and local extrema [Jacobson et al. 2011]. Hence, a popular method,

bounded biharmonic weights [Jacobson et al. 2011, 2012b], adds ex-

plicit constraints to the problem to prevent these artifacts, yielding

a quadratic programming formulation that is considerably slower to

solve. This prohibits applications where fast iteration or interactive

feedback are desired (see e.g. [Wang et al. 2015]).

As an alternative to the methods above, we present an algorithm

that extracts high-quality skinning weights orders of magnitude

faster than past work. Rather than relying on explicit constraints,

we optimize in the family of second-order elliptic PDEs parameter-

ized by positive definite tensor fields, which can be interpreted as

spatially-varying anisotropic diffusivity. The maximum principle

ACM Trans. Graph., Vol. 40, No. 4, Article 73. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459801
https://doi.org/10.1145/3450626.3459801

73:2 • Wang and Solomon.

holds for elliptic PDEs, automatically guaranteeing that our weights

are positive and without local extrema.

Our method is built on the key insight that second-order elliptic

PDEs provide a rich parametric family of weights that automatically

satisfy all necessary constraints (§4.3). Within this family, we simply

search for the minimizer of a conventional smoothness energy. This

leads to a nonlinear but unconstrained optimization problem.

We propose a customized ADAM optimizer to solve the problem.

Typical gradient-based optimizers used in geometry processing,

such as L-BFGS, take substantially more steps to converge for our

problem. In contrast, our customized ADAM optimizer is extremely

efficient, only requiring tens of gradient steps. The major computa-

tional cost of our method is to solve 10 to 20 sparse linear systems,

each with the same sparsity pattern. We can accelerate solution of

these sparse linear systems using symbolic pre-factorization.

Our method takes seconds to find optimal weights on difficult

examples, compared to the constrained optimizations in previous

methods that could take hours. Our weights are visually similar to

the state-of-the-art with orders-of-magnitude speedup, as confirmed

on typical examples in skinning animations (see §7).

2 RELATED WORK
Interpolating data along geometric domains is a ubiquitous task in

graphics, geometry processing, and manifold data analysis. Applica-

tions in these areas encounter the problem of determining a set of

weight functions such that each function corresponds to a control

handle (or data point) on the domain, indicating the spatial influence

of the handle; the weights are then used to propagate data at the

control handles to the remainder of the domain. These weights are

known as skinning weights due to their use in character animation.

2.1 Applications of Skinning Weights
The main application of skinning weights is to determine a shape de-

formation from handle displacements. See [Jacobson et al. 2014] for

an extensive survey of skinning-based animation; here we mention

a few exemplary methods.

Linearly interpolating affine transformation matrices, known as

linear blend skinning (LBS) [Badler and Morris 1982; Magnenat-

Thalmann et al. 1988], is a simple and effective model for shape

deformation and is widely integrated in graphics pipelines. For

skeleton-based character animation, however, LBS can suffer from

candy wrapper artifacts, which are avoided by dual quaternion

skinning (DQS) [Kavan et al. 2008]. Lie group structure has also

been explored to interpolate transformations [Alexa 2002; Bansal

and Tatu 2019]. Given the rest pose and skinning weights, Le and

Hodgins [2016] optimize the center of rotation for each vertex.

In semi-supervised learning, Zhu et al. [2003] use harmonic inter-

polation for label propagation by solving a Laplacian system. Their

interpolation method—as well as numerous follow-up techniques—

can be understood as an application of harmonic skinning weights

to higher-dimensional data.

2.2 Computing skinning weights

When they are not painted manually by artists, skinning weights

can be computed purely based on the geometry of the input shape

(discussed below) or learned from exemplary frames of animated

sequences [James and Twigg 2005; Kavan et al. 2010; Le and Deng

2012, 2014; Wampler 2016]. The latter is applicable only to limited

scenarios with relevant data, so in this paper we focus on the former,

computing geometric skinning weights.

Harmonic weights. Solutions to harmonic equations can be used

as interpolation weights [Joshi et al. 2007; Zhu et al. 2003]. Harmonic

weights, however, are only C0
at control handles. In fact, harmonic

weights for point handles are mesh resolution-dependent and not

well-defined continuously; this is analogous to the fact that the

harmonic distance to a point is singular and ill-defined, motivating

the biharmonic distance [Lipman et al. 2010].

Heat diffusion weights. Baran and Popović [2007] use solutions to

the heat equation as skinning weights. Again, these weights are not

smooth at control handles (see e.g. [Jacobson et al. 2011]). Despite

the drawbacks, due to their simplicity heat diffusion weights have

been integrated in graphics software tools like Maya and Blender.

Biharmonic weights. Solutions to the biharmonic equation can

also be used as skinning weights [Botsch and Kobbelt 2004]. Bihar-

monic weights are smooth but unbounded and oscillative: They can

be negative or greater than one, and they possibly have local ex-

trema away from handles. Triharmonic weights demonstrate similar

behaviors and tend to have more oscillations [Jacobson et al. 2010;

Tosun 2008].

Bounded biharmonic weights (BBW). Jacobson et al. [2011] min-

imize the biharmonic energy with explicit constraints to prevent

negative weights. In follow-up work, Jacobson et al. [2012b] derive

sufficient constraints to further prevent local extrema. As a popu-

lar geometric skinning method, bounded biharmonic weights have

been used in many applications, such as physical simulation and

multi-grid methods [Chen et al. 2016; Xian et al. 2019].

Other methods. Bang and Lee [2018] propose an interactive spline

interface to edit weights. Thiery and Eisemann [2018] simultane-

ously optimize skeletons and associated weights. Liu et al. [2019]

learn the mesh-skeleton binding patterns from pairs of mesh and

weights provided by artists. The recent direct delta mush skinning

applies Laplacian smoothing on top of linear blend skinning and

requires only binary rigid binding weights [Le and Lewis 2019]. Ja-

cobson et al. [2012a] achieve fast reduced simulation and dynamics

within the subspaces spanned by linear blend skinning. Popular

industry solutions include ngSkinTools [Makauskas 2013] for paint-

ing weights and geodesic voxel binding [Dionne and de Lasa 2013],

which has been integrated in Maya.

2.3 Barycentric coordinates
Another family of deformation methods updates vertex positions

as weighted sums of control handle positions; the corresponding

weights are known as barycentric coordinates. See [Nieto and Susín

2013] for a survey.

Barycentric control handles are typically specified as cages. Popu-

lar cage-based coordinates include mean value coordinates [Floater

2003; Hormann and Floater 2006; Ju et al. 2005], harmonic coordi-

nates [Joshi et al. 2007], Green coordinates [Lipman et al. 2008],

ACM Trans. Graph., Vol. 40, No. 4, Article 73. Publication date: August 2021.

Fast Quasi-Harmonic Weights for Geometric Data Interpolation • 73:3

maximum entropy coordinates [Hormann and Sukumar 2008], Pois-

son coordinates [Li and Hu 2012], and locally barycentric coordi-

nates [Zhang et al. 2014]. These barycentric coordinates, however,

cannot be used as skinning weights: They have to be used together

with a cage enclosing but being apart from the shape, since they are

only C0
at cage vertices.

Some barycentric coordinates do not rely on a bounding cage,

allowing for isolated vertices or skeletons within the domain. Thin

plate splines [Bookstein 1989] are popular to interpolate data in

Euclidean space and have been generalized to geometric domains

e.g. by minimizing a modified bi-Laplacian energy [Wang et al. 2015]

or Hessian energy [Stein et al. 2018]. These coordinates, however,

can be oscillative and negative, making them unsuitable for use as

skinning weights. Herholz et al. [2017] combine the computation

of a Voronoi diagram of control handles with natural neighbor

coordinates [Sibson and Barnett 1981]; the resulting coordinates,

while being sparse, are comparably slower to compute than bounded

biharmonic weights. Yan and Schaefer [2019] modify and extend

the Floater-Hormann-Kós family of barycentric coordinates to non-

convex polygons.

3 BACKGROUND AND PRELIMINARIES

3.1 Problem Setup
Consider a geometric domain Ω withm control handles c1, c2, ...cm ;

each control handle is a region on the domain Ω. We assume each

handle cj is associated with a weight function w j (·), indicating

its spatial influence across the domain. For a smooth function f :

Ω → R whose value is known only at c1, c2, ...cm , we would like

to approximate f (x) as

f (x) ≈
m∑
j=1

w j (x)f (cj) (1)

at any x ∈ Ω. The values of f (c1), f (c2), . . . , f (cm) are propagated
to every other point via the weight functionsw1(·),w2(·), . . . ,wm (·).

