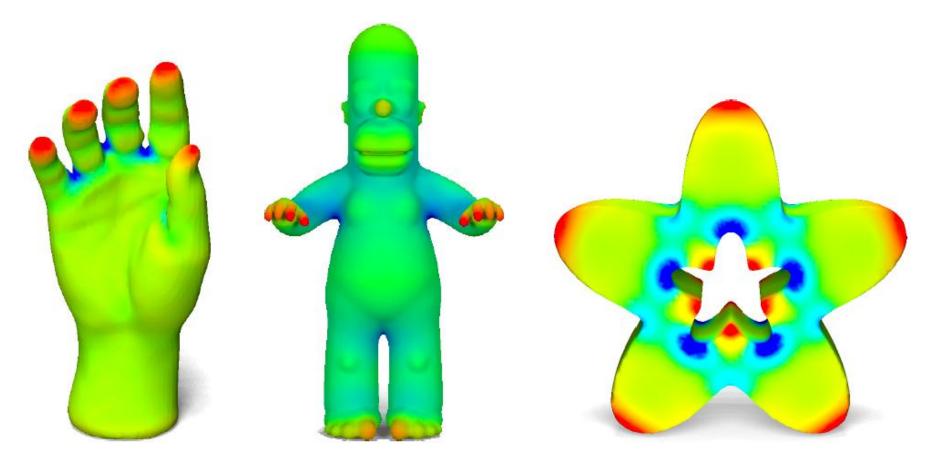


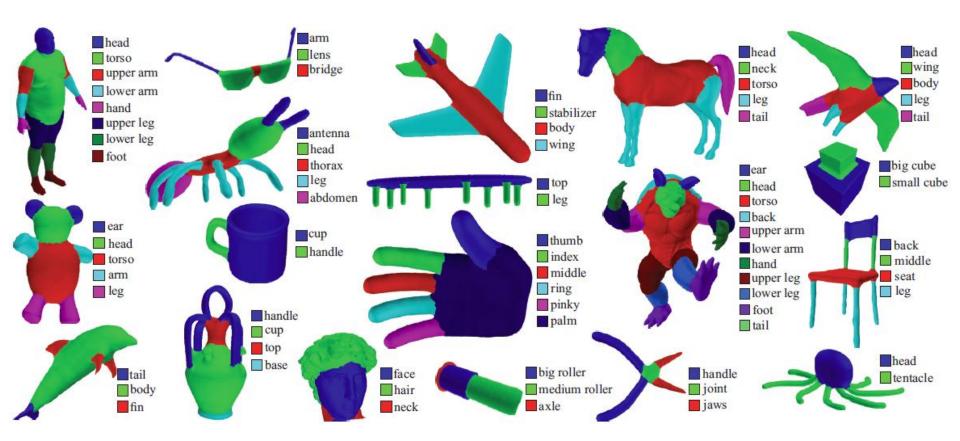
Shape Analysis and Correspondence

Justin Solomon Geometric Computing Group Stanford University



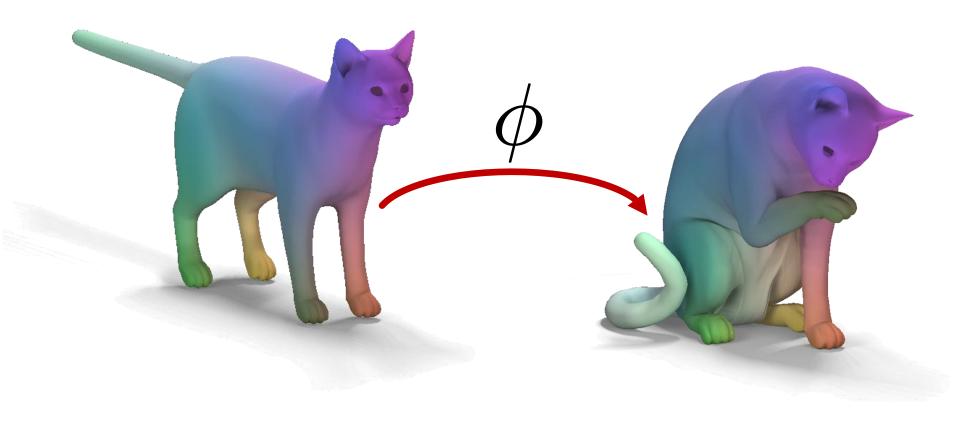
http://graphics.stanford.edu/projects/lgl/papers/sog-hks-og/sog-hks-og.pdf

Compute shape descriptors



http://people.cs.umass.edu/~kalo/papers/LabelMeshes/LabelMeshes.pdf

Extract important features

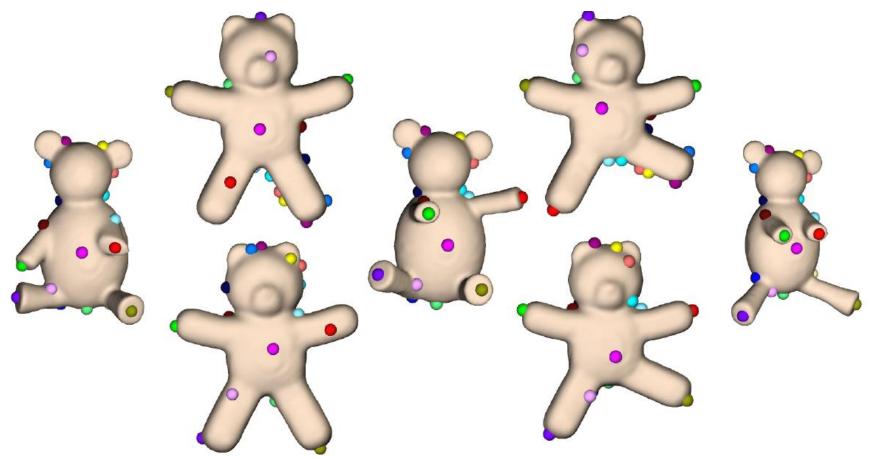


http://www.stanford.edu/~justso1/assets/fmaps.pdf

Map shapes to one another

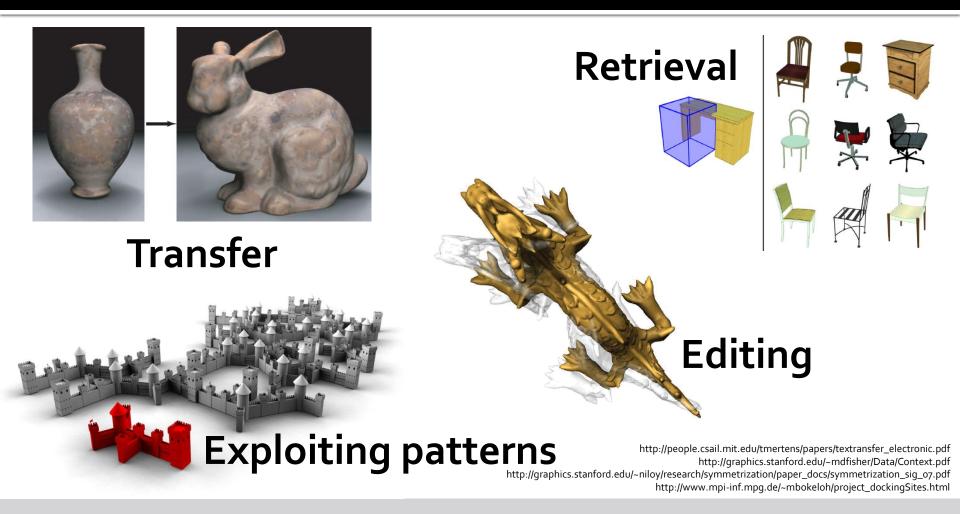
http://www.hao-li.com/publications/papers/siggraph2011RPBFA.pdf

