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Compute shape descriptors
http://graphics.stanford.edu/projects/lgl/papers/sog-hks-09/sog-hks-09.pdf 



Extract important features
http://people.cs.umass.edu/~kalo/papers/LabelMeshes/LabelMeshes.pdf 



Map shapes to one another

Á

http://www.stanford.edu/~justso1/assets/fmaps.pdf 



Relate new scans to known models
http://www.hao-li.com/publications/papers/siggraph2011RPBFA.pdf 



Understand collections of shapes
http://graphics.stanford.edu/projects/lgl/papers/nbwyg-oaicsm-11/nbwyg-oaicsm-11.pdf 



Graphics

http://people.csail.mit.edu/tmertens/papers/textransfer_electronic.pdf 
http://graphics.stanford.edu/~mdfisher/Data/Context.pdf 

http://graphics.stanford.edu/~niloy/research/symmetrization/paper_docs/symmetrization_sig_07.pdf 
http://www.mpi-inf.mpg.de/~mbokeloh/project_dockingSites.html 

Editing 

Retrieval 

Exploiting patterns 

Transfer 



Vision

http://eijournal.com/newsite/wp-content/uploads/2012/01/VELODYNE-IMAGE.jpg 
http://www.stanford.edu/~jinhae/iccv09/ 

http://www.stanford.edu/~justso1/assets/intrinsic_part_discovery.pdf 
http://www.cs.technion.ac.il/~ron/PAPERS/BroBroKimIJCV05.pdf 

Recognition 

Segmentation 

Navigation 

Reconstruction 



Medical Imaging

http://dmfr.birjournals.org/content/33/4/226/F3.large.jpg 
http://www-sop.inria.fr/asclepios/software/inriaviz4d/SphericalImTransp.png 

http://www.creatis.insa-lyon.fr/site/sites/default/files/segm2.png 

Analysis 

Registration 

Segmentation 



Manufacturing

http://www.conduitprojects.com/php/images/scan.jpg 
http://www.emeraldinsight.com/content_images/fig/0330290204005.png 

Scanning Defect detection 



Analysis and  
correspondence form a 

large and diverse 
field. 



Summarize approaches to 

Local descriptors 
Shape understanding 
Correspondence 
Shape collections 



vision.in.tum.de/_media/spezial/bib/aubry-et-al-4dmod11.pdf 



http://liris.cnrs.fr/meshbenchmark/images/fig_attacks.jpg 

§

Rn

Pointwise quantity



http://isg.cs.tcd.ie/spheretree/pics/bunny.gif 

§

RjV j£n

Pointwise quantity



Distinguishing 
Provides useful information about a point 
 

Stable 
Numerically and geometrically 
 

Intrinsic 
No dependence on embedding 



Distinguishing 
Provides useful information about a point 
 

Stable 
Numerically and geometrically 
 

Intrinsic 
No dependence on embedding 



Isometry 
[ahy-som-i-tree]: 
Bending without stretching. 



Isometry invariant
http://www.revedreams.com/crochet/yarncrochet/nonorientable-crochet/ 



http://www.flickr.com/photos/melvinvoskuijl/galleries/72157624236168459 



Few shapes can deform isometrically
http://www.4tnz.com/content/got-toilet-paper 



Few shapes can deform isometrically
http://www.4tnz.com/content/got-toilet-paper 



http://www.sciencedirect.com/science/article/pii/S0010448510001983 

K = ·1·2 H = 1=2(·1 +·2)

Gaussian and mean curvature



http://www.sciencedirect.com/science/article/pii/S0010448510001983 

K = ·1·2

Gaussian and mean curvature

Theorema Egregium 
(“Remarkable Theorem”): 

Gaussian curvature 
is intrinsic. 