For example, in linear blend skinning, f (·) is an affine transfor-

mation whose value at each control handle is specified by the

user at runtime; typically the skinning weightsw j (·) are computed

ahead of time. In this paper, we restrict to volumetric domains

Ω ⊆ Rd ,d ∈ {2, 3}, with smooth boundary, although in principle it

is straightforward to extend to the case of a general manifold Ω.
Our task is to find a set of weight functions w j (·) such that (1)

gives high quality interpolation. Ideally, thew j (·)’s should be smooth

functions of x and should sum to 1 at every x, that is,
∑
j w j (x) =

1 ∀x, so that f (x) is a weighted average of the values f (cj). More

specifically, several properties are desirable for w j (·) to produce

high-quality skinning animations:

(Lagrange) ∀ci : w j (ci) = δi j i, j = 1, ...,m

(Partition of unity) ∀x :

m∑
j=1

w j (x) = 1

(Nonnegativity) ∀x : w j (x) ≥ 0 j = 1, ...,m

(No local extrema) ∀x : w j (x) not a local extremum j = 1, ...,m
(2)

where δi j = 1(i=j) is the Kronecker delta function.

The Lagrange property ensures hard interpolation in which (1)

reproduces the value of f (cj) at x ∈ cj . In the context of linear blend
skinning, the Lagrange property allows the user to specify affine

transformations at handles exactly, the partition of unity property

ensures that the skinning method is translationally invariant, and

the nonnegativity and no-local-extrema properties avoid counterin-

tuitive skinning behavior [Jacobson et al. 2011, 2012b]. Given the

desiderata above, our main task is to compute a set of smooth weight

functionsw j (·) satisfying all constraints in (2).

3.2 PDE-based Weights
Harmonic weights provide a simple way to obtain skinning weights

satisfying many considerations above [Joshi et al. 2007; Zhu et al.

2003]. They are obtained by solving Laplace equation with assorted

boundary conditions:

∆w j (x) = 0 ∀j = 1, ...,m
w j (ci) = δi j ∀i, j = 1, ...,m

∂
∂nw j (x) = 0 ∀x ∈ ∂Ω\{ck }mk=1,∀j = 1, ...,m.

(3)

When {ck }mk=1 ⊆ ∂Ω, e.g., in cage-based deformation [Joshi et al.

2007], harmonic weights become generalized barycentric coordi-

nates and are termed harmonic coordinates. The partition of unity,

nonnegativity, and no-local-extrema properties hold for free for

harmonic weights, thanks to properties of harmonic functions.

Harmonic weights solve the following optimization problem:

minw
∑m
j=1

∫
Ω
∥∇w j (x)∥2

s.t. w j (ci) = δi j ∀i, j = 1, . . . ,m
(4)

Using this variational formulation, we can see harmonic weights

use Dirichlet energy as a smoothness measure.

For skinning animation, control handles are often isolated points

or line segments. Continuous solutions to (3), however, are ill-

defined in this case. Discrete solutions can be obtained by inverting

a Laplacian matrix, but the solutions are resolution-dependent with

spike artifacts at control points or bone edges. Being only C0
at

control handles, harmonic weights are not suitable for skinning

weights, although they can be used for harmonic coordinates since

the cage is placed away from the deforming shape.

Higher-order functionals and PDEs can make the weight function

well-defined and C1
in handle neighborhoods. In computer vision

and image processing, thin plate splines [Bookstein 1989] use bihar-

monic functions for interpolating data over R2. When the domain

is only a sub-region of R2, biharmonic weights [Botsch and Kobbelt

2004] can be used, solving the following optimization problem:

minw
∑m
j=1

∫
Ω
∥∆w j (x)∥2

s.t. w j (ci) = δi j ∀i, j = 1, . . . ,m
(5)

Similarly, one can resort to even higher-order smoothness energies

such as tri-harmonic energies [Jacobson et al. 2010; Tosun 2008]. An-

other variant of biharmonic weights is to use higher-order boundary

conditions [Stein et al. 2018;Wang et al. 2015] such that the resulting

weights are also generalized barycentric coordinates. Higher-order

energies promote smoothness at handles, but the weights can be-

come oscillative and negative.

ACM Trans. Graph., Vol. 40, No. 4, Article 73. Publication date: August 2021.

73:4 • Wang and Solomon.

To remove negative weights, Jacobson et al. [2011] propose the

following optimization problem:

minw

m∑
j=1

∫
Ω
∥∆w j (x)∥2

s.t. w j (ci) = δi j ∀i, j = 1, . . . ,m∑m
j=1w j (x) = 1 ∀x ∈ Ω

w j (x) ≥ 0 ∀j = 1 . . . ,m.

(6)

Jacobson et al. [2012b] further add topological constraints to prevent

local extrema, and Zhang et al. [2014] propose a variant with an L1

loss. Solving this convex quadratic program requires active set and

conic programming solvers that are orders of magnitude slower than

solving the linear system used by harmonic weights (see e.g. [Wang

et al. 2015]).

3.3 Anisotropic Laplacian and Elliptic PDE

The homogeneous, isotropic Laplacian operator ∆Rd =
∑d
i=1

∂2

∂x 2

i
is extensively used in physics and geometry processing. A more

generic version is the anisotropic Laplacian, which has spatially-

varying parameters that weight derivatives along different direc-

tions [Gilbarg and Trudinger 2015].

More precisely, an anisotropic Laplacian operator is specified by

a conductivity tensor field A(x) : Ω → Rd×d , where d ∈ {2, 3} is
the dimension of Ω, such that A(x) ⪰ 0, i.e. A(x) is positive semi-

definite (p.s.d.) for any x ∈ Ω. We use aji (x) to denote the entry at

position (j, i) in the matrix A(x).
The anisotropic Laplacian ∆A

with the associated co-derivative

operator ∇An generalizes the usual Laplacian ∆Rd with the normal

derivative operator ∇n = n · ∇ as follows:

∆A =
d∑

i, j=1

∂

∂x j

[
aji (x)

∂

∂xi

]
= ∇ · [A(x)∇],

∇An =
d∑

i, j=1
nj

[
aji (x)

∂

∂xi

]
= n⊺[A(x)∇].

Similar to the relationship between (3) and (4), the variational

problem

minu(·)
∫
Ω
∇u(x)⊺A(x)∇u(x)

s.t. u(x) = h(x) ∀x ∈ c (7)

is equivalent to the PDE system

∆Au(x) = 0

∇Anu(x) = 0 ∀x ∈ ∂Ω/c
u(x) = h(x) ∀x ∈ c.

(8)

4 QUASI-HARMONIC WEIGHTS
We now introduce our new model for computing skinning weights

on geometric domains, which we term quasi-harmonic weights. At
a high level, these weights are obtained by optimizing a smooth-

ness energy (5) over the space of harmonic weights generated by

anisotropic Laplacians (described in §3.3); our variables are the

anisotropy tensors A(x). This section introduces our model from a

smooth perspective; §5 then introduces a discretization suitable for

triangle/tetrahedral meshes.

4.1 A Parametric Family of Weights
By replacing the Laplacian in (3) with the anisotropic Laplacian

operator, we obtain quasi-harmonic weights by solving the following
linear problem:

∆Aw j (x) = 0 ∀j = 1, ...,m
w j (ci) = δi j ∀i, j = 1, ...,m

∇Anw j (x) = 0 ∀x ∈ ∂Ω/c,∀j = 1, ...,m.
(9)

We say that the resulting weight functions w1(·),w2(·), . . . ,wm (·)

are generated by the tensor field A(·), denotedw = д(A).
As a direct generalization of harmonic weights, elliptic PDE

weights also satisfy all the desirable properties:

Proposition 4.1. Solutions to (9) satisfy all the properties listed
in (2) as long as A(·) is uniformly positive definite: for some δ > 0,
A(x) ⪰ δ I ∀x.

Proof. The weights are nonnegative and have no local extrema,

as a direct result of the celebratedmaximumprinciple (see e.g. [Gilbarg
and Trudinger 2015]), which holds for second-order elliptic PDEs.