Relate new scans to known models

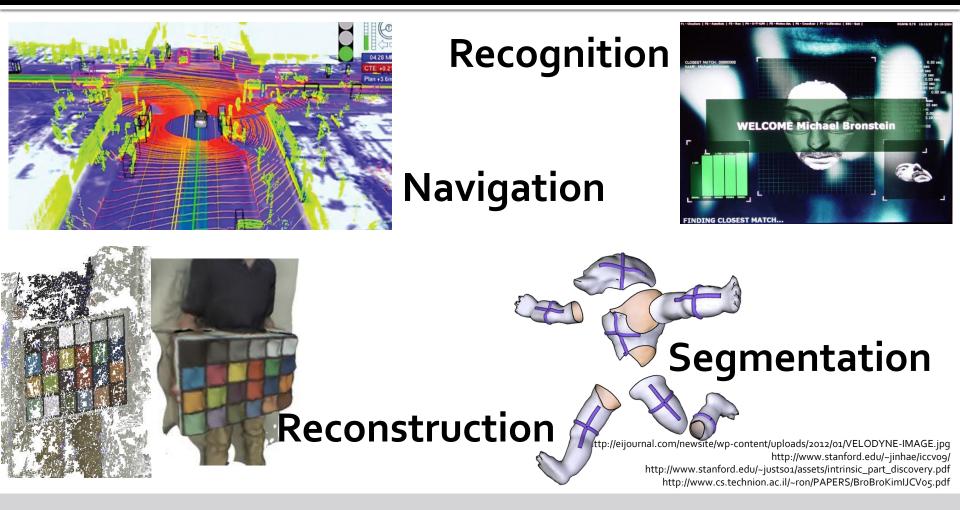


http://graphics.stanford.edu/projects/lgl/papers/nbwyg-oaicsm-11/nbwyg-oaicsm-11.pdf

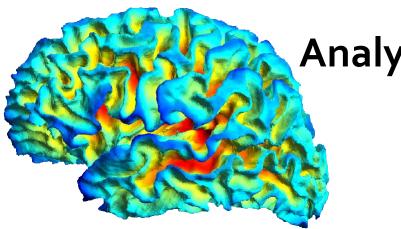
Understand collections of shapes



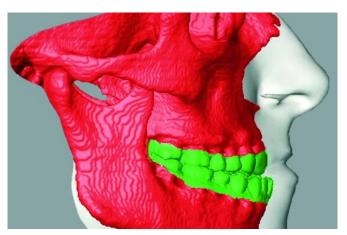
Graphics



Vision



Analysis

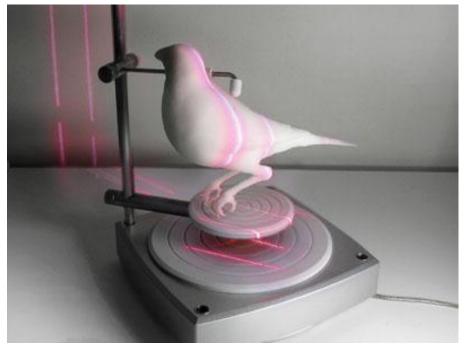


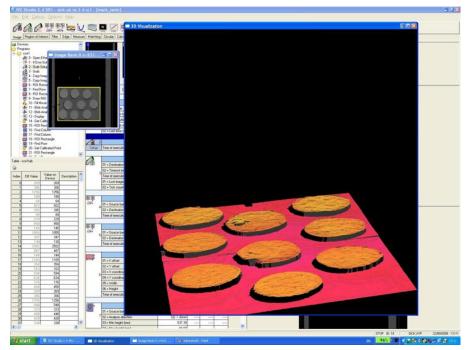
Segmentation

Registration

http://dmfr.birjournals.org/content/33/4/226/F3.large.jpg http://www-sop.inria.fr/asclepios/software/inriaviz4d/SphericalImTransp.png http://www.creatis.insa-lyon.fr/site/sites/default/files/segm2.png

Medical Imaging





Scanning

Defect detection

http://www.conduitprojects.com/php/images/scan.jpg http://www.emeraldinsight.com/content_images/fig/o330290204005.png

Manufacturing

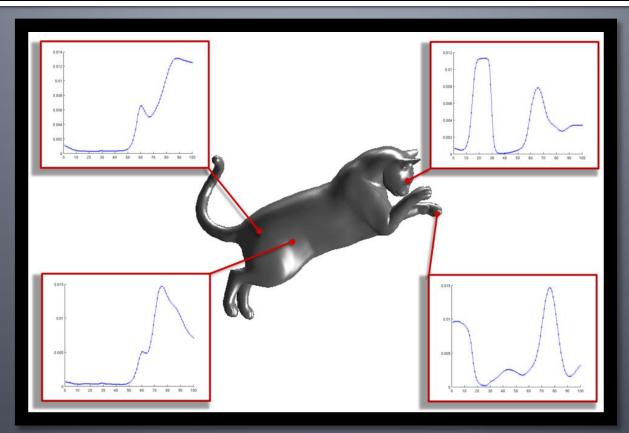
Obvious Observation

Analysis and correspondence form a large and diverse field.

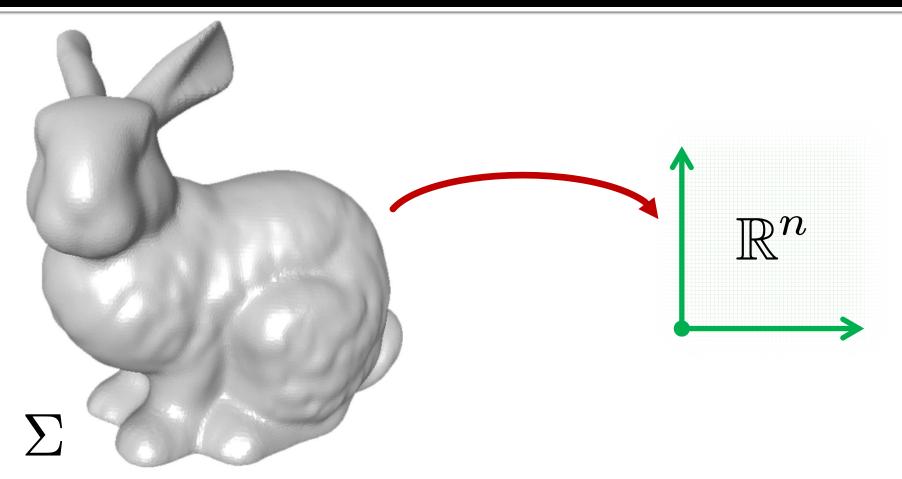
Plan for today

Summarize approaches to Local descriptors Shape understanding Correspondence Shape collections

Part I: Local Descriptors



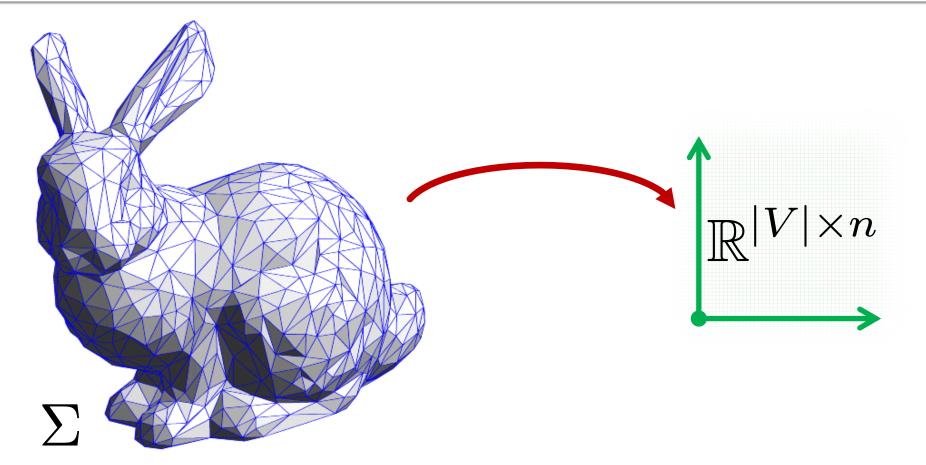
Shape Descriptors



http://liris.cnrs.fr/meshbenchmark/images/fig_attacks.jpg

Pointwise quantity

Discrete Representation



http://isg.cs.tcd.ie/spheretree/pics/bunny.gif

Pointwise quantity

Desirable Properties

Distinguishing

Provides useful information about a point

Stable

Numerically and geometrically

Intrinsic

No dependence on embedding

Desirable Properties

Distinguishing

Provides useful information about a point

Stable

Numerically and geometrically

No dependence on embedding

Isometry

[ahy-**som**-i-tree]: Bending without stretching.

