
Learning & Leading with Technology Volume 32 Number 4

Learning Connections

Student Voices & Computer Science

34

Understanding the concepts and development
of programming can benefi t students by demand-
ing precision of thought and requiring students
to clarify and improve on their problem-solving
process. The goal of beginning programming
instruction should be to introduce the subject
in terms familiar to students.

By Justin Solomon
Subject: Computer science, foreign
language

Grades: K–12 (Ages 5–18)

Technology: Programming

Standards: NETS•S 1, 3; NETS•T II;
NETS•A I (http://www.iste.org/stan-
dards/)

Programming as a
Second Language

Copyright © 2004, ISTE (International Society for Technology in Education), 1.800.336.5191 (U.S. & Canada) or 1.541.302.3777 (Int’l), iste@iste.org, www.iste.org. All rights reserved.

December/January 2004–05 Learning & Leading with Technology 35

Standard methods of teaching an
introductory course in comput-
er science, designed to intro-

duce computer programming as a tool
for mathematicians and engineers at
the university level, are unnecessarily
complicated and diffi cult. Th ey lack a
common thread that unifi es each unit
of material and frequently make use
of mathematical notation, technical
keywords, and other terms or symbols
unfamiliar to the average middle or
high school student. Furthermore,
they tend to focus on a single more
advanced language, leading students
to believe that each programming
language is a distinct and separate
entity with a tenuous—at best—
link to other languages. Ironically,
traditional high school-level computer
science classes are often driven by the
Advanced Placement (AP) curriculum
dictated by the College Board, which
establishes a narrow set of bench-
marks for evaluating profi ciency in
computer programming. According
to research done by Allen Tucker,
these benchmarks promote memori-
zation over understanding and are of
limited practical use to the average
student. (Editor’s note: Find this and
other Resources on p. 39.) As a result,
students view programming as more
of a snapshot than a continuum,
failing to see the value in pursuing
a higher level of programming and
computer applications profi ciency.

To meet the educational require-
ments of a wider and increasingly
younger audience, computer pro-
gramming instruction needs a com-
prehensive overhaul, with the goal of
fi tting into school-based curricula as
a “second language,” starting as early
as the elementary years. To begin the
process of revising basic computer
science curriculum, the goal of begin-
ning programming instruction should
be to introduce the subject in terms
more familiar to the average student.

With simple adjustments to methods
of programming instruction, students
could be shown that linguistic terms,
such as specifi c parts of speech or ele-
ments of grammar, can be common
denominators in computer program-
ming. Using spoken and written
language as a metaphor for program-
ming can show commonalities and
diff erences across programming lan-
guages, the correlation among these
diff erences, and the repetitive patterns
of the correlations. In addition, this
concept can be adapted to reduce the
intimidation factor of introductory
programming, making it accessible
to students from all backgrounds,
ages, and genders. With this model,
introductory courses in computer
programming are more likely to
provide a solid basis for students in
all algorithmic thought, as well as
a foundation for progress to related
applications and extensions, possibly
including more advanced languages
with specifi c advantages and particu-
lar uses.

According to research conducted
by Letitia Naigles, students intro-
duced to foreign language at a young
age fi nd it easier to acquire profi cien-
cy in that language. Th e same holds
true for computer programming.
Although programming has become
an important subject for high school
students to learn, there is no reason
it cannot be introduced earlier. As a
discipline, it provides students with
a unique way of thinking based on
logic and reasoning. A rudimentary
understanding of the concepts and
development of programming can
benefi t students by introducing them
to such topics as stepwise refi nement
and the use of documentation. It
demands precision of thought and
requires students to clarify and im-
prove on their problem-solving
process. Programming has applica-
tions in almost any fi eld, from lan-

Student Voices & Computer Science

Copyright © 2004, ISTE (International Society for Technology in Education), 1.800.336.5191 (U.S. & Canada) or 1.541.302.3777 (Int’l), iste@iste.org, www.iste.org. All rights reserved.

Student Voices & Computer Science

1000 100010011
1000 100010011
1000 100010011
1000 100010011
1000 100010011
1000 100010011
1000 100010011

Learning & Leading with Technology Volume 32 Number 436

his or her needs and desires. Unsur-
prisingly, the vocabulary and struc-
tures used to form these demands
are usually quite direct, as most
toddlers do not have a deep under-
standing of complex grammatical
structures.

