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— Introduction —



Mappings Between Shapes

Let M0 and M be smooth surfaces discretized as triangle meshes. We
consider discrete representations of smooth maps φ : M0 → M.

The of maps of interest should
satisfy certain properties:

• Geometric

→ Bijective

→ Continuous

→ Preserves fine details

• Semantic

→ Meaningful

→ Preserves features

→ Satisfies user constraints



Difficulties with Point-to-Point Representations

An obvious discrete representation for a map is a vertex-to-vertex
correspondence. This is inherently combinatorial and has drawbacks.

• The vast majority of vx-to-vx maps
are in no way desirable.

• Continuity cannot be properly
defined and quantified.

• The mesh itself interferes at the
smallest scale!

Thus: Vx-to-vx maps involve

• Subsampling.

• Measuring pairwise distances
and adjacency relationships.

• This leads to problems!



Continuity

In principle: These problems should be detectable via a failure of
continuity somewhere. Continuity should have a regularizing effect.

• Why? Think of a result like the Intermediate Value Theorem.

The problem: Vertex-to-vertex representations are not adequate
for quantifying continuity at this infinitesimal scale.

Possible resolution: An alternate representation for smooth maps.

• It should make sense for smooth surfaces yet be easily
discretized, and should be convergent under mesh refinement.

• Continuity should make sense both discretely and in the
smooth limit, and should be quantifiable.

• We should still be able to incorporate desirable map properties.



Soft Maps

We propose a representation that takes a probabilistic appoach.

Definition: A soft map from M0 to M is a map µ : M0 → Prob(M).

I.e. every point on the source surface M0 maps to a probability
distribution of potential matches on the target surface M.

• Interpretation:

µx =
[
Probability that y ∈ M
corresponds to x ∈ M0

]
• Recall SGP 2012.

(Then: approximation by histograms.
Now: the limit as the bin size → 0.)

x
µx

µ−→



Advantages of Soft Maps

• They can be defined via scalar functions on M0 ×M.

→ Each µx has a positive density that integrates to one.

• They generalize point-to-point maps φ : M0 → M.

→ The associated density is sharply peaked at φ(x).

• They permit blurring and superposition.

→ →

The “ideal” soft map is a convex combination of a small number
(associated with symmetries) of blurred point-to-point maps.



— Soft Map Energies —



Quantifying Continuity

Recall: Dirichlet energies quantify the “degree of continuity” of
mappings between domains in many different contexts.

Examples:

• For f : M0 → R

ED(f ) :=

ˆ
M0

‖∇0f (x)‖2dx

• For φ : M0 → M

ED(φ) :=

ˆ
M0

‖∇0φ(x)‖2dx

A generalization: These are all instances of a general framework for
maps φ : (M0, dist0)→ (M, dist) between any metric spaces:

ED(φ) :=

ˆ
M0

(
lim
ε→0

1

Area(Bε(x))

ˆ
Bε(x)

dist2(φ(x), φ(x ′))

dist0
2(x , x ′)

dx ′
)
dx
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The Wasserstein Metric on Prob(M)

Key idea: We can view Prob(M) as a metric space.

• The theory of Optimal Transportation gives us a metric on
Prob(M) called the Wasserstein metric with quadratic cost.

Let µ, ν ∈ Prob(M).

The distance W2(µ, ν) is the cost of the
optimal way of transporting mass from
the distribution µ to the distribution ν.

The transportation cost for an individual
particle from y to y ′ is dist2(y , y ′).

• This is also called the Earth Mover’s Distance (with quadratic cost).

Consequence: We can define a Dirichlet energy for soft maps.



The Dirichlet Energy of a Soft Map

Definition:

Let µ : M0 → Prob(M) be a soft map.

The Dirichlet energy of µ is the quantity

ED(µ) :=

ˆ
M0

(
lim
ε→0

1

Area(Bε(x))

ˆ
Bε(x)

W 2
2 (µx , µx ′)

dist20(x , x ′)
dx ′
)
dx

Key properties:

• The Dirichlet energy is convex in µ.