Intrinsic Descriptors

http://www.revedreams.com/crochet/yarncrochet/nonorientable-crochet/

Isometry invariant

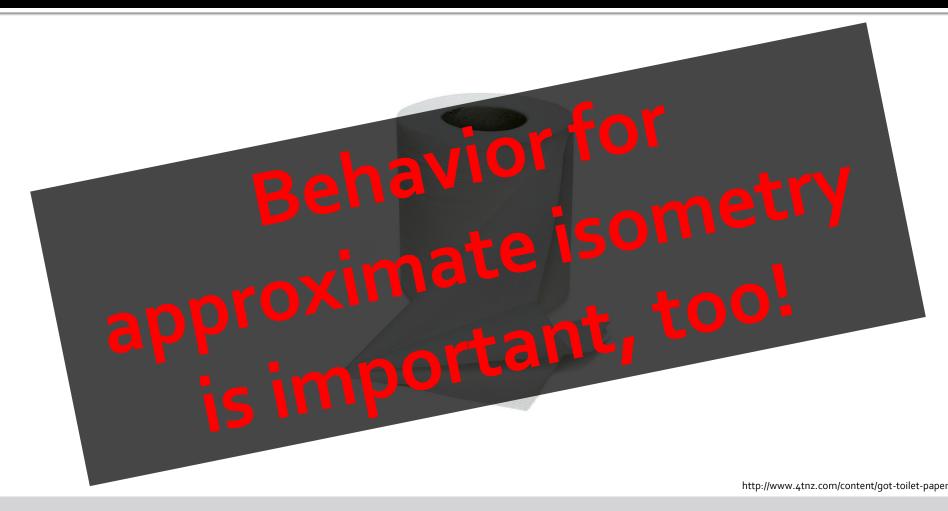
Isometry Invariance: Hope

Isometry Invariance: Reality

http://www.4tnz.com/content/got-toilet-paper

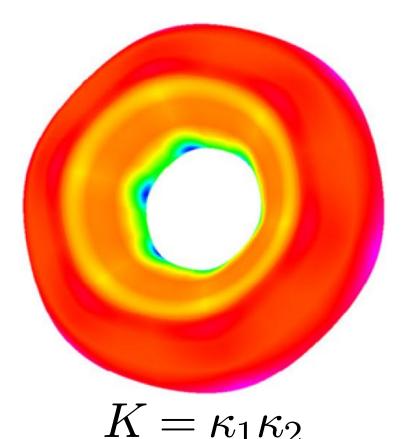
Few shapes can deform isometrically

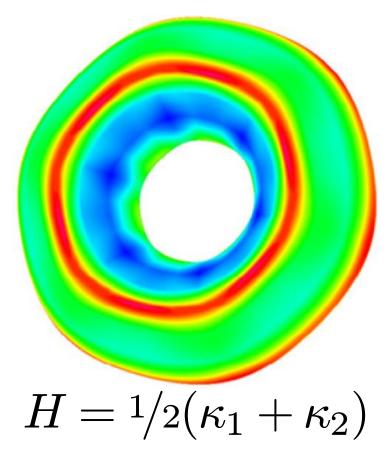
Isometry Invariance: Reality



Few shapes can deform isometrically

Descriptors We've Seen Before

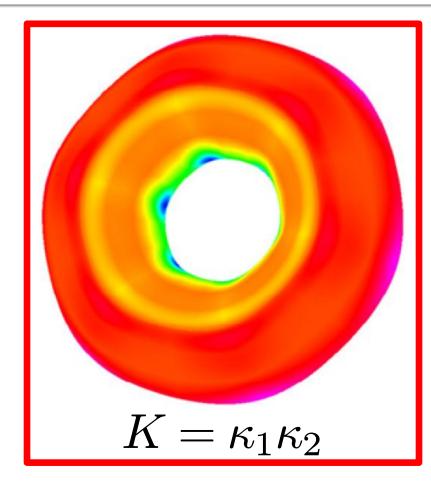




http://www.sciencedirect.com/science/article/pii/S0010448510001983

Gaussian and mean curvature

Descriptors We've Seen Before



Theorema Egregium ("Remarkable Theorem"): Gaussian curvature is intrinsic.

http://www.sciencedirect.com/science/article/pii/Soo10448510001983

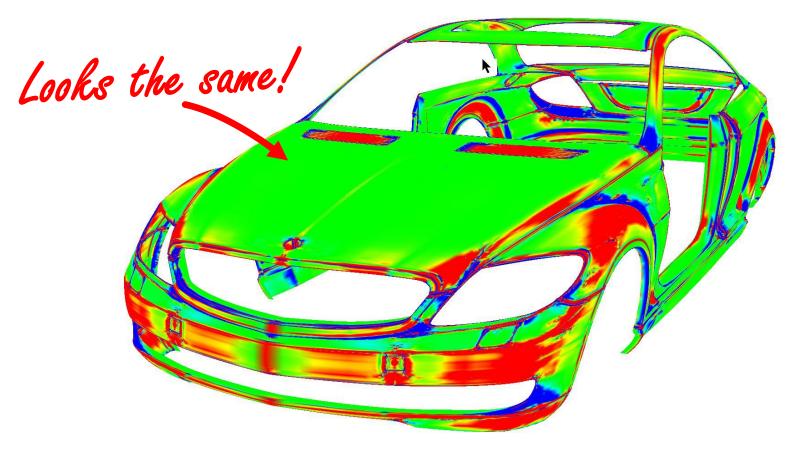
Gaussian and mean curvature

Problems

$K = \kappa_1 \kappa_2$

Localized differential descriptors

Problems



http://www.integrityware.com/images/MerceedesGaussianCurvature.jpg

Nonunique

Functions of Curvature

Principal curvatures κ_1, κ_2

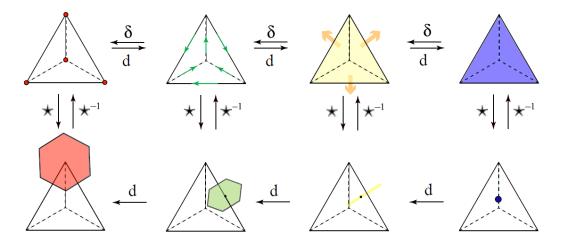
Shape index $\frac{2}{\pi} \arctan\left(\frac{\kappa_1 + \kappa_2}{\kappa_1 - \kappa_2}\right)$

Curvedness

 $\sqrt{rac{1}{2}(\kappa_1^2+\kappa_2^2)}$

Incorporate neighborhood information in an intrinsic fashion.

Incorporate neighborhood information in an intrinsic fashion.



http://ddg.cs.columbia.edu/SIGGRAPHo6/DDGCourse2006.pdf

Recall: The Laplacian

$\Delta = d \star d \star + \star d \star d$

An intrinsic operator

Recall: The Laplacian

 $= d \star d \star + \star d \star d$ $\Delta \phi_1 = \lambda_1 \phi_1 \quad \Delta \phi_2 = \lambda_2 \phi_2 \quad \Delta \phi_3 = \lambda_3 \phi_3 \quad \Delta \phi_4 = \lambda_4 \phi_4 \quad \Delta \phi_5 = \lambda_5 \phi_5$ $(\Delta \phi_0 = 0)$

An intrinsic operator

Global Point Signature (GPS)

$$GPS(p) = \left(\frac{1}{\sqrt{\lambda_1}}\phi_1(p), \frac{1}{\sqrt{\lambda_2}}\phi_2(p), \frac{1}{\sqrt{\lambda_3}}\phi_3(p), \cdots\right)$$

Good properties:

- Isometry-invariant
- Unique to each point
- Complete description of intrinsic geometry
- Dot products, distances meaningful

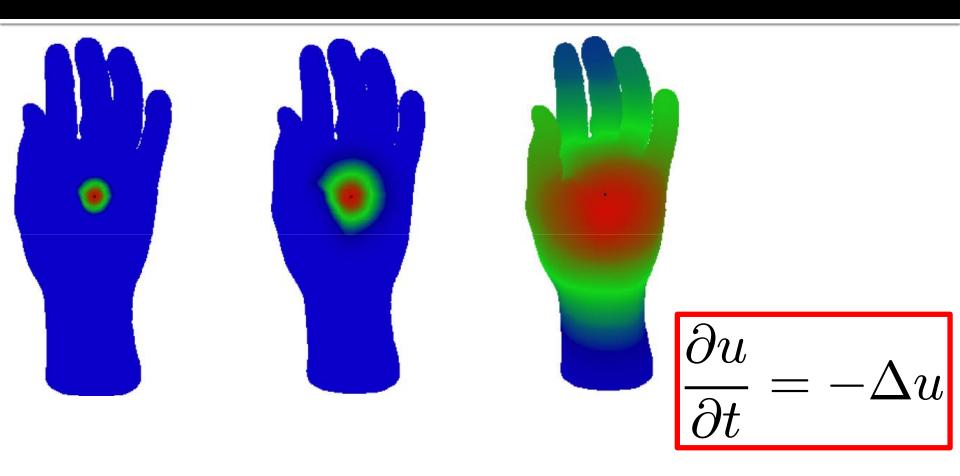
Global Point Signature (GPS)

$$GPS(p) = \left(\frac{1}{\sqrt{\lambda_1}}\phi_1(p), \frac{1}{\sqrt{\lambda_2}}\phi_2(p), \frac{1}{\sqrt{\lambda_3}}\phi_3(p), \cdots\right)$$