Programs written by novice com-
puter science students follow the
same pattern. Beginners fi nd it hard
to accept that certain statements are
necessary without understanding their
purpose. For example, consider the
following program written in Java, a
fairly complex programming language
popular for introductory classes in
computer science:

import javax.swing.
JOptionPane;

public class SimpleProgram
{
 public static void
main(String a[]) {
 String answer;
 answer = JOptionPane.s
howInputDialog(“What is the
password?”);
 if (Integer.parseInt(a
nswer) == 123)
 JOptionPane.showMess
ageDialog(null, “Correct”);
 else
 JOptionPane.sh
owMessageDialog(null,
“Incorrect”);
 }
}

Th is code is hardly readable. Most
beginning programmers do not know
how or why methods are declared,
yet alone what it means to call them
public, static, and void. Also, a single
typo in this and most other Java pro-
grams could result in any number
of cryptic errors, from the simple
unclosed string literal to the terrify-
ing thread death exception. In fact,
running the above program with the
input “wrongPassword” will make it
stop running and output the follow-
ing error message:

guage arts and design to architecture,
and could be viewed as the basis for
any type of computer use. Even the
most fundamental knowledge of
programming can prove helpful to
students working on multimedia
presentations, classroom projects,
spreadsheets, word processing, or
data aggregation.

Unfortunately, the somewhat ar-
chaic model for lessons in program-
ming tends to target older, higher-
level students who already understand
the abstractions and jargon used by
computer technicians. Th is frequently
leads to discouragement and failure
among younger students who might
otherwise benefi t from knowledge of
computer programming. Chris Ste-
phenson’s recent survey of high school
computer science teachers reported
that many of the schools that do not
off er computer science instruction
decided that it was a fi eld best left to
colleges and universities due to “aca-
demic rigor.” Th is notion is unfound-
ed. Many students in both elementary
and middle school are profi cient in
programming, even though they do
not have the traditional technical or
mathematical backgrounds.

According to Peter Van Roy’s basic
constructivist model of education,
students who study computer sci-
ence as an extension of what they
already know tend to gain a deeper
understanding of the subject material.
Also, Nicola Henze and Wolfgang
Nejdl found that students who learn
answers by rote are less likely to un-
derstand or apply them. For these
reasons, a common-sense model of
computer science education would
use something any student can un-
derstand: language. One must learn
the basic constructs of a language and
how to manipulate them to be profi -
cient in any language, be it designed
for communication among comput-
ers or humans. If a computer science
curriculum encouraged students to
make connections between computer

languages and the languages they
speak, students would have greater
ease in remembering how to code as
well as fewer syntax errors. Drawing
connections between program syntax
and punctuation, between language
structure and grammar, students can
recognize programming problems in
their everyday lives, making abstract
topics much more concrete. Th ey will
have the ability to take an algorithmic
and logical approach to problem-solv-
ing both inside and outside the tech-
nical realm.

After they make these connections,
students will be able to communicate
in the language of the computer how
problems can be solved in the most

effi cient way possible. Programming
will be much easier to understand
and it will become less problematic
to retain the large amounts of knowl-
edge needed to write useful programs.
Integrated into other classroom work,
computer programming can be a use-
ful, creative, and thoroughly enter-
taining second language for students
at all levels.

First Words
According to the American Speech-
Language-Hearing Association, after
simple nouns, the fi rst words typi-
cally used by infants are commands.
Straightforward and largely uncom-
plicated, these commands are just
enough for a young child to convey

Copyright © 2004, ISTE (International Society for Technology in Education), 1.800.336.5191 (U.S. & Canada) or 1.541.302.3777 (Int’l), iste@iste.org, www.iste.org. All rights reserved.