The partition of unity property also holds since (9) is a linear PDE

with boundary conditionsw j (ci) = δi j , such that ∀i : ∑j w j (ci) =
1. □

Quasi-harmonic weights comprise a large parametric family

F = {д(A) | A(·) : Ω → Rd×d uniformly positive definite} (10)

that all satisfy the properties listed in (2). Surprisingly, beyond

including the classical harmonic weights, we find weights in this

family that look closer to bounded biharmonic weights and other

alternatives.

4.2 Proposed Model
Given the observations above, our algorithm searches for weights

within the family F . That is, our weights are generated by an

unknown p.s.d. anisotropy tensor field A(·), chosen to optimize

a smoothness functional E(·):

inf

A
E(w) s.t.w = д(A).

Restricting our weights to be generated by some tensor field is the

key step in designing our fast method for computing weights. In

particular, this restriction allows us to transform the problem into

an unconstrained optimization, thanks to Proposition 4.1.

In more detail, we consider the optimization problem:

infA
∑m
j=1

∫
Ω
∥∆w j (x)∥2

s.t. w j (ci) = δi j ∀i, j = 1, . . . ,m

∆Aw j (x) = 0 ∀x ∈ Ω,∀j = 1, ...,m

∇Anw j (x) = 0 ∀x ∈ ∂Ω,∀j = 1, ...,m
A(x) ⪰ 0 ∀x ∈ Ω

(11)

In words, our problem finds the quasi-harmonic weightsw j with the

lowest biharmonic smoothness energy. This is a variational prob-

lem with PDE constraints. As justified in §4.3, the PDE constraints

serve as alternatives to the partition of unity, nonnegativity and

no-local-extrema constraints in previous methods. This new for-

mulation is capable of removing singularities in the derivatives of

ACM Trans. Graph., Vol. 40, No. 4, Article 73. Publication date: August 2021.

Fast Quasi-Harmonic Weights for Geometric Data Interpolation • 73:5

harmonic weights by adjusting the anisotropy tensors: The coeffi-

cientsA(x) provide additional degrees of freedom allowing to “swap”

singularities in ∇w(x) to the coefficients A(x) when necessary.

Although the formulation (11) may look complicated, it is straight-

forward to solve in practice. In particular, the weight functionsw j (·)

are just intermediate variables that can be eliminated entirely, since

they are uniquely determined by the tensor field A(·); this leaves an
unconstrained problem whose free variables are the tensors A(·). In
subsequent sections, we show this problem can be very efficiently

solved.

Remark (Parameter identification). To the best of our knowl-
edge, problem (11) has not been previously studied in theory or in
practice. But, we briefly discuss a related formulation known as dis-
tributed parameter identification, which has been studied in inverse
problems and optimal control, defined as follows:

minA
∫
Ω
∥w(x) − u(x)∥2

s.t. some boundary conditions
∆Aw(x) = 0 ∀x ∈ Ω
A(x) ⪰ 0 ∀x ∈ Ω

(12)

where u(·) is a prescribed function. Similar to our formulation (11),
in problem (12), w(·) is completely determined by A(·). Hence, the
optimization is over A(·), whilew(·) can be thought of as an auxiliary
variable. Problem (12) is a well-posed inverse problem [Kirsch 2011]:
When u(·) is the solution to a second-order PDE, (12) tries to recover
the true tensor field A(·) that generates u(·). Distributed parameter
identification is related to our problem in that it considers nearly
identical PDE constraints. It also sheds light on the representation
capacity of our parametric family F .

Convexity of (11). While we are unable to verify convexity of

the problem (11), in practice we find that our formulation does not

have noticeable local optima. In our experiments, we observed that

our method always converges to the same weights, regardless of

initialization. We conjecture that our problem may have hidden

convex structure, the identification of which we leave for future

work. In fact, certain variants of the parameter identification prob-

lem [Hinze and Quyen 2016]—which have the same PDE constraints

but a different objective to our problem—are proven to be convex.

4.3 Representation Capacity of Quasi-harmonic Weights
Searching in the parametric family F is the key difference between

our fast weight computation scheme and past work. To justify this

restriction, we need to verify that the family F is suitably rich. The

following representation theorem indicates that F contains the key

functions of interest to skinning:

Theorem 4.2 ([Richter 1981], Main Theorem). For a connected
bounded domain Ω⊂R2 and functionw : Ω → R satisfying

inf

x∈Ω
max(|∇w(x)|,∆w(x)) > 0, (13)

there exists some A(x) = a(x)I ⪰ 0 such that ∇ · [A(x)∇w(x)] = 0.

Theorem 4.2 suggests that when there are two control handles (i.e.,

one independent weight function) with associated smooth skinning

weight functions {w(x), 1 −w(x)} such that (13) holds, there exists

some A(·) generating them.

For example, given a target weight function w(x), if we know

∀x ∈ Ω : |∇w(x)| > ϵ for some ϵ > 0 then we can conclude that

w(·) can be generated by some A(·); otherwise, it is often easy to

modifyw(·) to a visually similar functionwϵ (·) such that ∀x ∈ Ω :

|∇wϵ (x)| > ϵ for small ϵ , provided thatw(·) has no local extrema.

The construction in Theorem 4.2 only uses one degree of freedom

for A(x), sufficient to handle the case with two control handles.

We conjecture that A(x) ∈ Rd×d can reproduce up to to d(d +
1)/2+ 1 prescribed weights, when exploiting all degrees of freedom.

That is, if we know each vertex is supported by no more than 4

handles in the 2D case (7 handles in 3D), there exists some tensor

field A(x) generating the weights. Aligning theory to practice, in

skinning animation the most common case is that each skin vertex

is controlled by 2 skeleton handles; it is common to avoid having a

vertex controlled by too many handles.

In summary, existing theory suggests that restricting the weights

within the parametric family F does not limit the representation

capacity. While we do not have proofs covering all scenarios, ex-

periments in §7 confirm that our weights have similar smoothness

energies to previous methods, suggesting our space of skinning

weights is not compromised noticeably.

Tensor field A(·)—a change of metric. While the tensor field A(·)
is commonly understood as the spatially varying diffusivity in the

parameter identification setup, it also has a clear geometric inter-

pretation. Our model (11) can be understood as first modifying the

metric locally according to A(·), computing harmonic weights on

the modified shape, and then pulling back the weights onto the

original shape. So, A(·) represents a change of metric that is aware

of the control handles.

5 DISCRETIZATION
We use a simple yet convenient discretization of our continuous

problem (11). We assume the (volumetric) geometric domain Ω has

been discretized as a triangle (tetrahedral) mesh with n vertices and

f triangles (tetrahedra).

5.1 Relevant Matrices and Operators
First, we discretize the anisotropic Laplacian ∆A. We use a piecewise

constant discretization for the anisotropy tensor field represented

by a matrix A ∈ Rdf ×df (d = 2, 3) satisfying

A =
[
diag(a00) diag(a01)
diag(a10) diag(a11)

]
(d = 2)

A =

diag(a00) diag(a01) diag(a02)
diag(a10) diag(a11) diag(a12)
diag(a20) diag(a21) diag(a22)

 (d = 3)

(14)

where ai j ∈ Rf ×1 (i, j ∈ {0, . . . ,d−1}) contains the element at

position (i, j) of the local tensor for every face; diag(·) expands a

vector into a diagonal matrix. That is, the anisotropy tensor at the

ACM Trans. Graph., Vol. 40, No. 4, Article 73. Publication date: August 2021.

73:6 • Wang and Solomon.

j-th triangle (tetrahedron) is[
(a00)j (a01)j
(a01)j (a11)j

]
(d = 2)

(a00)j (a01)j (a02)j
(a01)j (a11)j (a12)j
(a02)j (a12)j (a22)j

 (d = 3).

We have already enforced the symmetry conditions a10 = a01 and
a20 = a02.

A is a d × d block matrix with f × f diagonal blocks. For conve-

nience, we also stack the nonzero coefficients of A into a vector a
such that:

a =

a00
a10
a11

 ∈ R3f ×1 (d = 2)

a =

a00
a10
a11
a20
a21
a22

∈ R6f ×1 (d = 3)

(15)

We use a = flatten(A) to denote the conversion from the sparse

matrix format in (14) to the compact vector format in (15). For now

we do not require A to be p.s.d.; we introduce this constraint in §5.4.