Bad properties:

- Assumes unique λ's
- Potential for eigenfunction "switching" upon deformation
 Nonlocal feature

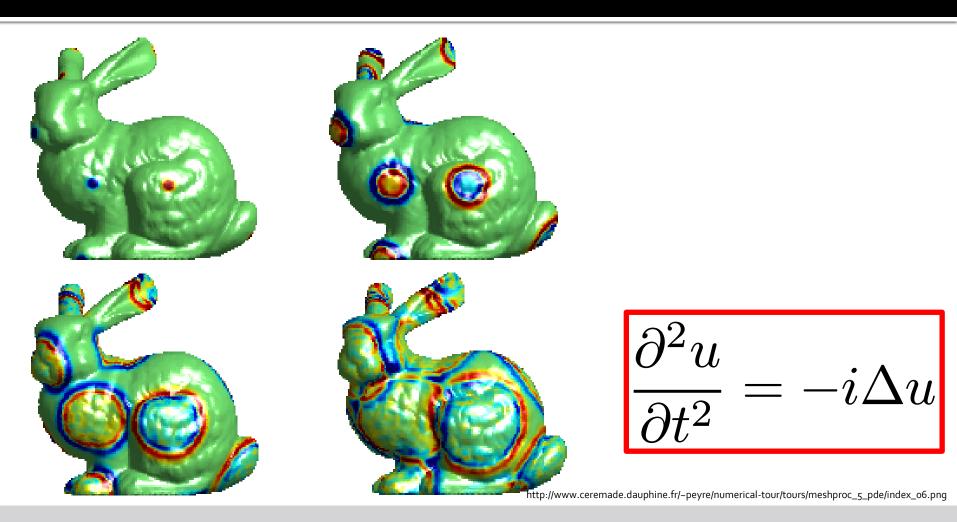
PDE Applications of the Laplacian



http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf

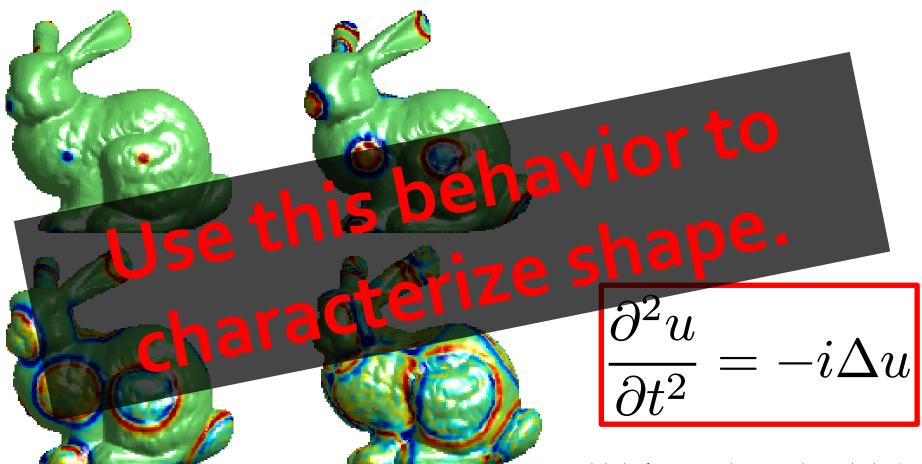
Heat equation

PDE Applications of the Laplacian



Wave equation

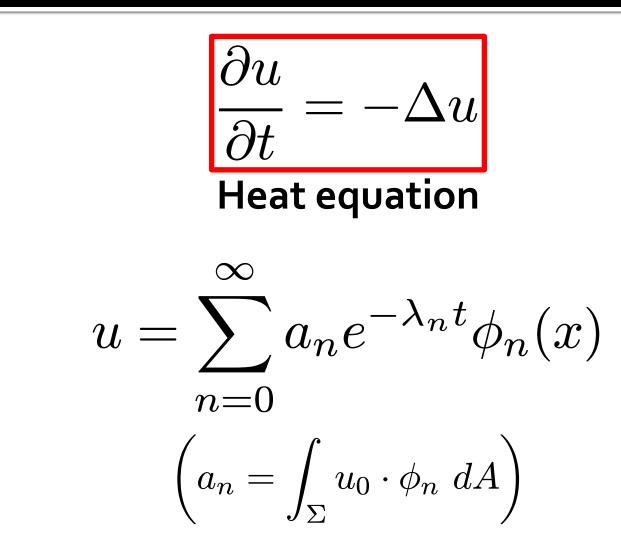
PDE Applications of the Laplacian



http://www.ceremade.dauphine.fr/~peyre/numerical-tour/tours/meshproc_5_pde/index_o6.png

Wave equation

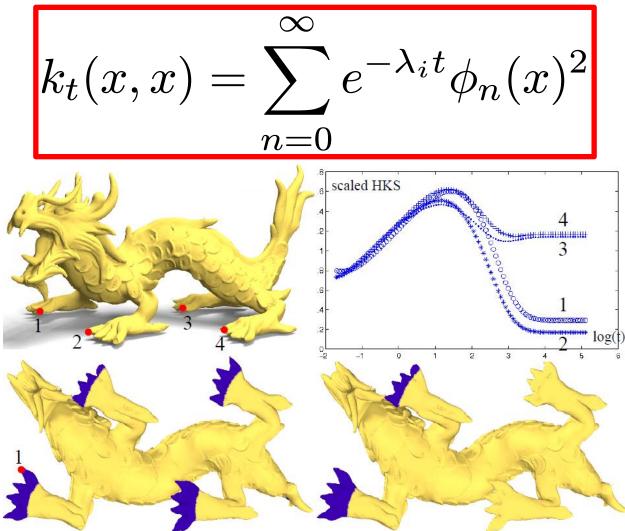
Solutions in the LB Basis



$$k_t(x,x) = \sum_{n=0}^{\infty} e^{-\lambda_i t} \phi_n(x)^2$$

Continuous function on $[o,\infty)$

How much heat diffuses from x to itself in time t?



http://graphics.stanford.edu/projects/lgl/papers/sog-hks-og/sog-hks-og.pdf

$$k_t(x,x) = \sum_{n=0}^{\infty} e^{-\lambda_i t} \phi_n(x)^2$$

Good properties:

- Isometry-invariant
- Multiscale
- Not subject to switching
- Easy to compute
- Related to curvature at small scales

$$k_t(x,x) = \sum_{n=0}^{\infty} e^{-\lambda_i t} \phi_n(x)^2$$

Bad properties:

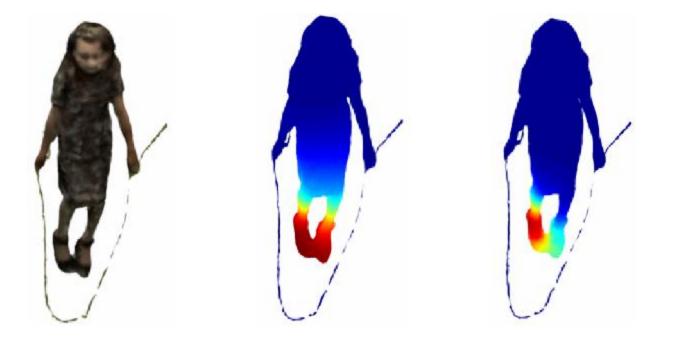
- Issues remain with repeated eigenvalues
- Theoretical guarantees require (near-)isometry

http://www.cs.technion.ac.il/~mbron/publications_conference.html

Scale-Invariant HKS (SI-HKS)

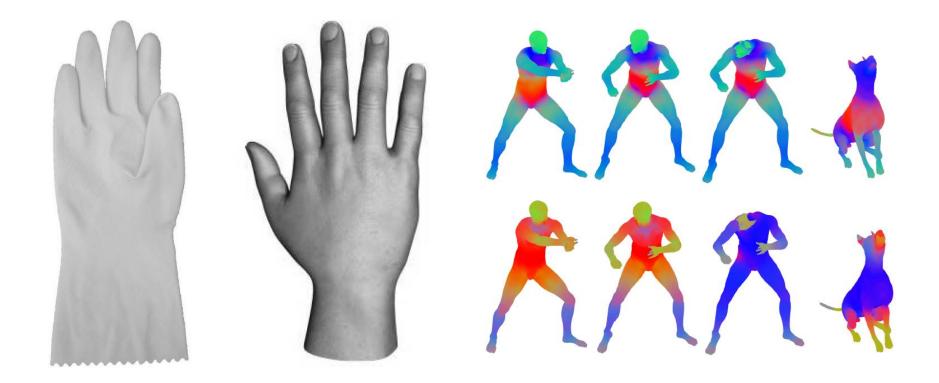
http://www.cs.technion.ac.il/~darav/RavBroBroKimAffine1oTR.pdf