• It generalizes the Dirichlet energy for maps. So if φ is a map
and µφ is the associated soft map then ED(µφ) = ED(φ).

• The Dirichlet energy of any constant soft map is zero.



Simplification of the Dirichlet Energy

Problem: This form of the Dirichlet energy is difficult to work with.

Theorem: The following simplification holds.

Consider a soft map with smooth positive density ρ(x , y).
Then the Dirichlet energy of ρ satisfies

ED(ρ) =

¨
M0×M

ρ(x , y)‖∇Q(x , y)‖2dy dx .

The quantity Q is vectorial and lives on M0 ×M.

It is defined as follows. For each x and direction V , then
Q(x , y) satisfies the linear PDE in the y -variables given by

∇ ·
(
ρ∇〈Q,V 〉

)
= −〈∇0ρ,V 〉



Interpretation of Q

We call Q the transportation potential of the soft map. We can
interpret it in terms of conservative mass flow.

I.e. we view each ρ(x , ·) is a swarm of particles. Now:

• Displace x in the direction V
to an infinitesimally near x ′.

• The mass distribution ρ(x , ·)
changes into ρ(x ′, ·).

• Assume it’s by optimal transport.

• The particle at y has velocity equal to

∇Q(x , y) · V

• The Wasserstein distance relates to the kinetic energy.

ρ∇Q · V

Target

W 2
2 (µx , µx′)

dist20(x , x ′)
≈
ˆ
M

ρ(x , y)‖∇Q(x , y) · V ‖2dy

x
V −→

Source



Soft Map Bijectivity

An issue: All constant soft maps all have the same minimal
Dirichlet energy equal to zero. Can we tell them apart?

Idea: Measure the equidistribution of probabilistic mass pushed
forward from M0 to M. Quantify as follows.

• We can interpret the integral b(y) :=
´
M0
ρ(x , y)dx as the

probability that y receives mass from somewhere in M0.

• So if the square integral

Eb(ρ) :=

ˆ
M

[ˆ
M0

ρ(x , y) dx

]2
dy

is small, then each ρ(x , ·) is as spread out as possible and each
point of M receives an equal amount of mass from M0.

• We call Eb(ρ) the bijectivity energy of ρ.



— Soft Map Analysis and Synthesis —



Map and Soft Map Analysis

The two energies and their densities that we have introduced can be
used for soft map analysis.

We can study:

• The soft map of a pt-to-pt map.

• Or a soft map coming from shape
descriptor differences, of the form

ρ(x , y) ∝ e−(d1(x)−d2(y))
2/σ2

Energies of various self-maps of the sphere.

Dirichlet and bijectivity energy
densities on M0 and M, resp.

x

x ′ µ−−→

µx

µx′

Unfavourable stretching in WKS
revealed by the Dirichlet energy



Local Correspondence Extraction

Recall: Choose x and a direction V . Let the mass distribution
ρ(x , ·) change optimally with x .

Then the particle at y moves with velocity ∇Q(x , y) · V .

So what: We get a method for extracting point correspondences.

• Choose a path x(ε) s.t. x(0) = xinit and decide on a point yinit ∈ M
that should correspond to xinit .

• Integrate the velocity field

ẏ = ∇Q(x , y) · ẋ

• Get a path y(ε) in M
with initial data y(0) = yinit .

• The paths x(ε) and y(ε)
are now in correspondence.

Source

→

Velocity Corresp. path



Generating Soft Maps

Goal: Generate soft maps by solving a constrained optimization
problem in the space of soft maps. It’s convex!

minimize E(µ) := ED(µ) + λEb(µ)

And: To avoid the constant soft map, we must impose constraints.

• E.g. a few points or subsets of M0 and M must correspond.

• This is similar to the harmonic maps problem.

Source, red
constraints

→

Optimal soft map distributions associated to the yellow points.



Conclusion and Future Work

What we have done:

• Introduced a representation for maps that supports a Dirichlet
energy for measuring continuity.

• Used this representation for map analysis and synthesis.

What we would like to do next:

• More efficient computation of Q.

• Decomposition of ρ into a convex combination of soft maps
associated to maps.

• Map extraction at multiple scales.
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