Denote M ∈ Rn×n as the per-vertex mass matrix, Mf ∈ R
f ×f

as

the per-facemassmatrix (a diagonalmatrix stacking the area/volume

of each triangle/tetrahedron), and G ∈ Rdf ×n as the usual discrete

gradient operator using piecewise linear bases, with

G =
[
Gx
Gy

]
∈ R2f ×n (d = 2), G =

Gx
Gy
Gz

 ∈ R3f ×n (d = 3),

whereGx ,Gy ,Gz are discrete approximations of
d

dx ,
d

dy ,
d

dz , respec-

tively. Recall that

L = G⊺
[
Mf

Mf

]
G (d = 2)

L = G⊺

Mf

Mf
Mf

 G (d = 3),

where L is the cotangent Laplacianmatrix. Analogously, the anisotropic

Laplacian ∆A = ∇ · [A(x)∇] is discretized by the matrix G⊺AG.
Next, we introduce notation for the weights and boundary condi-

tions. Assume there arem control handles c1, c2, ..., cm ; each control

handle cj consists of a few vertices that are connected in the mesh.

The skinning weights are discretized as the matrix W ∈ Rn×m ,

whereWi j is the weight of the j-th control handle for the i-th ver-

tex of the mesh. DenoteM =
∑m
j=1 size(cj) to be the total number

of vertices of the control handles;M ≥ m since each control handle

contains at least one vertex.

Rows inW that correspond to control handle vertices are known:

Denote by R ∈ Rn×M the binary selection matrix such that R⊺
:j

selects rows for the vertices representing the j-th control handle,

and denote by B ∈ RM×m the boundary condition matrix, such that

R⊺W = B. B is the known part of the weights matrixW, so Bi j is
non-zero only if the i-th vertex is part of control handle cj .

Similarly, denote by S ∈ Rn×(M−m) the binary selection matrix

such that S⊺ selects rows that correspond to vertices that are not

control handles, and U ∈ R(n−M)×m as the unknown part of W,

such that S⊺W = U. Together we haveW = SU + RB and

(known part) R⊺W = B

(unknown part) S⊺W = U.

5.2 Discretized Optimization Problem
With above definitions, the Lagrange propertyw j (ci) = δi j in (11)

becomes the discrete equation R⊺W = B, and the PDE constraint

∆Aw j (Ω) = 0 with ∇Anw j (∂Ω/c) = 0 becomes S⊺[G⊺AG]W = 0.

This amounts to applying the finite element method with piecewise-

linear bases.

We discretize the continuous problem in (11) as follows:

minA
1

2
tr(W⊺QW)

s.t. R⊺W = B
S⊺W = U
[S⊺G⊺AGS]U + [S⊺G⊺AGR]B = 0,

(16)

where Q ∈ Rn×n is a quadratic form measuring the smoothness

of the weights. For example, Q can discretize the usual bilaplacian

energy by takingQ := LM−1L [Jacobson et al. 2011]. In §5.4 we use a
(re-)parameterization of A that easily ensures positive-definiteness.

Note the (unknown) weights U are uniquely determined by A via

U = −[S⊺G⊺AGS]−1S⊺G⊺AGRB (17)

Substituting this expression into (16) yields an unconstrained opti-

mization over A (or—equivalently—its flattened counterpart a).

5.3 Differentiating the Unconstrained Problem
To apply optimization algorithms, we need to differentiate the ob-

jective of (16) with respect to the unknown tensors A. We derive

relevant expressions below.

To start, we differentiate Uw.r.t. a by differentiating the third con-
straint of (16). Consider an infinitesimal deviation δA from A, such
that δA has the same size and sparsity pattern as A. The resulting
deviation of U, denoted δU, satisfies

S⊺G⊺AGSδU + S⊺G⊺δAGSU + S⊺G⊺δAGRB = 0,

or equivalently,

δU = −[S⊺G⊺AGS]−1S⊺G⊺δAG[SU + RB].

Vectorizing this expression shows

∂U:j

∂a
= −[S⊺G⊺AGS]−1S⊺G⊺

sp(GSU:j + GRB:j) ∈ Rn×
d (d+1)

2
f

In this expression, we use a new operator sp(·), chosen to satisfy the

expression Ab = sp(b)flatten(A). For b =
[
b0 b1

]⊺
∈ R2f ×1

with b0, b1 ∈ Rf ×1, we define

sp(b) :=
[
diag(b0) diag(b1)

diag(b0) diag(b1)

]
For b =

[
b0 b1 b2

]⊺
∈ R3f ×1 with b0, b1, b2 ∈ Rf ×1, we define

sp(b) :=

diag(b0) diag(b1) diag(b2)

diag(b0) diag(b1) diag(b2)
diag(b0) diag(b1) diag(b2)

ACM Trans. Graph., Vol. 40, No. 4, Article 73. Publication date: August 2021.

Fast Quasi-Harmonic Weights for Geometric Data Interpolation • 73:7

Finally, we can derive a formula for
∂E
∂a . Defining the objective

E(W) := 1

2
tr(W⊺QW) and substituting (17), we have

E =
1

2

tr(U⊺S⊺QSU) + tr(B⊺R⊺QSU) +
�������:const.
1

2

tr(B⊺R⊺QRB)

=

m∑
j=1

1

2

U⊺
:jS

⊺QSU:j + B
⊺
:jR

⊺QSU:j + const. (18)

Hence,

∂E

∂a
=

m∑
j=1
[U⊺

:jS
⊺LM−1LS + B⊺

:jR
⊺LM−1LS]︸ ︷︷ ︸

∂E/∂U
:j

[
∂U:j

∂a

]

=

m∑
j=1
[W⊺

:jLM
−1LS]

[
∂U:j

∂a

]
(19)

where

∂U:j

∂a
= −[S⊺G⊺AGS]−1S⊺G⊺

sp(GSU:j + GRB:j)

Deriving
∂E
∂a involves differentiating a matrix inverse, but as

shown above, evaluating
∂E
∂a involves the same sparse linear system

matrix S⊺G⊺AGS that we solved to obtain the weights. Once the

matrix has been factored, at each iteration two back substitutions

are required: One for computing current weights and the other for

evaluating the gradients. In §6.2, we will discuss reusing matrix

factorization in details.

5.4 Tensor Field Parameterization
Our final task is to discretize the anisotropy matrix A in (14) such

that the anisotropy tensor (matrix) at the j-th triangle (tetrahedron)

is p.s.d. for j = 1, 2, ..., f . That is, we need the set of 2×2 or 3×3 p.s.d.
matrices. There are many ways to solve this problem; we provide

one simple one below for completeness.

For a semidefinite 2 × 2 matrix, we can explicitly write out its

Cholesky factorization[
E F
F G

]
=

[
a 0

b c

] [
a b
0 c

]
=

[
a2 ab
ab b2 + c2

]
⪰ 0.

Similarly, in 3D, we write
a 0 0

b c 0

d e f

a b d
0 c e
0 0 f

 =

a2 ab ad
ab b2 + c2 bd + ce
ad bd + ce d2 + e2 + f 2

 ⪰ 0

Weoptimize for the elements (a,b, c) or (a,b, c,d, e, f) of the Cholesky
factors rather than for the semidefinite tensor elements directly;

differentiating the objective of our problem with respect to these

unknowns is a simple application of the chain rule to (19). This

parameterization p.s.d. by construction, and any p.s.d. matrix can

be written in this form thanks to the Cholesky factorization.

Although the continuous maximum principle holds for elliptic

PDEs, a discrete maximum principle may not necessarily hold for

our problem on meshes. Note even discrete harmonic weights can

be negative when there are obtuse angles if using the cotangent

Laplacian [Wardetzky et al. 2007]. Without a discrete maximum

principle, the resulting weights can be negative or have spurious

local extrema, which vanish when refining the mesh.

Many papers propose discretizations with a discrete maximum

principle [Droniou and Potier 2011], such as using nonlinear FEM [Liska

and Shashkov 2008; Lu et al. 2014]. While these methods are more

complex than is needed our application, they provide critical in-

sights. In particular, we know that the mesh quality and the largest

condition number of anisotropy tensors are two factors determining

the difficulty of ensuring a discrete maximum principle. Hence, a

simple practical approach to avoid failure of the discrete maximum

principle is to bound the condition number of the anisotropy tensors.