Affine-Invariant HKS



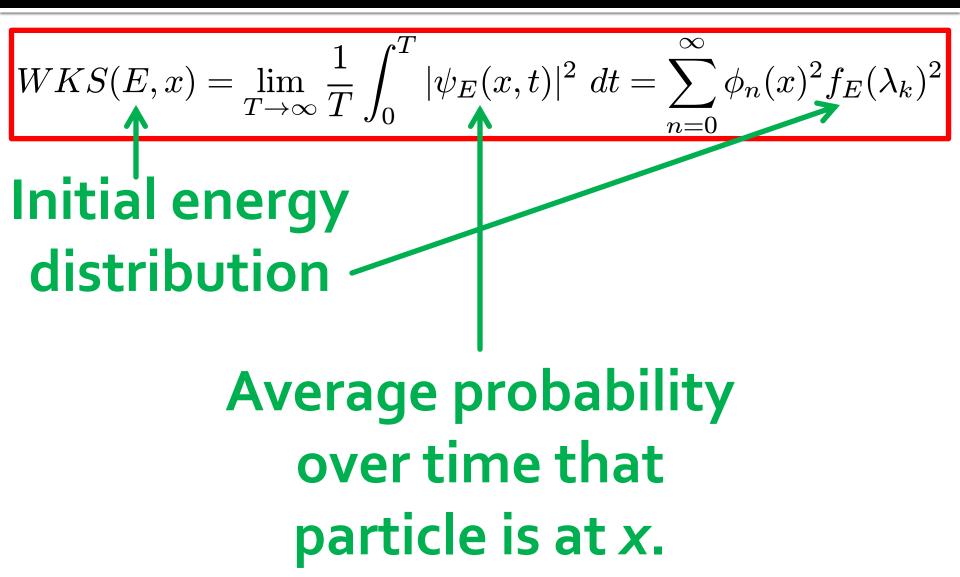
http://www.cs.technion.ac.il/~mbron/publications_conference.html

Photometric HKS

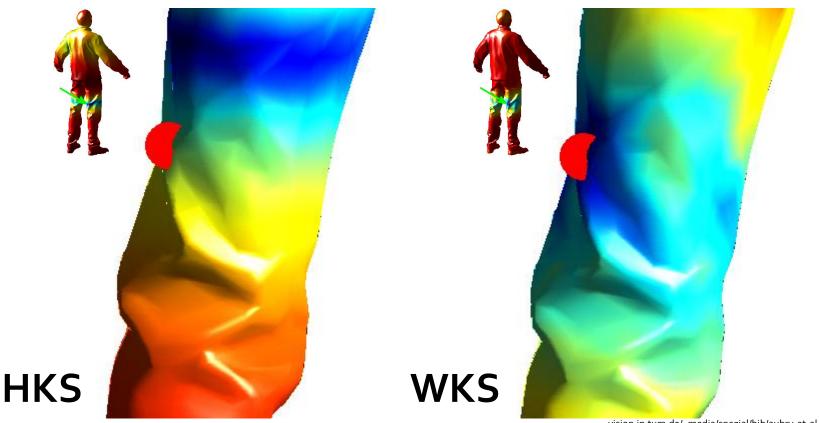


http://www.cs.technion.ac.il/~mbron/publications_conference.html

Volumetric HKS



 $WKS(E,x) = \lim_{T \to \infty} \frac{1}{T} \int_0^t |\psi_E(x,t)|^2 dt = \sum_{T \to \infty} \phi_n(x)^2 f_E(\lambda_k)^2$ n=0



vision.in.tum.de/_media/spezial/bib/aubry-et-al-4dmod11.pdf

$$WKS(E, x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T |\psi_E(x, t)|^2 \, dt = \sum_{n=0}^\infty \phi_n(x)^2 f_E(\lambda_k)^2$$

Good properties:

- [Similar to HKS]
- Localized in frequency
- Stable under some non-isometric deformation
- Some multi-scale properties

$$WKS(E, x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T |\psi_E(x, t)|^2 \, dt = \sum_{n=0}^\infty \phi_n(x)^2 f_E(\lambda_k)^2$$

Bad properties: [Similar to HKS]

Can filter out *large*-scale features

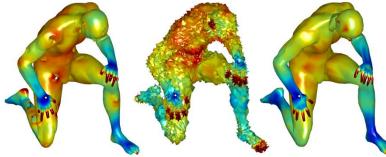
Spectral Descriptors

$$\sum_{n=0}^{\infty} f(\lambda_n) \phi_n(x)^2$$

Considerations:

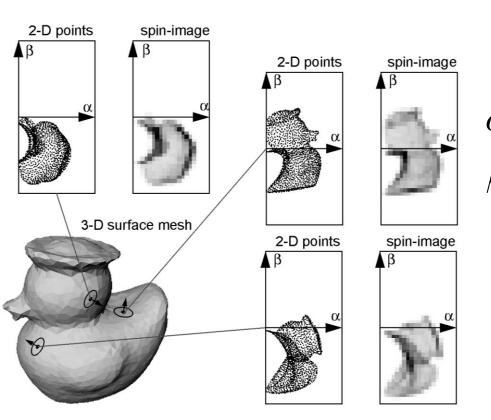
Collection of shapes

Potential transformations/noise



http://arxiv.org/pdf/1110.5015.pdf

Can you *learn* the function *f*?

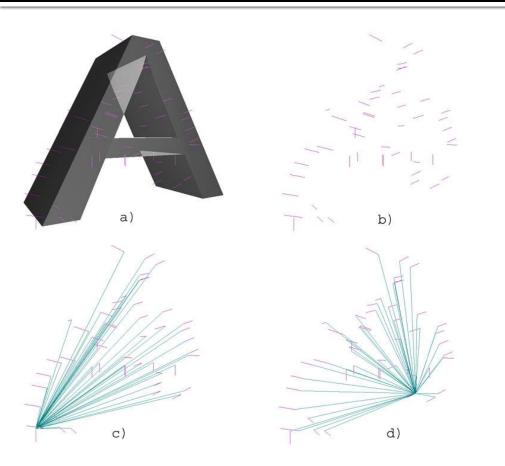


$\begin{array}{l} \textbf{Bin points using:}\\ \alpha = \text{distance to normal line}\\ \beta = \text{distance to tangent plane} \end{array}$

Can use low-rank approximation!

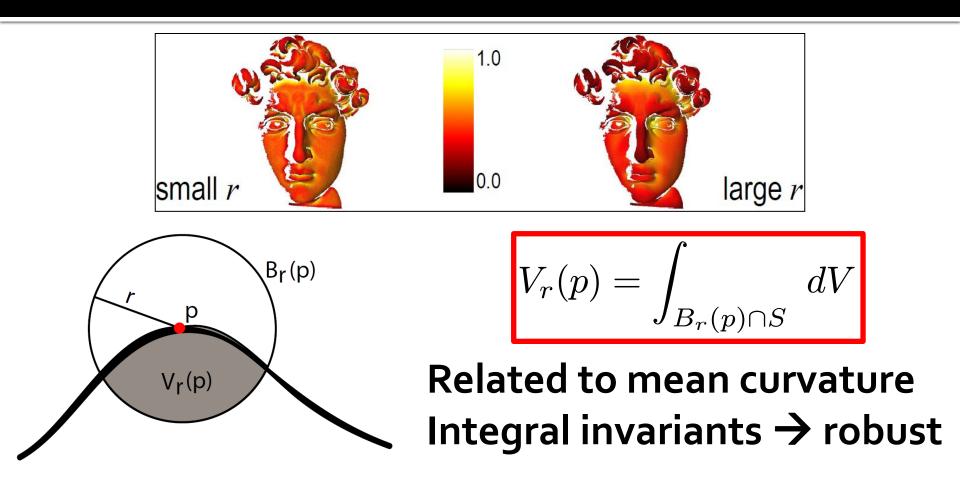
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00765655

Spin images



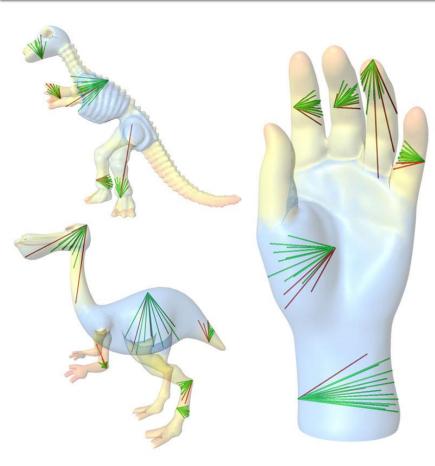
Bin directions y-x for each x

http://cg.tuwien.ac.at/hostings/cescg/CESCG-2003/MKoertgen/paper.pdf



 $http://graphics.stanford.edu/~niloy/research/global_registration/paper_docs/global_registration_sgp_05_poster.pdf$