Localized differential descriptors

K = ·1·2



Nonunique
http://www.integrityware.com/images/MerceedesGaussianCurvature.jpg 



Principal curvatures 
 

Shape index 
 

Curvedness 

·1; ·2

2

¼
arctan
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·1 + ·2

·1 ¡ ·2

¶

r
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2
(·21 + ·22)



Incorporate 
neighborhood information 

in an intrinsic fashion. 



Incorporate 
neighborhood information 

in an intrinsic fashion. 

http://ddg.cs.columbia.edu/SIGGRAPH06/DDGCourse2006.pdf 
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An intrinsic operator



¢= d ? d ?+ ? d ? d

¢ ¢ ¢

An intrinsic operator

¢Á1 = ¸1Á1 ¢Á2 = ¸2Á2 ¢Á3 = ¸3Á3 ¢Á4 = ¸4Á4 ¢Á5 = ¸5Á5

(¢Á0 = 0)



GPS(p) =

µ
1p
¸1
Á1(p);

1p
¸2
Á2(p);

1p
¸3
Á3(p); ¢ ¢ ¢

¶

Good properties: 

 Isometry-invariant 
 Unique to each point 
 Complete description of intrinsic 

geometry 
 Dot products, distances meaningful 



GPS(p) =

µ
1p
¸1
Á1(p);

1p
¸2
Á2(p);

1p
¸3
Á3(p); ¢ ¢ ¢

¶

Bad properties: 

 Assumes unique λ’s 
 Potential for eigenfunction 

“switching” upon deformation 
 Nonlocal feature 



Heat equation
http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf 

@u

@t
= ¡¢u



Wave equation

@2u

@t2
= ¡i¢u

http://www.ceremade.dauphine.fr/~peyre/numerical-tour/tours/meshproc_5_pde/index_06.png 



@2u

@t2
= ¡i¢u

Wave equation
http://www.ceremade.dauphine.fr/~peyre/numerical-tour/tours/meshproc_5_pde/index_06.png 



@u

@t
= ¡¢u

Heat equation 

u =

1X

n=0

ane
¡¸ntÁn(x)

µ
an =

Z

§

u0 ¢ Án dA
¶



kt(x; x) =

1X

n=0

e¡¸itÁn(x)
2

Continuous function on [0,∞) 

How much heat 
diffuses from x to 

itself in time t? 



kt(x; x) =

1X

n=0

e¡¸itÁn(x)
2

http://graphics.stanford.edu/projects/lgl/papers/sog-hks-09/sog-hks-09.pdf 



Good properties: 

 Isometry-invariant 
 Multiscale 
 Not subject to switching 
 Easy to compute 
 Related to curvature at small scales 

kt(x; x) =

1X

n=0

e¡¸itÁn(x)
2



Bad properties: 

 Issues remain with repeated 
eigenvalues 

 Theoretical guarantees require 
(near-)isometry 

kt(x; x) =

1X

n=0

e¡¸itÁn(x)
2



Scale-Invariant HKS (SI-HKS)
http://www.cs.technion.ac.il/~mbron/publications_conference.html 



Affine-Invariant HKS
http://www.cs.technion.ac.il/~darav/RavBroBroKimAffine10TR.pdf 



Photometric HKS
http://www.cs.technion.ac.il/~mbron/publications_conference.html 



Volumetric HKS
http://www.cs.technion.ac.il/~mbron/publications_conference.html 



WKS(E;x) = lim
T!1

1

T

Z T

0

jÃE(x; t)j2 dt =
1X

n=0

Án(x)
2fE(¸k)

2

Average probability 
over time that 
particle is at x. 