For example, the following parameterization specifies a cone of p.s.d.
tensors with bounded condition number:[

E F
F G

]
=

[
a2 + κ(b2 + c2) + ϵ ab

ab b2 + c2 + κa2 + ϵ

]
,

where κ > 0 and ϵ ≥ 0 are constants. The following bound on the

condition number of the tensor holds:

cond

([
E F
F G

])
≤ max

(
κ, 1 +

2

κ

)
.

In 3D, the formula becomes
a2 + κ(b2+c2 +d2+e2+ f 2) + ϵ ab ad

ab b2+c2+κ(a2+d2+e2+ f 2) + ϵ bd + ce
ad bd + ce d2+e2+ f 2+κ(a2+b2+c2) + ϵ

 .
We choose κ = 0.2, ϵ = 10

−4
in our experiments. The anisotropy

tensors are initialized as identity matrices multiplied by triangle

areas (tetrahedron volumes).

Denote θ as the final parameters, i.e. the collection of LU co-

efficients a,b, c or (a,b, c,d, e, f in 3D) for each triangle (tetrahe-

dron) in a column vector. By the chain rule we have
∂E
∂θ =

∂E
∂a

∂a
∂θ ,

where
∂a
∂θ is the Jacobian matrix of our parameterization. In prac-

tice, we find a further change of variables works slightly better

(a ← 1

a ,b ←
b
a , c ←

c
a ,d ←

d
a , e ←

e
a , f ←

f
a).

5.5 Differentiable Projection
Our discrete weights W can be mildly negative due to violations

of the discrete maximum principle. While mildly negative weights

do not typically cause problems in practice, for fair comparison to

previous methods that strictly prohibit negative weights, we intro-

duce a simple modification to our method that yields nonnegative

weights.

To eliminate negative weights, for each vertex i we project its
weights {Wi,1,Wi,2, ...Wi,m } back onto the probability simplex

Pm . We choose a projection mapping p : Rm → Pm as a compo-

sition of two functions: p(w1, ...,wm) = n(f (w1), ..., f (wm)). The

thresholding function f : R→ R+ is defined as:

f (x) =

0, for x < ϵ1

−
ϵ1+ϵ2
(ϵ2−ϵ1)3

(x − ϵ1)
3 +

ϵ1+2ϵ2
(ϵ2−ϵ1)2

(x − ϵ1)
2, for ϵ1 ≤ x ≤ ϵ2

x , for ϵ2 < x ≤ 1,

(20)

designed to have a continuous derivative. f (·) is applied element-

wise; only weights less than ϵ2 are modified. We choose ϵ1 = 0, ϵ2 =
10
−4

so most weights are unaffected.

ACM Trans. Graph., Vol. 40, No. 4, Article 73. Publication date: August 2021.

73:8 • Wang and Solomon.

Fig. 2. Comparison of convergence speeds using different algorithms on
a typical example. The curve for our method coincides with ADAM until
resetting the momentum. ADAM converges much faster than L-BFGS (his-
tory size set to 10) but has a long tail of slow convergence. Our customized
ADAM removes this long tail and converges quickly.

The normalization function n : Rm+ → P
m

is:

ni (w1, ...,wm) =
wi

w1 +w2... +wm
. (21)

where 1 ≤ i, j ≤ m.

We can compute our weights in an “end-to-end” fashion: Our

objective function becomes E(p(W)), which directly measures the

smoothness of the projected weights. The projection p is fully dif-

ferentiable, so the gradients can be easily back-propagated.

6 OPTIMIZATION
Having explained our model and how it can be differentiated, our

next task is to provide efficient unconstrained optimization tech-

niques for obtaining weights in practice.

6.1 A Customized ADAM Optimizer

Since we can evaluate the gradient
∂E
∂θ , in principle we can ap-

ply any gradient-based algorithm. In practice, we find that using

an appropriate optimizer can greatly reduce the number of itera-

tions required. Specifically, we propose a customized ADAM solver,

which allows convergence within as few as tens of gradient steps,

contributing to the efficiency of our method.

ADAM [Kingma and Ba 2014] is a variant of gradient descent that

incorporates a momentum term normalized by its secondmoment. It

maintains adaptive estimates of the normalized momentum for each

optimized parameter and is extremely simple to implement. Despite

being a default optimizer in deep learning and stochastic gradient

descent, ADAM is not a typical choice in geometry processing. For

our problem, we hypothesize ADAM is particularly suitable due to

its simplicity and capacity to handle parameters whose scales vary

substantially, which is the case for the anisotropy tensor.

As a small customization to ADAM, we add a restarting strategy

that resets the accumulated momentum estimates to zero every T
iterations; we find T ≥ 4 typically works well. We choose the base

learning rate of 0.1 in our experiments and decay the learning rate

Table 1. Timing (in seconds) of symbolic & numerical factorization and back
substitution per column. The statistics suggest that reusing the symbolic
factorization can lead to an order of magnitude speedup for solving linear
systems.

Mesh #Vertices Symbolic Numerical Back Sub.

Dragon 1187670 9.37 0.602 0.015

Bunny 89947 2.05 0.410 0.006

Beast 106158 3.09 0.16 0.0037

by half in every T iterations. This simple modification considerably

accelerates the convergence of ADAM for our problem.

Figure 2 shows typical convergence curves for our problem. L-

BFGS converges slowly, typical requiring hundreds to thousands

iterations. Vanilla ADAM is extremely effective in the first few

iterations but starts to progress very slowly. It has a long tail of con-

vergence which still needs hundreds of iterations. We find that, by

resetting the momentum estimates, ADAM makes rapid progresses

again. We simply use a fixed number of iterations k=10, 20, which
works well for examples in the paper. It is possible to come up with

an adaptive stop criteria based on e.g. the gradient norm.

A second advantage of our ADAM-based optimizer is that it

does not need the expensive line search step required by L-BFGS

and variants. For our problem, the overhead of line search is even

more costly than solving linear systems. So, our optimizer not only

requires fewer iterations, but also is cheaper per iteration.

6.2 Symbolic Pre-Factorization
Solving the Laplacian system in (17) is the major computational cost

in each gradient step of our method. Fortunately, using an appro-

priate implementation with symbolic pre-factorization effectively

makes it 10× faster to solve a sparse linear system.

Since the sparsity pattern of (a sub-block of) the discrete anisotropic

Laplacian, S⊺G⊺AGS, is fixed, we can perform symbolic factoriza-

tion once. In each iteration we reuse the symbolic factorization, only

performing one numerical factorization and two back-substitutions

(for weights computing and gradient evaluation). This leads to sig-

nificant speedup: In our implementation, symbolically factorizing

the cotangent Laplacian for a mesh with 122902 vertices takes 2.16

seconds, and the subsequent numerical factorization takes only 0.20

seconds, using the Cholmod module in SuiteSparse [Davis et al.

2015]; see Table 1 for more examples.

7 EVALUATION
In this section, we compare our method with state-of-the-art algo-

rithms in terms of timing and weight quality. Experiments confirm

that our method enjoys all the desiderata of previous weights and

is much faster.

7.1 Baseline
For clarity, we refer to the original version of bounded biharmonic

weights solved in (6) as BBW. A fast approximation employed by

Jacobson et al. [2011] is to solve for eachw j (x) individually without

the partition of unity constraint and then re-normalize the weights

a posteriori; it has been reported that the resulting weights produce

visually indistinguishable deformations and that the energy gapwith

ACM Trans. Graph., Vol. 40, No. 4, Article 73. Publication date: August 2021.

Fast Quasi-Harmonic Weights for Geometric Data Interpolation • 73:9

Table 2. Comparison of energies for weights obtained by different methods. Energies have been normalized by that of BBWA. #Ele is the number of
triangles/tetrahedra. #Hdl is the number of control handles. “*” indicates missing data points when the Mosek solver used by previous methods fails. Numerical
factorization is responsible for only a small fraction of the cost per iteration, suggesting a large room for further improvement.

Example Smoothness Energy Time (Sec.)

Mesh #Hdl. #Ele. BBWA MBBW Ours, k=20 k=10 BBWA MBBW Ours (k=10) num. fact.