Integral volume

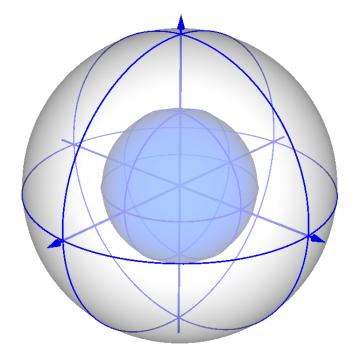


Weighted average distance along the surface

Lightweight version of medial axis distance

http://www.cs.jhu.edu/~misha/ReadingSeminar/Papers/Shapirao8.pdf

Shape Diameter Function



Bin nearby normals in a canonical orientation

http://www.vision.deis.unibo.it/fede/papers/eccv10.pdf

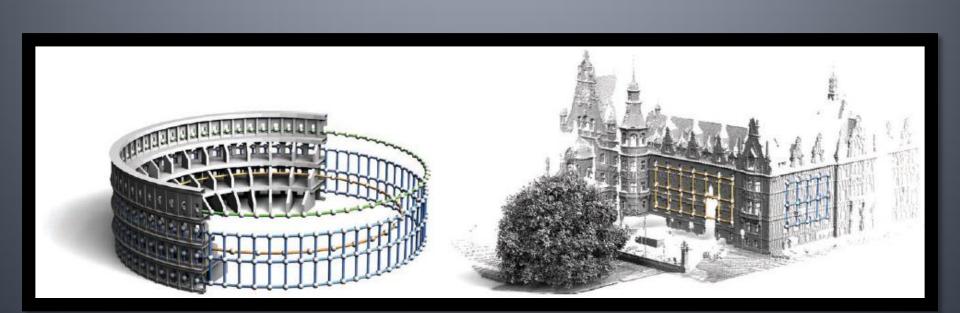
Signature of Histograms of OrienTations

Many Others

- Structural indexing
- Point signatures
- Point fingerprints
- Intrinsic shape signature
- Multi-scale surface descriptors
- Slippage
- Spherical harmonics
- RIFT
- HMM

. . .

Part II: Shape Understanding



Many Potential Tasks

- Segmentation
- Symmetry detection
- Global shape description
- Retrieval
- Recognition
- Feature extraction
- Alignment

Many Potential Tasks

- Segmentation
- Symmetry detection
- Global shape description

We'll sample a few!

- Retrieval
- Recognition
- Feature extraction
- Alignment

Symmetry Detection

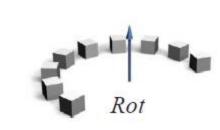
- Compression
- Reconstruction
- Classification

- Analysis
- Alignment
- Matching

Types of Symmetries



Scale



Rot + Trans

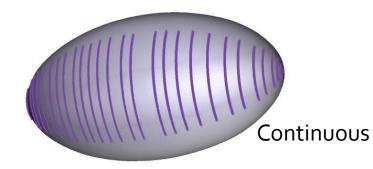
Rot + Scale

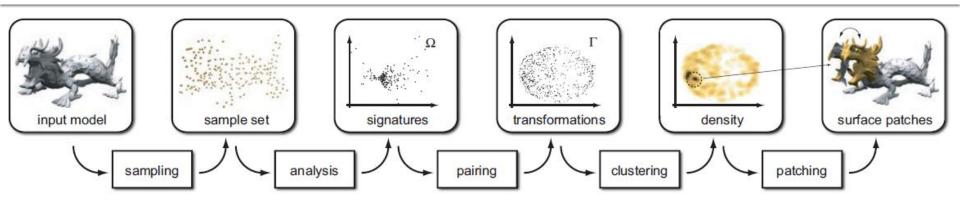
Rot + Scale

Rot × Trans

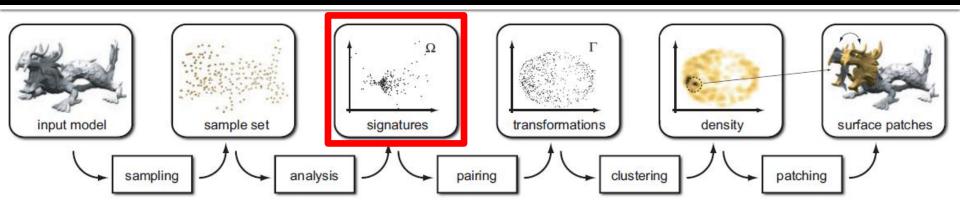
Trans × Trans

Rot × Scale



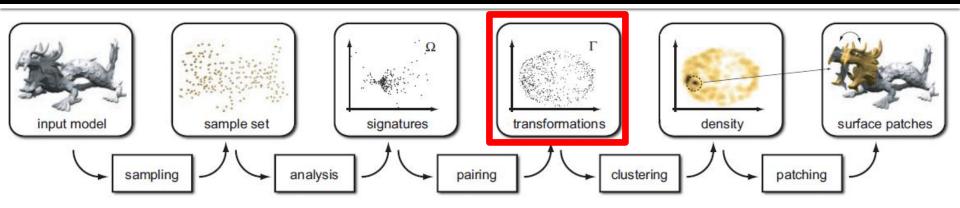


Partial and Approximate Symmetry Detection for 3D Geometry Mitra, Guibas, Pauly 2006



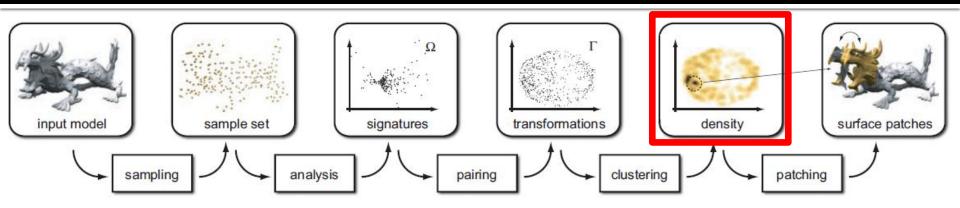
Compute simple curvature features to help pair similar points.

Partial and Approximate Symmetry Detection for 3D Geometry Mitra, Guibas, Pauly 2006



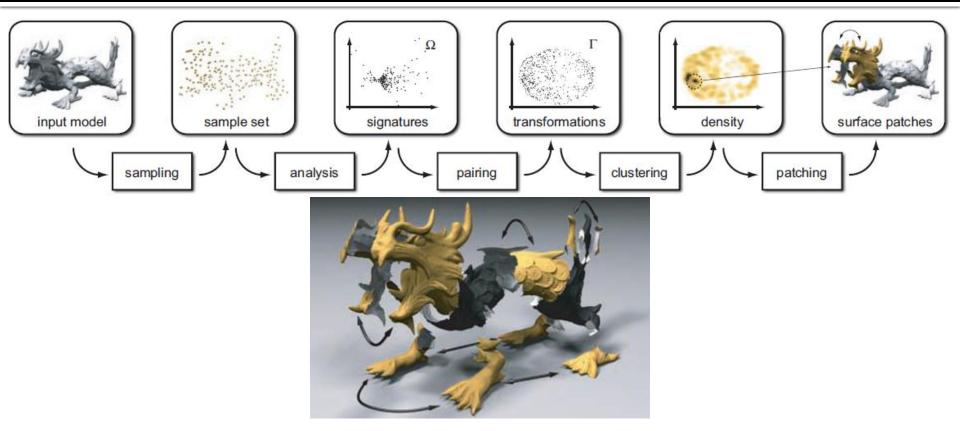
Pairs of points with similar signatures vote for different transformations.

Partial and Approximate Symmetry Detection for 3D Geometry Mitra, Guibas, Pauly 2006

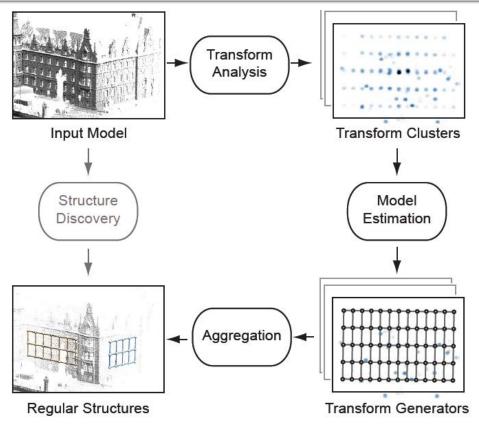


Use mean shift clustering to find prominent transformations.