Initial energy 
distribution 



WKS(E;x) = lim
T!1

1

T

Z T

0

jÃE(x; t)j2 dt =
1X

n=0

Án(x)
2fE(¸k)

2

HKS WKS 
vision.in.tum.de/_media/spezial/bib/aubry-et-al-4dmod11.pdf 



WKS(E;x) = lim
T!1

1

T

Z T

0

jÃE(x; t)j2 dt =
1X

n=0

Án(x)
2fE(¸k)

2

Good properties: 

 [Similar to HKS] 
 Localized in frequency 
 Stable under some non-isometric 

deformation 
 Some multi-scale properties 



WKS(E;x) = lim
T!1

1

T

Z T

0

jÃE(x; t)j2 dt =
1X

n=0

Án(x)
2fE(¸k)

2

Bad properties: 

 [Similar to HKS] 
 Can filter out large-scale features 



1X

n=0

f(¸n)Án(x)
2

Can you learn the function f?
http://arxiv.org/pdf/1110.5015.pdf 

Considerations: 

 Collection of shapes 
 Potential transformations/noise 



Spin images
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00765655 

Bin points using: 
® = distance to normal line

¯ = distance to tangent plane

Can use low-rank 
approximation! 



Shape context
http://cg.tuwien.ac.at/hostings/cescg/CESCG-2003/MKoertgen/paper.pdf 

Bin directions y-x 
for each x 



Integral volume
http://graphics.stanford.edu/~niloy/research/global_registration/paper_docs/global_registration_sgp_05_poster.pdf 

Vr(p) =

Z

Br(p)\S
dV

Related to mean curvature 
Integral invariants  robust 



Shape Diameter Function
http://www.cs.jhu.edu/~misha/ReadingSeminar/Papers/Shapira08.pdf 

Weighted average 
distance along the surface  
 
Lightweight version of 
medial axis distance 



Signature of Histograms of OrienTations
http://www.vision.deis.unibo.it/fede/papers/eccv10.pdf 

Bin nearby normals in a 
canonical orientation 



 Structural indexing 
 Point signatures 
 Point fingerprints 
 Intrinsic shape signature 
 Multi-scale surface descriptors 
 Slippage 
 Spherical harmonics 
 RIFT 
 HMM 
 … 



http://graphics.stanford.edu/~niloy/research/structure/paper_docs/structure_sig_08.pdf 



 Segmentation 
 Symmetry detection 
 Global shape description 
 Retrieval 
 Recognition 
 Feature extraction 
 Alignment 
 … 



 Segmentation 
 Symmetry detection 
 Global shape description 
 Retrieval 
 Recognition 
 Feature extraction 
 Alignment 
 … 



 Compression 
 Reconstruction 
 Classification 

 Analysis 
 Alignment 
 Matching 

http://www0.cs.ucl.ac.uk/staff/n.mitra/research/symmetry_survey/symmetrySurvey_12.html 
http://www.cs.princeton.edu/courses/archive/fall03/cs597D/lectures/symmetry.pdf 



http://graphics.stanford.edu/~niloy/research/structure/paper_docs/structure_sig_08.pdf 

Continuous 



Ex. 1:  Discrete extrinsic symmetries

Partial and Approximate Symmetry Detection for 3D Geometry 
Mitra, Guibas, Pauly 2006 



Ex. 1:  Discrete extrinsic symmetries

Partial and Approximate Symmetry Detection for 3D Geometry 
Mitra, Guibas, Pauly 2006 

Compute simple curvature 
features to help pair similar 

points. 



Ex. 1:  Discrete extrinsic symmetries

Partial and Approximate Symmetry Detection for 3D Geometry 
Mitra, Guibas, Pauly 2006 

Pairs of points with similar 
signatures vote for different 

transformations. 



Ex. 1:  Discrete extrinsic symmetries

Partial and Approximate Symmetry Detection for 3D Geometry 
Mitra, Guibas, Pauly 2006 

Use mean shift clustering to 
find prominent 

transformations. 