Student Voices & Computer Science

1000 100010011
1000 100010011
1000 100010011
1000 100010011
1000 100010011
1000 100010011
1000 100010011

1000 100010011
1000 100010011
1000 100010011
1000 100010011
1000 100010011
1000 100010011
1000 100010011

 December/January 2004–05 Learning & Leading with Technology 37

Exception in thread “main”
java.lang.NumberFormatExce
ption: wrongPassword
 at java.lang.Integer.par
seInt(Integer.java:426)
 at java.lang.Integer.par
seInt(Integer.java:476)
 at SimpleProgram.main(Si
mpleProgram.java:7)

Almost every type of simple error
comes with its own confusing name
and “exception.” Forced to explain
such obscure packages and “features,”
Java reference manuals are often
dauntingly long for the average stu-
dent. Many times these errors are so
long they scroll off the console or out-
put window. Now observe a similar
program in BASIC:

PRINT “What is the
password?”
INPUT password
IF password = 123 PRINT
“Correct”
ELSE PRINT “Incorrect”

or its counterpart on a TI-83
calculator:

PROGRAM: PASSWORD
ClrHome
Disp “PASSWORD?”
Input P
If (P=123)
Disp “CORRECT”
If (P≠123)
Disp “INCORRECT”

Th ese programs have one-third to
one-half the number of lines of their
counterpart in Java and are much

easier to read and to write. Th ey look
closer to a set of directions given
from one person to another so that
they could be read from top to bot-
tom without much interpretation.
Also, every command has a clear pur-
pose, making the debugging process
straightforward. No “keywords” are
required to precede certain state-
ments, and the programmer does
not need to surround blocks of code
with any type of bracket or brace. Ev-
erything runs from the beginning to
the end, one line at a time. Th e im-
mediate feedback provided by writing
short programs and observing their
output helps students recognize the
importance of every set of program-
ming skills in the context of their
own computer needs. Th is prevents
students from memorizing code seg-
ments without understanding how
they can be used.

Diff erences in readability alone are
enough to make a compelling argu-
ment for the use of simple interpreted
languages by beginners. Several such
interpreters are freely available or for
a small price on the Internet. Th ese
languages, including any member of
the BASIC family, make it easy for
programmers to focus on the diff er-
ent structures, commands, and algo-
rithms without concerning themselves
over the form or style of their pro-
grams. Th ey encourage the develop-
ment of good programming style and
are similar to the pseudocode used in
more advanced textbooks. Also, Mar-
celo Zanconi and his colleagues found
that the use of simple programming
languages encourages teaching the
programming process instead of the
features and peculiarities of a particu-
lar language.

Once students have learned basic
syntax rules, they should be able to
read their programs like normal text.
An eff ective exercise would be to pre-
dict the output of programs before
running them and to “translate” pro-
grams from computer language to ev-

eryday language and back. Th is type
of work emphasizes the relationship
between programming and real-life
situations. It also will encourage the
student to recognize the “punctua-
tion” of coding, and that there are
several elements that make a program
acceptable to the computer but still
readable by humans.

Recognizing Verbs and
Other Useful Parts of Speech
Th e necessity for more complex com-
munication drives children to con-
struct longer sentences by stringing
more meaningful words together. De-
spite their utility, commands alone do
not convey action, provide a name or
label, or describe anything in detail.
Th us, new language-based constructs
include at least a subject and a verb,
and often incorporate modifi ers and
adjectives.

Th ese terms transfer directly to
basic structured programming tech-
niques using subroutines and func-
tions. A subroutine is like a pronoun.
Subroutines represent segments of
code that can be reused to perform
the same calculations or output every
time they are called. Th ey encourage
new programmers to avoid cutting
and pasting similar blocks of code for
a more sophisticated model. Similarly,
pronouns are used to shorten the
names of their antecedents. Pronouns
could be replaced with the noun they
represent without changing the mean-
ing of their context. In the same way,

Copyright © 2004, ISTE (International Society for Technology in Education), 1.800.336.5191 (U.S. & Canada) or 1.541.302.3777 (Int’l), iste@iste.org, www.iste.org. All rights reserved.

Student Voices & Computer Science

1000 100010011
1000 100010011
1000 100010011
1000 100010011
1000 100010011
1000 100010011
1000 100010011

Learning & Leading with Technology Volume 32 Number 438

Recognizing Nouns
Th e next structure covered in most
computer science classes is the object.
Objects are abstract representations
of all the functions, subroutines, and
data related to a specifi c item or con-
cept. Th is model requires program-
mers to group their functions and
data members by purpose. OOP
has become widely popular in recent
years and has led to many diffi cult
lesson plans. In fact, it has even been
cited as a top reason why students
drop their programming courses.
Other than the traditional “black

box” lesson about objects and classes,
there are hardly any resources avail-
able to help teach this particularly
abstract topic.