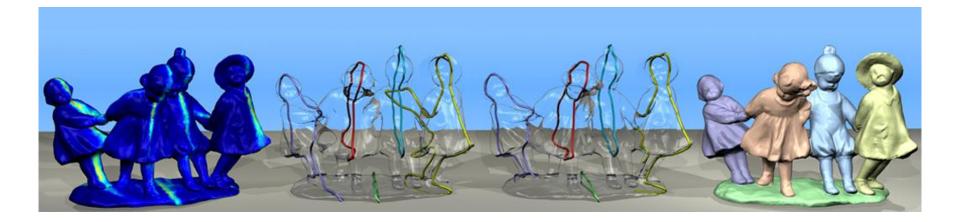
Partial and Approximate Symmetry Detection for 3D Geometry Mitra, Guibas, Pauly 2006



Partial and Approximate Symmetry Detection for 3D Geometry Mitra, Guibas, Pauly 2006

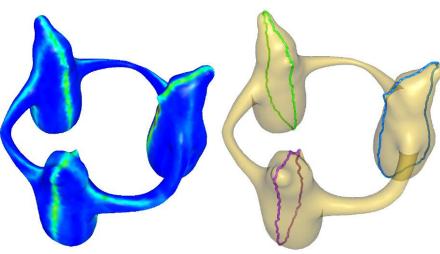


Discovering Structural Regularity in 3D Geometry Pauly et al. 2008



Partial Intrinsic Reflectional Symmetry of 3D Shapes Xu et al. 2009

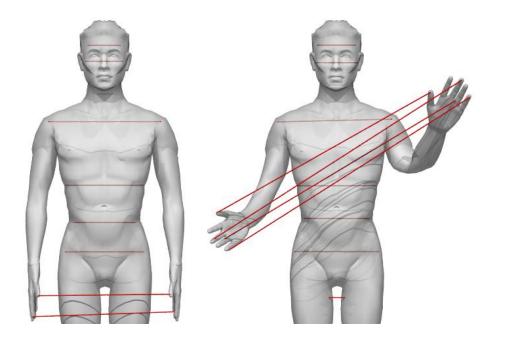
IRSA Transform ("Intrinsic Reflectional Symmetry Axis")



Want T: $M \rightarrow M$ (or parts thereof) preserving geodesic distances; fixed points are symmetry axis

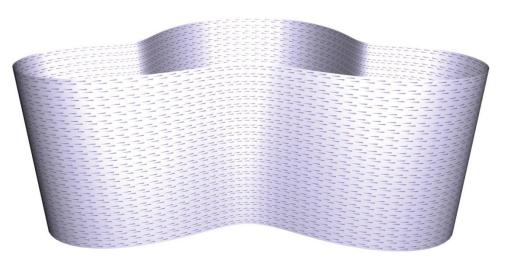
Sample potential axes; voting scheme for IRSA transform

Partial Intrinsic Reflectional Symmetry of 3D Shapes Xu et al. 2009



Intrinsic symmetries become extrinsic in GPS space!

Global Intrinsic Symmetries of Shapes Ovsjanikov, Sun, and Guibas 2008

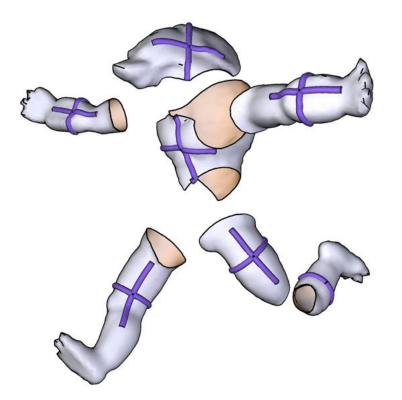


Flows of Killing vector fields (KVFs) generate isometries

DEC framework for finding approximate KVFs

On Discrete Killing Fields and Patterns on Surfaces Ben Chen et al. 2010

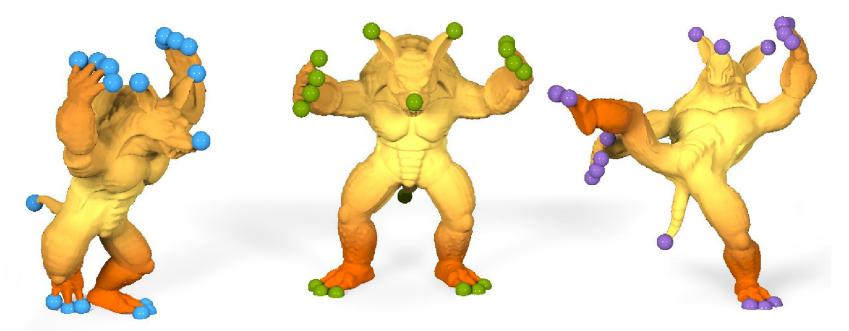
Ex. 3: Continuous intrinsic symmetries



Approximate KVFs can be used to find nearly symmetric pieces

Discovery of Intrinsic Primitives on Triangle Meshes Solomon et al. 2011

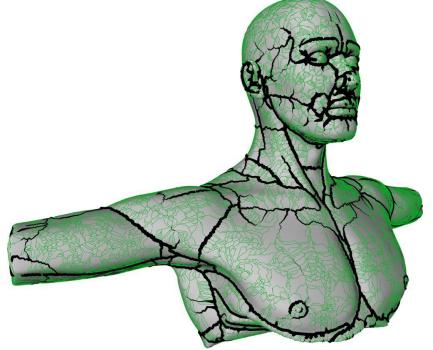
Ex. 3: Continuous intrinsic symmetries



Maxima of $k_t(x,x)$ for large t.

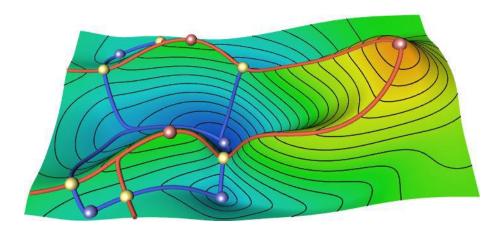
A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion Sun, Ovsjanikov, and Guibas 2009

Feature points



Filter out extraneous feature curves

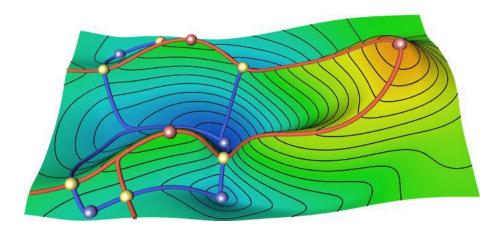
Separatrix Persistence: Extraction of Salient Edges on Surfaces Using Topological Methods Weinkauf and Gunther 2009



Morse-Smale Complex: Topological skeleton of critical points and separatricies

x is in the descending manifold of critical point p if there exists a gradient flow curve connecting p to x

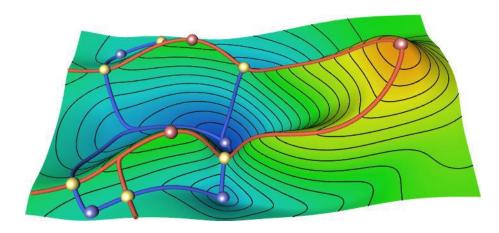
Separatrix Persistence: Extraction of Salient Edges on Surfaces Using Topological Methods Weinkauf and Gunther 2009



Morse-Smale Complex: Topological skeleton of critical points and separatricies

x is in the ascending manifold of critical point *p* if there exists a gradient flow curve connecting *x* to *p*

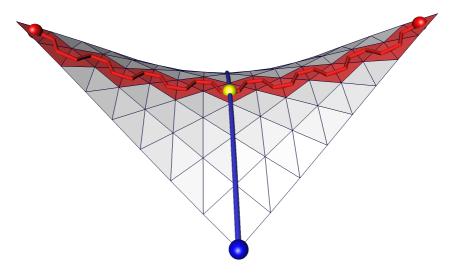
Separatrix Persistence: Extraction of Salient Edges on Surfaces Using Topological Methods Weinkauf and Gunther 2009

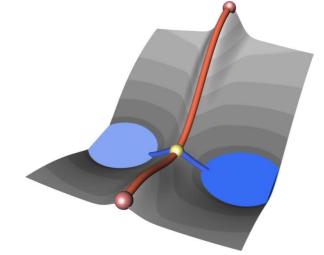


Morse-Smale Complex: Topological skeleton of critical points and separatricies

Separatrix: intersection of one ascending and one descending manifold

Separatrix Persistence: Extraction of Salient Edges on Surfaces Using Topological Methods Weinkauf and Gunther 2009