Ex. 1:  Discrete extrinsic symmetries

Partial and Approximate Symmetry Detection for 3D Geometry 
Mitra, Guibas, Pauly 2006 



Ex. 1:  Discrete extrinsic symmetries

Discovering Structural Regularity in 3D Geometry 
Pauly et al. 2008 



Ex. 2:  Discrete intrinsic symmetries

Partial Intrinsic Reflectional Symmetry of 3D Shapes 
Xu et al. 2009 



Ex. 2:  Discrete intrinsic symmetries

Partial Intrinsic Reflectional Symmetry of 3D Shapes 
Xu et al. 2009 

IRSA Transform 
(“Intrinsic Reflectional Symmetry Axis”) 

Want T: MM (or parts thereof) 
preserving geodesic distances; 
fixed points are symmetry axis 
 
Sample potential axes; voting 
scheme for IRSA transform 



Ex. 2:  Discrete intrinsic symmetries

Global Intrinsic Symmetries of Shapes 
Ovsjanikov, Sun, and Guibas 2008 

Intrinsic symmetries 
become extrinsic in GPS 
space! 



Ex. 3:  Continuous intrinsic symmetries

On Discrete Killing Fields and Patterns on Surfaces 
Ben Chen et al. 2010 

Flows of Killing vector 
fields (KVFs) generate 
isometries 
 
DEC framework for finding 
approximate KVFs 



Ex. 3:  Continuous intrinsic symmetries

Discovery of Intrinsic Primitives on Triangle Meshes 
Solomon et al. 2011 

Approximate KVFs can be 
used to find nearly 
symmetric pieces 



Feature points

A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion 
Sun, Ovsjanikov, and Guibas 2009 

Maxima of kt(x,x) for large t. 



Feature curves

Separatrix Persistence:  Extraction of Salient Edges on Surfaces Using Topological Methods 
Weinkauf and Gunther 2009 

Filter out extraneous feature curves 



Feature curves

Separatrix Persistence:  Extraction of Salient Edges on Surfaces Using Topological Methods 
Weinkauf and Gunther 2009 

Morse-Smale Complex: 
Topological skeleton of 
critical points and 
separatricies 

x is in the descending manifold of critical point p if 
there exists a gradient flow curve connecting p to x 



Feature curves

Separatrix Persistence:  Extraction of Salient Edges on Surfaces Using Topological Methods 
Weinkauf and Gunther 2009 

Morse-Smale Complex: 
Topological skeleton of 
critical points and 
separatricies 

x is in the ascending manifold of critical point p if 
there exists a gradient flow curve connecting x to p 



Feature curves

Separatrix Persistence:  Extraction of Salient Edges on Surfaces Using Topological Methods 
Weinkauf and Gunther 2009 

Morse-Smale Complex: 
Topological skeleton of 
critical points and 
separatricies 

Separatrix: intersection of one ascending and one 
descending manifold 



Feature curves

Separatrix Persistence:  Extraction of Salient Edges on Surfaces Using Topological Methods 
Weinkauf and Gunther 2009 

1.  Build combinatorial 
Morse-Smale complex. 

2.  Apply persistence to 
simplify. 



http://www.cs.rutgers.edu/~decarlo/pubs/sg03.pdf 

Use curvature to choose 
better contour lines 

 
Suggestive contour generator: 

Points with zero/increasing 
curvature in view direction 

Feature curves



“Feature patches”  Segmentation



“Feature patches”  Segmentation

Simplest strategy:  
Cluster feature points 
(k-means, mean shift, 
etc.); use standard 
vision techniques for 
continuous regions 



“Feature patches”  Segmentation

Supervised learning 
problem 



“Feature patches”  Segmentation

Variational Shape Approximation 
Cohen-Steiner, Alliez, and Desbrun 2004 

Partition Proxies Simplified 



“Feature patches”  Segmentation

Variational Shape Approximation 
Cohen-Steiner, Alliez, and Desbrun 2004 

Partition Proxies Simplified 



“Feature patches”  Segmentation

Variational Shape Approximation 
Cohen-Steiner, Alliez, and Desbrun 2004 

Partition Proxies 

Flood using 
priority queue 

(Xi,Ni) 
minimizing 
fixed functional 



(Gromov-)Hausdorff distance

dH(X;Y ) = max

½
sup
x2X

inf
y2Y

d(x; y); sup
y2Y

inf
x2X

d(x; y)