Beast 15 443442 1 1.001 0.997 1.016 707.8 840.6 12.6 0.16

Bunny 14 531392 1 0.997 1.001 1.026 2430.6 11111.3 18.0 0.41

Raptor 15 367966 1 1.002 0.992 1.051 640.1 720.3 14.9 0.11

Elephant 17 516858 1 0.996 0.987 1.008 1092.3 2379.5 14.4 0.16

Dragon 17 1187670 1 * 0.992 1.023 5022.1 * 54.8 0.60

Image 27 6952 1 0.995 0.984 1.005 7.78 17.70 0.18 0.0009

Brick 2 78529 1 1.000 0.981 1.084 17.8 53.7 1.21 0.03

Tibiman 16 84125 1 0.991 0.986 0.995 91.9 274.1 1.80 0.025

the full BBW is often negligible. We refer to this fast approximation

as BBWA.

BBW can be two orders of magnitude slower to compute than

BBWA due to the partition of unity constraint, so we primarily com-

pare with BBWA. Note BBWA no longer minimizes the biharmonic

energy over all possible the non-negative weights due to renormal-

ization, so our weights can have a slightly lower biharmonic energy

for some examples.

We refer to the monotonic bounded biharmonic weights [Jacob-

son et al. 2012b] as MBBW. MBBW also uses the fast approximation

that first solves for each individual weight function without the

partition of unity constraint and re-normalizes afterwards. After

re-normalization, these weights are not guaranteed to be free from

local extrema; in practice, however, this theoretical concern does

not appear to be an issue.

7.2 Performance
Timing. The major computational cost of our method is solving

tens of linear systems with the same sparsity pattern. Thanks to

the efficient optimizer (§6.1) and sparse linear solver (§6.2), timings

of our method are comparable to linear problems even though our

problem is nonlinear. This is substantially cheaper than the conic

programming and active set solvers used in previous methods.

Table 2 reports the performance of our method and variants of

BBW in details. As shown in the table, tetrahedralizing a fine mesh

can easily lead to a mesh with hundreds of thousands of vertices and

tetrahedra, on which the computation time of BBW and variants is

very long. As an example, on the Dragon shape, variants of BBW

take few hours; in contrast, each iteration of our method currently

takes only few seconds, out of which one numerical factorization

takes only 0.60 seconds. Our method usually obtains weights with

an equal or lower energy than that of BBWA in 10 to 20 iterations.

Although our implementation is already orders of magnitude

faster than previous methods, our method still has a large room for

further improvement. Take the Beast shape, for example: in each iter-

ation, numerical factorization (0.16s) and back substitution (0.055s)
take only a small fraction out of the total time per iteration (1.26s).
The majority of execution time is spent on simple linear-algebraic

operations such as computing the weights gradients GW—“local

computations” per triangle/tetrahedron. These parts are currently

straightforwardly implemented in CPU but are easily parallelizable.

Implementing these parts on the GPU and/or as shaders likely will

lead to further speedups, which we leave for future work.

7.3 Quality
Our method produces weights that are visually similar to previous

methods. Figure 3 visualizes weights computed on a brick using

different methods. These weights look almost identical. In fact the

largest pointwise difference between our weights and BBWA &

MBBW is only 0.0039& 0.0038, resp., and our weights have a slightly

lower energy. This example represents a scenario in which our

framework, in theory, should be able to reproduce previous weights

exactly (see §4.3).

BBWA
E=1

MBBW
E=1.000

Ours
E=0.981

Fig. 3. Weights computed on a brick shape.

BBW MBBW Ours

Fig. 4. BBW, MBBW, and our weights, computed on a cactus shape with
two handles placed at its top and bottom. BBW has local extrema at the left
arm of the cactus, which is not the case for both MBBW and ours.

In general, the visual appearance of our weights is similar but

not always identical to previous methods. As an extreme example,

Figure 5 shows the weights computed on an image editing setup

ACM Trans. Graph., Vol. 40, No. 4, Article 73. Publication date: August 2021.

73:10 • Wang and Solomon.

Domain with handles
BBWA (E=1)

MBBW (E=0.995)

Our weights (E=0.984)

Fig. 5. Visualization of BBWA, BBWM, and our weights, computed on an image editing setup. Despite the presence of a large number of handles, our weights
have a smoothness energy similar to previous methods.

Rest pose
BBWA (18.2 min) MBBW (39.6 min) Ours (0.24 min)

BBWA (11.8 min) MBBW (14 min) Ours (0.2 min) BBWA (0.68 hr) MBBW (3.1 hr) Ours (0.3 min)

Fig. 6. Linear blend skinning using different weights. Due to the lack of monotonicity, the BBWA weights of the Bunny’s arm are not exactly 1 at the hand.
Transforming the shoulder affects the hand, leading to noticeable artifacts. This is not the case for MBBW and our weights. Similar artifacts are visible at the
Elephant’s trunk using BBWA.

with tens of handles. Figures 7 and 8 visualize our weights on com-

mon examples encountered in skinning animation. Our method

consistently obtains weights with a similar visual appearance. For

an intuitive illustration, Figure 1 and 9 show color interpolation

using different weights.

The differences in weights are usually subtle, making it hard to

tell which one is better. Nonetheless, the smoothness of the weight

functions, as measured by the biharmonic energy, is our ultimate

criterion for weight quality. Comparisons using this measure are

summarized in Table 2.We report the smoothness energies of BBWA,

ACM Trans. Graph., Vol. 40, No. 4, Article 73. Publication date: August 2021.

Fast Quasi-Harmonic Weights for Geometric Data Interpolation • 73:11

Ours

MBBW

BBWA

Ours

MBBW

BBWA

Fig. 7. Comparison of weights, computed on the Beast and Elephant shapes.

MBBW, and ours, divided by that of BBWA for ease of evaluation. It

should not be a surprise that some relative energies of BBWA are

less than 1: Recall that the energies for BBW, BBWA, MBBW, and

ours, when fully optimized, should satisfy the inequalities

EBBW ≤ EBBWA ≤ EMBBW ,

EBBW ≤ Eours .

In practice, these relations can be mildly violated due to varieties in

the stopping criteria.

Table 2 confirms that the optimal weights in our framework of

quasi-harmonic weights always have a smoothness energy similar

to previous methods.

Multiple control handles. Although
the theoretical analysis in §4.3 is directly

applicable only to cases with a small

number of control handles, we observe

our model does not overly restrict the

ACM Trans. Graph., Vol. 40, No. 4, Article 73. Publication date: August 2021.

73:12 • Wang and Solomon.

Ours

MBBW

Ours

MBBW

Ours

MBBW

Fig. 8. Visualizations of our weights computed on the Bunny, Tibiman, and Raptor shapes.

space of weights, regardless of the number of handles. In particular,

Eours can often be lower than EBBWA and/or EMBBW , even for

meshes with a large number of control handles. All examples in

the paper already have a reasonable number of control handles. As

an extreme example, in the elephant model when the number of

control handles is increased to 54 as shown in the embedded Figure,

we have Eours/EBBWA = 0.9915—our method still yields slightly

smoother weights.

No local extrema. The visual appearances of BBW and MBBW

are similar in many cases, since the no-local-extrema constraint is

often not active. When the constraint is active and does make a

difference, our weights have a closer visual appearance to MBBW

ACM Trans. Graph., Vol. 40, No. 4, Article 73. Publication date: August 2021.

Fast Quasi-Harmonic Weights for Geometric Data Interpolation • 73:13

BBWA MBBW Ours BBWA MBBW Ours

Fig. 9. Color interpolation using different weights. Usually a similar color blending is obtained. An exception is the Bunny—BBWA has a local extrema at the
hand.

than BBW. Figure 4 shows an example. Our weights are almost

identical to MBBW, both of which have no local extrema away from

handles. BBW, however, has a local maximum at the left arm of

the cactus. Figure 6 shows LBS using different weights. BBWA, due

to the lack of monotonicity, has weights that are not exactly 1 at

the Bunny’s hand and Elephant’s trunk. This results in artifacts for

large transformations. Both our method and MBBW remove this

issue.

Since our method minimizes the same energy as BBW and vari-

ants, the weights—and thus the resulting deformation—are often

similar to each other and sometimes even identical. The difference

between MBBW and ours, only reflecting the nuance in handling

the monotonicity constraints, is usually negligible. In Figure 10, we

show a scenario where the difference is the most visible. The Bunny

shape is deformed using linear blend skinning with both weights.