OOP, however, could be viewed as
a programming methodology that fo-
cuses on nouns rather than on verbs.
To relate objects to nouns, students
could list all of the actions, informa-
tion, and manipulations associated
with a certain noun. Th en, they could
combine their prior knowledge of
programming techniques and simple
algorithms with a short lesson on the
syntax of objects and classes to actual-
ly implement a program that, on the
most basic level, acts like the noun
they chose. From there, students can

work on progressively more diffi cult
problems, each focusing on the fact
that an object should be made for
every prominent noun in the program
description. Soon, they will be able
to apply object-oriented design to ap-
plicable programming situations and
to understand the concepts of and
reasons for encapsulation.

At this point, more advanced con-
cepts of OOP such as inheritance,
polymorphism, and abstraction can
be introduced individually by relating
them to linguistics. Inheritance deals
with the classifi cation of nouns and
their related verbs. As specifi c nouns
are grouped together, they will form
categories, which can be represented
by abstract objects. For instance, “tri-
angle,” “square,” and “pentagon” could
be classifi ed under the more abstract
noun “shapes.” Such simple relation-
ships show naturally the need for such
complex models as polymorphism,
which deals with treating all child
classes the same by using the member
functions common to all of them. For
shapes, functions that calculate area
and perimeter could be called without
knowing which specifi c shape the
computer was referencing.

Communicating Ideas
No language is useful unless it can
be used to communicate ideas. After
all, it is not the individual words that
give a sentence or paragraph its mean-
ing, but rather the specifi c sequence
of words used. Likewise, learning the
syntax of a programming language is
useless unless it can be applied to the
creation of useful, or at least enter-
taining, programs.

Th ere are several ways to approach
the problem of creating sample situ-
ations that could be solved using a
computer program. Regardless of the

every time a subroutine is called it has
the same “meaning” to the computer
and produces exactly the same action.

Functions, on the other hand, are
more like verbs. Functions, called
methods in Java, take one or more
parameters and somehow manipulate
them to eventually return a single val-
ue. Similarly, the subject of a sentence
aff ects or changes the object through
the verb. Functions change their use
and meaning depending on their pa-
rameters and can be used repeatedly
in the context of a single program.
Verbs also change meaning depending
on the context of the sentence.

After students have a complete
understanding of the programming
“sentence structure” and control over
simple data structures, it may be time
for them to move to a more powerful
language that supports such para-
digms as object-oriented program-
ming (OOP) and templates. Because
they have already studied constructs
used in almost any language such as
branching and looping, it should not
be hard to transfer their skills. Now it
should be more obvious, for instance,
why the main() function exists in C++
or why most Lisp programs start with
several function defi nitions.

Perhaps the best way to introduce
students to new languages is to have
them write the same program in the
language with which they are already
familiar and in the new language. As
a result, they will notice that diff er-
ent programming languages are used
to express the same idea in diff erent
ways. Also, they should compare the
features of the two languages and hy-
pothesize when it might be advanta-
geous to use one rather than the oth-
er. As students will soon discover, the
linguistics of most commonly used
programming languages are related.

Reach for the Stars of education! Advertise in L&L.
Contact Danielle Steele-Larson or visit http://www.iste.org/ll/about/
to fi nd details on advertising in ISTE’s fl agship publication.

Reach for the Stars of education! Advertise in
Contact Danielle Steele-Larson or visit
to fi nd details on advertising in ISTE’s fl agship publication.

Copyright © 2004, ISTE (International Society for Technology in Education), 1.800.336.5191 (U.S. & Canada) or 1.541.302.3777 (Int’l), iste@iste.org, www.iste.org. All rights reserved.

Student Voices & Computer Science

1000 100010011
1000 100010011
1000 100010011
1000 100010011
1000 100010011
1000 100010011
1000 100010011

1000 100010011
1000 100010011
1000 100010011
1000 100010011
1000 100010011
1000 100010011
1000 100010011

size or type of problem, however, the
following principles will hold true:

• Although a problem can be de-
signed to require the implemen-
tation of a certain algorithm or
structure, the teacher should allow
his or her students to discover this
on their own and to explore their
own ideas. No requirements can
be made that a program should
be written a certain way, although
a runtime or memory-size limit
could be enforced. By encouraging
students to analyze the benefi ts and
costs of implementing specifi c algo-
rithms or solutions, they will fi nd
out why longer programs or more
complex solutions can lead to expo-
nentially faster programs.