¾

dGH(X;Y ) = min
f;g isometries

dH(f(x); g(y))

Easy to compute 

Hard to compute 
Less hard to approximate 

Related to Gromov-Wasserstein distance 



Perceptual distance
http://liris.cnrs.fr/guillaume.lavoue/travaux/conference/SPIE-2006.pdf 

Combine simple metrics (curvature, edge length 
distortion, etc.) with user studies. 



 Segmentation 
 Symmetry detection 
 Global shape description 
 Retrieval 
 Recognition 
 Feature extraction 
 Alignment 
 … 



Intermission 
http://en.wikipedia.org/wiki/Let%27s_All_Go_to_the_Lobby 



http://www.cs.princeton.edu/~funk/sig11.pdf 



Which points map to which?

http://graphics.stanford.edu/projects/lgl/papers/ommg-opimhk-10/ommg-opimhk-10.pdf 
http://www.cs.princeton.edu/~funk/sig11.pdf 

http://gfx.cs.princeton.edu/pubs/Lipman_2009_MVF/mobius.pdf 



MOSTLY 

BORROWED 

Maks Ovsjanikov and Mirela Ben-Chen, CS 468 



Local vs. global 
Refinement or alignment? 
 

Rigid vs. deformable 
Rotation/translation or stretching? 
 

Pair vs. collection 
Two shapes or many shapes? 

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf 
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Local vs. global 
Refinement or alignment? 
 

Rigid vs. deformable 
Rotation/translation or stretching? 
 

Pair vs. collection 
Two shapes or many shapes? 

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf 



Iterative Closest Point (ICP)

Repeat: 
1.For each xi in X, find 

closest yi in Y. 
2.Find rigid deformation 

(R,T) minimizing X

i

k(Rxi + T )¡ yik

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf 
http://www.gris.uni-tuebingen.de/people/staff/bokeloh/gallery/bunny_res1.png 



Iterative Closest Point (ICP)

Repeat: 
1.For each xi in X, find 

closest yi in Y. 
2.Find rigid deformation 

(R,T) minimizing X

i

k(Rxi + T )¡ yik

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf 
http://www.gris.uni-tuebingen.de/people/staff/bokeloh/gallery/bunny_res1.png 



 Selection of sample points 
One or both surfaces?  How many? 
 

 Matching points on the surfaces 
Closest?  Approximate nearest?  Normal lines?  Compatible 
normal/curvature/color? 
 

 Weighting correspondences 
Distance?  Compatibility?  Scanner certainty? 

 
www.math.tau.ac.il/~dcor/Graphics/adv-slides/ICP.ppt 



 Reject outlier pairs 
Too far?  Inconsistent with neighbors?  Incompatible 
descriptors? 
 

 Modified error metric 
Allow affine transformations?  Nonrigid motion? 
 

 Optimization technique 
Avoid local minima? 

 
www.math.tau.ac.il/~dcor/Graphics/adv-slides/ICP.ppt 



http://gmsv.kaust.edu.sa/people/faculty/pottmann/pottmann_pdf/registration.pdf 

Align shapes 
in arbitrary 
positions 
 
Starting point for ICP 



http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf 

Exhaustive search 
Normalization 
Random sampling 
Invariance 



http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf 
http://vis.lbl.gov/~scrivelli/DShop_research.html 

Exhaustive search

Sample 
possible 
alignments 
 
Keep best post-ICP 
(Slow, only for rigid!) 