Note the difference at the Bunny’s hip and leg.

7.4 Tensor Field Visualization
In Figure 11, we visualize patterns of the anisotropy tensor A(x)
for the optimal weights. We show the first principal directions and

condition numbers. The principal directions form a vector field that

usually starts from one handle and ends at another handle or the

domain boundary. Recall that our method penalizes gradients along

the principal direction, by a factor of the condition number.

7.5 Implementation Details
We use SuiteSparse [Davis et al. 2015] for sparse linear algebra.

For dense linear algebra we use Armadillo [Sanderson 2010] and

TensorFlow [Abadi et al. 2016] (CPU only). Our results are collected

on a Linux machine with an Intel i9-7900X CPU. For comparison

with BBW and variants, we use the source code provided by the

authors, using the fastest optionwithMosek and conic programming

solvers.

MBBW Ours

Fig. 10. Linear blend skinning using MBBW and our weights at two poses.

In our experiments, we initialize the anisotropy tensors as identity

matrices multiplied by triangle areas (tetrahedron volumes), and

thus our initial weights are harmonic weights, the same as the initial

guess used by BBW and MBBW for fair comparison. In practice,

we find initializing the anisotropy as the inverse quadratic distance

to the nearest control handle can improve the convergence speed,

ACM Trans. Graph., Vol. 40, No. 4, Article 73. Publication date: August 2021.

73:14 • Wang and Solomon.

Our weights

Condition number (log scale)

First principal direction

Fig. 11. Visualization of our weights, as well as the condition numbers and
first principal directions of the optimal tensor field.

which can be easily obtained using, e.g., the heat method [Crane

et al. 2013].

Fig. 12. Visualization of meshes and handles.

We use Triangle [Shewchuk 1996] and Tetgen [Si 2015] to gener-

ate triangle and tetrahedralmeshes, respectively. To solve anisotropic

Laplacian systems accurately, our method prefers adaptive meshing

that has a higher resolution around control handles, since the scale

of the anisotropy tensor varies a lot around handles. Fortunately,

this is automatically the case when using meshing softwares Tri-

angle and Tetgen. Figure 12 shows the mesh and sampled points

on the bone handles that are provided to Tetgen: A dense enough

sampling on the bone, as shown in the figure, implicitly leads to

meshes with a higher resolution around them.

7.6 Limitations
Our method relies on the ability to faithfully solve anisotropic

Laplace equations. Unlike the optimization approach [Jacobson et al.

2011], which guarantees nonnegative weights for arbitrary meshes,

our method should avoid using highly irregular meshes with many

obtuse and sharp triangles/tetrahedra, on which the discrete maxi-

mum principle fails more easily.

The method proposed by Jacobson et al. [2011] leads to a convex

optimization problem. It is not clear if our formulation (11) is convex

or if it can be converted to a convex problem. For future work, it

would be interesting to study this variational problem theoretically.

8 CONCLUSION AND FUTURE WORK
Our work provides a new approach for the problem of variational

weight computation. Our formulation is theoretically justified, trans-

forming the problem into an unconstrained optimization problem.

Combined with a customized ADAM optimizer and a fast sparse

solver, our method is much faster than past alternatives, allowing

weight computation in near real-time. Fast weight computation

opens up many opportunities for future work, such as the joint

optimization of handle placements and weights.

While our method is designed for a concrete problem of vari-

ational weight computation, the approach potentially can be ap-

plied to a broad range of problems. Our approach can be viewed

as searching for the optimal surface metric or geometric operator

under which certain loss function or variational regularizer is opti-

mized; similar techniques may be applied to geometric deep learning

and computational design.

We choose a quadratic smoothness energy for simplicity and ease

of comparison, but theoretically our method can use any nonlin-

ear energy as long as it is differentiable. It would be interesting

to explore other smoothness measures. For practical purposes, our

method also can be further accelerated and improved: For example,

it is possible to replace the direct linear solver with iterative solvers,

similar to how heat diffusion weights are implemented and made

available in commercial software. For further speedup and simplifi-

cation, it would be interesting to directly design a tensor field that

yields high quality weights.

ACKNOWLEDGMENTS
We thank Oded Stein and Paul Zhang for proofreading. The MIT

Geometric Data Processing group acknowledges the generous sup-

port of Army Research Office grant W911NF2010168, of Air Force

Office of Scientific Research award FA9550-19-1-031, of National

Science Foundation grant IIS-1838071, from the CSAIL Systems that

Learn program, from the MIT-IBM Watson AI Laboratory, from the

Toyota–CSAIL Joint Research Center, from a gift from Adobe Sys-

tems, from an MIT.nano Immersion Lab/NCSOFT Gaming Program

seed grant, and from the Skoltech–MIT Next Generation Program.

ACM Trans. Graph., Vol. 40, No. 4, Article 73. Publication date: August 2021.

Fast Quasi-Harmonic Weights for Geometric Data Interpolation • 73:15

REFERENCES
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. Ten-

sorflow: A system for large-scale machine learning. In 12th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 16). 265–283.

Marc Alexa. 2002. Linear combination of transformations. In ACM Transactions on
Graphics (TOG), Vol. 21. ACM, 380–387.

Norman I Badler and Mary Ann Morris. 1982. Modelling flexible articulated objects. In

Proc. Computer Graphics’ 82, Online Conf. 305–314.
Seungbae Bang and Sung-Hee Lee. 2018. Spline Interface for Intuitive Skinning Weight

Editing. ACM Transactions on Graphics (TOG) 37, 5 (2018), 174.
Sumukh Bansal and Aditya Tatu. 2019. Affine interpolation in a lie group framework.

ACM Transactions on Graphics (TOG) 38, 4 (2019), 71.
Ilya Baran and Jovan Popović. 2007. Automatic rigging and animation of 3d characters.

In ACM Transactions on graphics (TOG), Vol. 26. ACM, 72.

Fred L. Bookstein. 1989. Principal warps: Thin-plate splines and the decomposition of

deformations. IEEE Transactions on pattern analysis and machine intelligence 11, 6
(1989), 567–585.

Mario Botsch and Leif Kobbelt. 2004. An intuitive framework for real-time freeform

modeling. ACM Transactions on Graphics (TOG) 23, 3 (2004), 630–634.
Xiang Chen, Changxi Zheng, and Kun Zhou. 2016. Example-based subspace stress

analysis for interactive shape design. IEEE transactions on visualization and computer
graphics 23, 10 (2016), 2314–2327.

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in heat: A

new approach to computing distance based on heat flow. Transactions on Graphics
32, 5 (2013), 152.

Timothy A Davis et al. 2015. SuiteSparse: A suite of sparse matrix software. URL
http://faculty. cse. tamu. edu/davis/suitesparse. html (2015).

Olivier Dionne and Martin de Lasa. 2013. Geodesic voxel binding for production char-

acter meshes. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. 173–180.

Jérôme Droniou and Christophe Le Potier. 2011. Construction and convergence study

of schemes preserving the elliptic local maximum principle. SIAM J. Numer. Anal.
49, 2 (2011), 459–490.

Michael S Floater. 2003. Mean value coordinates. Computer aided geometric design 20, 1

(2003), 19–27.

David Gilbarg and Neil S Trudinger. 2015. Elliptic partial differential equations of second
order. springer.

Philipp Herholz, Felix Haase, and Marc Alexa. 2017. Diffusion diagrams: Voronoi cells

and centroids from diffusion. In Computer Graphics Forum, Vol. 36. Wiley Online

Library, 163–175.

Michael Hinze and Tran Nhan Tam Quyen. 2016. Matrix coefficient identification in an

elliptic equation with the convex energy functional method. Inverse problems 32, 8
(2016), 085007.

Kai Hormann and Michael S Floater. 2006. Mean value coordinates for arbitrary planar

polygons. ACM Transactions on Graphics (TOG) 25, 4 (2006), 1424–1441.
Kai Hormann andNatarajan Sukumar. 2008. Maximum entropy coordinates for arbitrary

polytopes. In Computer Graphics Forum, Vol. 27. Wiley Online Library, 1513–1520.

Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, and Olga Sorkine. 2012a.