• Allow students to work together,
but make sure that they all contrib-
ute to the programming process.
Th is way, they will all gain pro-
gramming experience. Student
collaboration is crucial in encour-
aging understanding when teach-
ers have exhausted the traditional
means of instruction. Group proj-
ects are especially important in
OOP, where each member can be
responsible for a single component
of a larger program.

• Try to assign programs in order
of their level of abstraction. Begin
with programs that have an obvious
implementation and then move on
to applications of the specifi c struc-

ture or algorithm and combine with
previous lessons. Traditional lesson
plans that could benefi t from this
process would be ones that involve
simple algorithms such as search-
ing, sorting, and fi le manipulation.

Th ese concepts are important not
only in connecting the programming
world with the real world but also in
honing students’ generalized problem-
solving skills. Th ere are several diff er-
ent ways to word a sentence, and it is
important that one can understand
any type of sentence structure. Simi-
larly, teamwork introduces students
to the diff erent ways in which people
approach programming problems and
the various styles of writing code. Th e
student should begin to recognize the
most effi cient structures and make use
of them when needed. Teamwork will
introduce students to careers related
to computer science, where a whole
team can work together to write one
software product.

Achieving Fluency
With some practice, most students
can gain the skills needed to be
profi cient in a useful programming
language. Learning any language is
diffi cult. It takes practice, study, and
the ability to apply several layers of
abstraction to a concrete problem. A
good lesson plan that relates code to
everyday life situations can make the
experience much easier. Learning to

code is a very rewarding process that
will provide the student with skills
he or she can use for life. If started
early enough in a student’s academic
career and taken out of the context
of achieving a higher score on a stan-
dardized exam such as the AP test,
programming can become as natural
as bilingual fl uency earned through
the study of a second language.

Resources
American Speech-Language-Hearing Associa-

tion. (1997–2004). How does your child
hear and talk? [Online document]. Avail-
able: http://www.asha.org/public/speech/
development/child_hear_talk.htm.

Henze, N., & Nejdl, W. (1998). Constructiv-
ism in computer science education: Evalu-
ating a teleteaching environment for proj-
ect oriented learning. Interactive Computer
Aided Learning Concepts and Applications.

 Proceedings of the ICL 98 Workshop, Carin-
thian Institute of Technology, Villach, Austria,
October 1998. Available: http://citeseer.
ist.psu.edu/henze98constructivism.html

Naigles, L. R. (2002). Form is easy, meaning
is hard: Resolving a paradox in early child
language. Cognition, 86, 157–199.

Stephenson, C. (2002). High school computer
science education: A fi ve-state study. JCSE
Online. Available: http://www.iste.org/
sigcs/community/jcseonline/2002/02/ste-
phenson.cfm.

Tucker, A. (1996). Strategic directions in
computer science education. ACM
Computing Surveys, 28(4), 836–845.

Van Roy, P., (2003). Th e role of language
paradigms in teaching programming.
Technical Symposium on Computer
Science Education, 34, 269–270.

Zanconi, M., Moroni, N., & Señas, P. (1995).
An educational project in computer
science for primary and high school.
SigCSE Bulletin, 27, 27–33.

Justin Solomon is a 17-year-
old junior at Th omas Jeff erson
High School for Science and
Technology in Alexandria,
Virginia. He began program-
ming after the third grade
and is currently studying arti-

fi cial intelligence and computer graphics. Justin
recently won fi rst place in the Fairfax County
Regional and Virginia State Science and Engi-
neering Fairs for computer science. He would like
to thank Joshua Strong, Karen Budd, Elizabeth
Lodal, Anita McAnear, and Philip East for their
assistance in the development of this project.

 December/January 2004–05 Learning & Leading with Technology 39
Copyright © 2004, ISTE (International Society for Technology in Education), 1.800.336.5191 (U.S. & Canada) or 1.541.302.3777 (Int’l), iste@iste.org, www.iste.org. All rights reserved.