Find canonical alignment 
 

e.g. using PCA; reduces number of starting points 
http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf 

Normalization



Random sampling

RANSAC:  Random Sample Consensus 

http://upload.wikimedia.org/wikipedia/commons/d/de/Fitted_line.svg 

Repeat: 
1.Guess minimum 

number of points to 
determine parameters 

2.Check if model works 
for other points 



Random sampling

4-Points Congruent Sets for Robust Pairwise Surface Registration 
Aiger, Mitra, and Cohen-Or 2008 

RANSAC with sets of four near-coplanar 
points.  Affine maps preserve ||c-e||/||c-d||, so 
sample points e’ with these ratios (n2 time), 
then match those. 



Invariance:  Already done!

1.Find interesting points. 
2.Match feature vectors on those points. 
3.Compute the aligning transformation. 

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf 



Needs a deformation model

Elastic, thin shell, volumetric, ARAP, bending, … 

igl.ethz.ch/projects/ARAP/ 



Needs a deformation model

Elastic, thin shell, volumetric, ARAP, bending, … 

igl.ethz.ch/projects/ARAP/ 



http://www.hao-li.com/publications/papers/sgp2008GCO.pdf 



Generalized Multi-Dimensional Scaling (GMDS)

Generalized Multidimensional Scaling 
Bronstein, Bronstein, Kimmel 2006 

Embed samples of one 
surface directly over 
another by minimizing a 
“generalized stress” 
involving geodesics. 



Non-Rigid Registration Under Isometric Deformations 
Huang et al. 2008 

Alternate between 
matching feature points 
using descriptors and 
moving other points in 
rigid clusters; isometry 
assumption helps prune 
bad matches. 



Deformation-Driven Shape Correspondence 
Zheng et al. 2008 

1.Extract feature points 
(part extrema) 
 

2.Combinatorial search 
matching features; 
evaluate by deforming 
the mesh 



One Point Isometric Matching with the Heat Kernel 
Ovsjanikov et al. 2010 

HKMp(x; t) = kt(p;x)

How much heat diffuses from p to x in time t? 



One Point Isometric Matching with the Heat Kernel 
Ovsjanikov et al. 2010 

HKMp(x; t) = kt(p;x)

Theorem: Only have to match one point! 



Möbius Voting for Surface Correspondence 
Lipman and Funkhouser 2009 

isometries µ conformal maps
Hard! Easier 



Möbius Voting for Surface Correspondence 
Lipman and Funkhouser 2009 

1. Map surfaces to 
complex plane 

2. Select three points 
3. Map plane to itself 

matching these points 
4.Vote for pairings using 

distortion metric to 
weight 

5. Return to 2 



Blended Intrinsic Maps 
Kim, Lipman, and Funkhouser 2011 

Different simple maps might be good in different places. 



Blended Intrinsic Maps 
Kim, Lipman, and Funkhouser 2011 

Combine good parts of different maps! 



Blended Intrinsic Maps 
Kim, Lipman, and Funkhouser 2011 



Blended Intrinsic Maps 
Kim, Lipman, and Funkhouser 2011 

Find groups of 
consistent/similar maps 
by clustering in a 
similarity matrix. 



Blended Intrinsic Maps 
Kim, Lipman, and Funkhouser 2011 

Weight maps at each 
vertex based on 
deviation from 
isometry.  Output 
weighted geodesic 
centroid. 



Map representations

f ± Á

f :M2 !R

f ± Á Á

Functional Maps:  A Flexible Representation of Maps Between Shapes 
Ovsjanikov et al. 2012 (to appear) 



Map representations

f ± Á

Soft Maps Between Surfaces 
Solomon et al. 2012 (to appear … shortly!) 

Exploring Collections of 3D Models using 
Fuzzy Correspondences 

Kim et al. 2012 (to appear) 



http://www.stanford.edu/~huangqx/siga11_jointseg.pdf 



One surface Two surfaces 

… 



Scenes
http://graphics.stanford.edu/~mdfisher/Data/GraphKernel.pdf 



Databases
http://people.cs.umass.edu/~kalo/papers/ShapeSynthesis/index.html 



Motions of one object
http://ars.sciencedirect.com/content/image/1-s2.0-S0097849311000501-gr9.jpg 



You can learn about  
one shape using its  

relationship to other shapes. 