Fast automatic skinning transformations. ACM Transactions on Graphics (TOG) 31,
4 (2012), 1–10.

Alec Jacobson, Ilya Baran, Jovan Popovic, and Olga Sorkine. 2011. Bounded biharmonic

weights for real-time deformation. ACM Trans. Graph. 30, 4 (2011), 78–1.
Alec Jacobson, Zhigang Deng, Ladislav Kavan, and JP Lewis. 2014. Skinning: real-time

shape deformation. In ACM SIGGRAPH 2014 Courses. ACM, 24.

Alec Jacobson, Elif Tosun, Olga Sorkine, and Denis Zorin. 2010. Mixed finite elements

for variational surface modeling. In Computer Graphics Forum, Vol. 29. 1565–1574.

Alec Jacobson, TinoWeinkauf, and Olga Sorkine. 2012b. Smooth shape-aware functions

with controlled extrema. In Computer Graphics Forum, Vol. 31. Wiley Online Library,

1577–1586.

Doug L James and Christopher D Twigg. 2005. Skinning mesh animations. In ACM
Transactions on Graphics (TOG), Vol. 24. ACM, 399–407.

Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Har-

monic coordinates for character articulation. ACM Transactions on Graphics (TOG)
26, 3 (2007), 71.

Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean value coordinates for closed

triangular meshes. ACM Transactions on Graphics (TOG) 24, 3 (2005), 561–566.
Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O’Sullivan. 2008. Geometric skinning

with approximate dual quaternion blending. ACM Transactions on Graphics (TOG)
27, 4 (2008), 105.

Ladislav Kavan, P-P Sloan, and Carol O’Sullivan. 2010. Fast and efficient skinning

of animated meshes. In Computer Graphics Forum, Vol. 29. Wiley Online Library,

327–336.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980 (2014).

Andreas Kirsch. 2011. An introduction to the mathematical theory of inverse problems.
Vol. 120. Springer Science & Business Media.

Binh Huy Le and Zhigang Deng. 2012. Smooth skinning decomposition with rigid

bones. ACM Transactions on Graphics (TOG) 31, 6 (2012), 199.
Binh Huy Le and Zhigang Deng. 2014. Robust and accurate skeletal rigging from mesh

sequences. ACM Transactions on Graphics (TOG) 33, 4 (2014), 84.
Binh Huy Le and Jessica K Hodgins. 2016. Real-time skeletal skinning with optimized

centers of rotation. ACM Transactions on Graphics (TOG) 35, 4 (2016), 37.
Binh Huy Le and JP Lewis. 2019. Direct delta mush skinning and variants. ACM Trans.

Graph 38, 113 (2019), 1–113.

Xian-Ying Li and Shi-Min Hu. 2012. Poisson coordinates. IEEE Transactions on visual-
ization and computer graphics 19, 2 (2012), 344–352.

Yaron Lipman, David Levin, and Daniel Cohen-Or. 2008. Green coordinates. ACM
Transactions on Graphics (TOG) 27, 3 (2008), 78.

Yaron Lipman, Raif M Rustamov, and Thomas A Funkhouser. 2010. Biharmonic distance.

Transactions on Graphics 29, 3 (2010), 27.
Richard Liska and Mikhail Shashkov. 2008. Enforcing the discrete maximum principle

for linear finite element solutions of second-order elliptic problems. Commun.
Comput. Phys. 3, 4 (2008), 852–877.

Lijuan Liu, Youyi Zheng, Di Tang, Yi Yuan, Changjie Fan, and Kun Zhou. 2019. Neu-

roskinning: Automatic skin binding for production characters with deep graph

networks. ACM Transactions on Graphics (TOG) 38, 4 (2019), 114.
Changna Lu, Weizhang Huang, and Jianxian Qiu. 2014. Maximum principle in lin-

ear finite element approximations of anisotropic diffusion–convection–reaction

problems. Numer. Math. 127, 3 (2014), 515–537.
Nadia Magnenat-Thalmann, Richard Laperrire, and Daniel Thalmann. 1988. Joint-

dependent local deformations for hand animation and object grasping. In In Pro-
ceedings on Graphics interfaceâĂŹ88. Citeseer.

Viktoras Makauskas. 2013. ngSkinTools. https://www.ngskintools.com

Jesús R Nieto and Antonio Susín. 2013. Cage based deformations: a survey. In Defor-
mation models. Springer, 75–99.

Gerard R Richter. 1981. An inverse problem for the steady state diffusion equation.

SIAM J. Appl. Math. 41, 2 (1981), 210–221.
Conrad Sanderson. 2010. Armadillo: An open source C++ linear algebra library for fast

prototyping and computationally intensive experiments. (2010).

Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D quality mesh genera-

tor and Delaunay triangulator. In Workshop on Applied Computational Geometry.
Springer, 203–222.

Hang Si. 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM
Transactions on Mathematical Software (TOMS) 41, 2 (2015), 1–36.

Robin Sibson and Vic Barnett. 1981. Interpreting multivariate data. A brief description
of natural neighbor interpolation (1981), 21–36.

Oded Stein, Eitan Grinspun, MaxWardetzky, and Alec Jacobson. 2018. Natural boundary

conditions for smoothing in geometry processing. ACM Transactions on Graphics
(TOG) 37, 2 (2018), 23.

J-M Thiery and Elmar Eisemann. 2018. ARAPLBS: Robust and Efficient Elasticity-

Based Optimization of Weights and Skeleton Joints for Linear Blend Skinning with

Parametrized Bones. In Computer Graphics Forum, Vol. 37. Wiley Online Library,

32–44.

Elif Tosun. 2008. Geometric modeling using high-order derivatives. Ph.D. Dissertation.
Citeseer.

KevinWampler. 2016. Fast and reliable example-based mesh ik for stylized deformations.

ACM Transactions on Graphics (TOG) 35, 6 (2016), 235.
Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2015. Linear subspace

design for real-time shape deformation. ACM Transactions on Graphics (TOG) 34, 4
(2015), 57.

Max Wardetzky, Saurabh Mathur, Felix Kälberer, and Eitan Grinspun. 2007. Discrete

Laplace operators: no free lunch. In Symposium on Geometry processing. 33–37.
Zangyueyang Xian, Xin Tong, and Tiantian Liu. 2019. A scalable galerkin multigrid

method for real-time simulation of deformable objects. ACM Transactions on Graph-
ics (TOG) 38, 6 (2019), 162.

Zhipei Yan and Scott Schaefer. 2019. A Family of Barycentric Coordinates for Co-

Dimension 1 Manifolds with Simplicial Facets. In Computer Graphics Forum, Vol. 38.

Wiley Online Library, 75–83.

Juyong Zhang, Bailin Deng, Zishun Liu, Giuseppe Patanè, Sofien Bouaziz, Kai Hormann,

and Ligang Liu. 2014. Local barycentric coordinates. ACM Transactions on Graphics
(TOG) 33, 6 (2014), 188.

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. 2003. Semi-supervised learning

using gaussian fields and harmonic functions. In Proceedings of the 20th International
conference on Machine learning (ICML-03). 912–919.

ACM Trans. Graph., Vol. 40, No. 4, Article 73. Publication date: August 2021.

https://www.ngskintools.com

	Abstract
	1 Introduction
	2 Related work
	2.1 Applications of Skinning Weights
	2.2 Computing skinning weights
	2.3 Barycentric coordinates

	3 Background and Preliminaries
	3.1 Problem Setup
	3.2 PDE-based Weights
	3.3 Anisotropic Laplacian and Elliptic PDE

	4 Quasi-Harmonic Weights
	4.1 A Parametric Family of Weights
	4.2 Proposed Model
	4.3 Representation Capacity of Quasi-harmonic Weights

	5 Discretization
	5.1 Relevant Matrices and Operators
	5.2 Discretized Optimization Problem
	5.3 Differentiating the Unconstrained Problem
	5.4 Tensor Field Parameterization
	5.5 Differentiable Projection

	6 Optimization
	6.1 A Customized ADAM Optimizer
	6.2 Symbolic Pre-Factorization

	7 Evaluation
	7.1 Baseline
	7.2 Performance
	7.3 Quality
	7.4 Tensor Field Visualization
	7.5 Implementation Details
	7.6 Limitations

	8 Conclusion and Future Work
	Acknowledgments
	References