 Function 
 Key features 
 Deformation model 
 Usability 
 Structure 
 Symmetries 
 Missing information 
 … 



“There are manifoldnesses in which the 
determination of position requires not a 
finite number, but . . . a continuous 
manifoldness of determinations of quantity. 
Such manifoldnesses are, for example, the 
possible determinations of a function for a 
given region, the possible shapes of a solid 
figure, and so on.” 
- Riemann (via Clifford) 

http://www.ics.uci.edu/~fowlkes/papers/f-ma240.pdf 



Learn shape space from examples
http://graphics.ethz.ch/Downloads/Publications/Papers/2011/Mar11/Mar11.pdf 



Joint Shape Segmentation with Linear Programming 
Huang, Koltun, and Guibas 2011 

Individual Joint 



Joint Shape Segmentation with Linear Programming 
Huang, Koltun, and Guibas 2011 

max
segmentations S1;S2

[score(S1) + score(S2) + consistency(S1; S2)]

Initial Segments 

Create small discrete 
pieces by cutting 
surface in different 
ways. 



Initial Segments 

Joint Shape Segmentation with Linear Programming 
Huang, Koltun, and Guibas 2011 

max
segmentations S1;S2

[score(S1) + score(S2) + consistency(S1; S2)]

A segmentation 
consists of decisions 
about whether to 
include each piece, 
where each point is 
covered once. 



Joint Shape Segmentation with Linear Programming 
Huang, Koltun, and Guibas 2011 

max
segmentations S1;S2

[score(S1) + score(S2) + consistency(S1; S2)]

Unary segmentation scores 
measure segment quality 
with area. 
 
Binary consistency scores 
match segments (many-to-
one) using geometric 
similarity and adjacency. 

Pairwise and then 
joint 



Pairwise and then 
joint 

Joint Shape Segmentation with Linear Programming 
Huang, Koltun, and Guibas 2011 

max
segmentations S1;S2

[score(S1) + score(S2) + consistency(S1; S2)]

Unary segmentation scores 
measure segment quality 
with area. 
 
Binary consistency scores 
match segments (many-to-
one) using geometric 
similarity and adjacency. 



Joint Shape Segmentation with Linear Programming 
Huang, Koltun, and Guibas 2011 

Rand index (smaller is better) 

JointAll uses the dog’s 
neck to help segment 
the geometry of the 
human. 



Joint Shape Segmentation with Linear Programming 
Huang, Koltun, and Guibas 2011 



An Optimization Approach to Improving Collections of Shape Maps 
Nguyen et al. 2011 

Shape collections indicate which maps make sense. 



An Optimization Approach to Improving Collections of Shape Maps 
Nguyen et al. 2011 

Maps are edges in a graph of shapes. 
Cycles are self maps after composition. 



An Optimization Approach to Improving Collections of Shape Maps 
Nguyen et al. 2011 

Cycle consistency measured by displacement 
around loop. 

B

Econs(°) =
1

jAj
X

p2A
dA(p;m°(p))

CA



An Optimization Approach to Improving Collections of Shape Maps 
Nguyen et al. 2011 

Iterate: 
1. Compute error of each 

three-cycle. 
2. Assign errors to edges in 

map graph by solving an LP 
distributing cycle error. 

3. Replace bad edges with 
composition. 



Exploration of Continuous Variability in Collections of 3D Shapes 
Ovsjanikov et al. 2011 



http://www.stanford.edu/~huangqx/siga11_jointseg.pdf 





Summarized approaches to 

Local descriptors 
Shape understanding 
Correspondence 
Shape collections 



Summarized approaches to 

Local descriptors 
Shape understanding 
Correspondence 
Shape collections 
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