1. Build combinatorial Morse-Smale complex.

2. Apply persistence to simplify.

Separatrix Persistence: Extraction of Salient Edges on Surfaces Using Topological Methods Weinkauf and Gunther 2009

Use curvature to choose better contour lines

Suggestive contour generator: Points with zero/increasing curvature in view direction

http://www.cs.rutgers.edu/~decarlo/pubs/sgo3.pdf

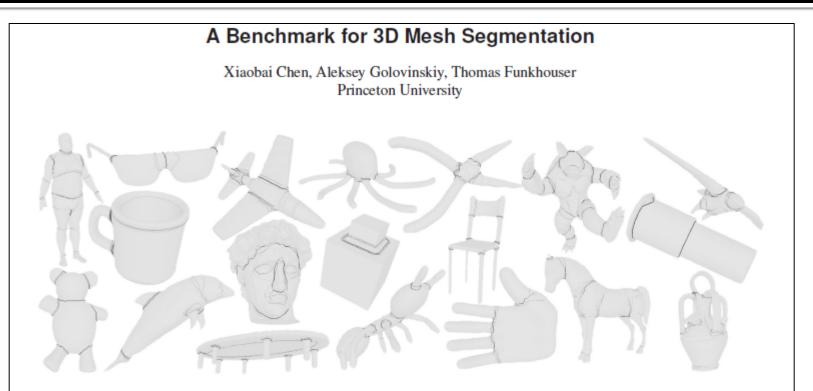
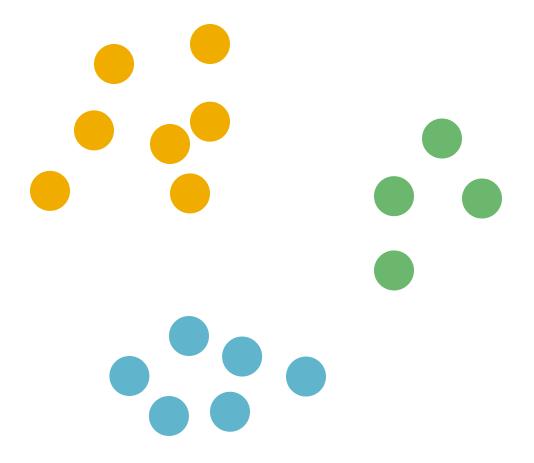


Figure 1: Composite images of segment boundaries selected by different people (the darker the seam the more people have chosen a cut along that edge). One example is shown for each of the 19 object categories considered in this study.

Abstract

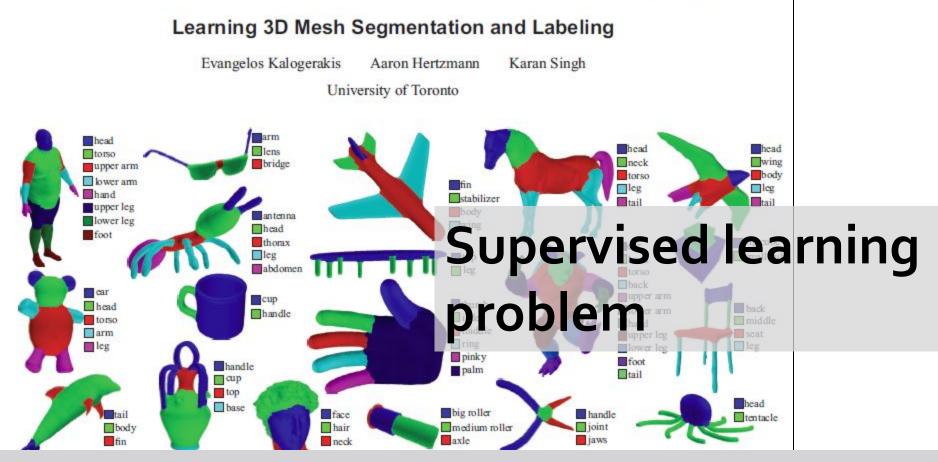
This naner describes a benchmark for evaluation of 3D mesh see-

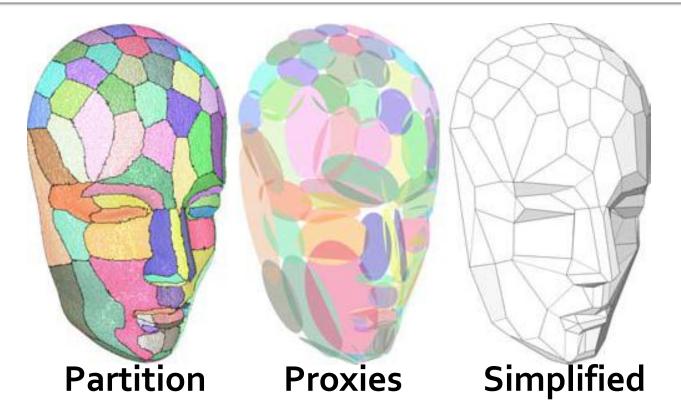
processing algorithms, including skeleton extraction [Biasotti et al. 2003; Katz and Tal 2003], modeling [Funkhouser et al. 2004], morphing [Zöckler et al. 2000: Gregory et al. 1999], shape-based



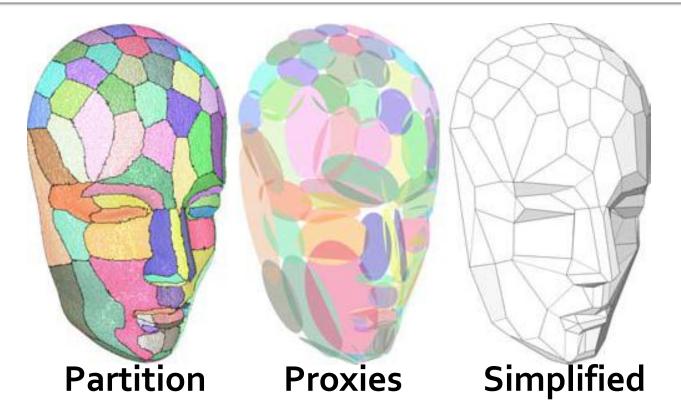
Simplest strategy: Cluster feature points (*k*-means, mean shift, etc.); use standard vision techniques for continuous regions

E. Kalogerakis, A. Hertzmann, K. Singh / Learning 3D Mesh Segmentation and Labeling, TOG 29{3}, Siggraph 2010



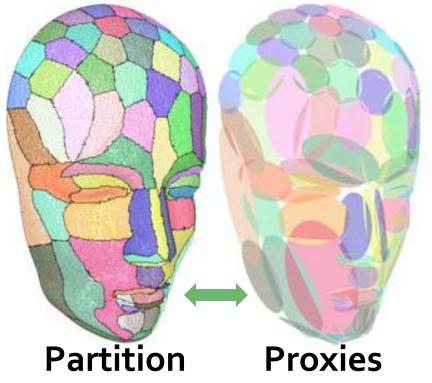


Variational Shape Approximation Cohen-Steiner, Alliez, and Desbrun 2004



Variational Shape Approximation Cohen-Steiner, Alliez, and Desbrun 2004

Flood using priority queue



(X_i, N_i) minimizing fixed functional

Variational Shape Approximation Cohen-Steiner, Alliez, and Desbrun 2004

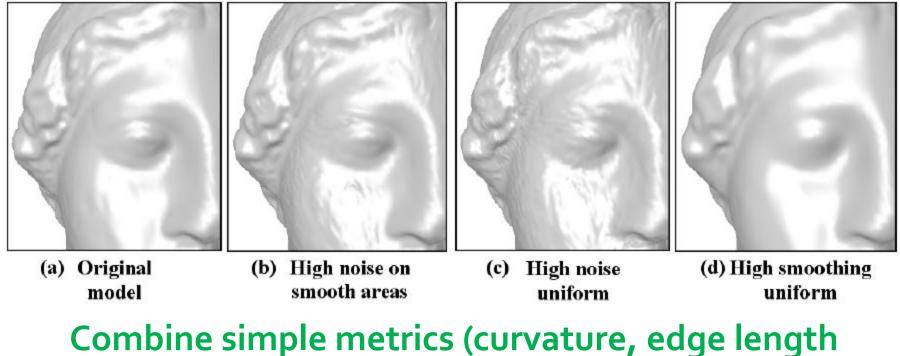
Distances Between Surfaces

$$d_H(X,Y) = \max\left\{\sup_{x \in X} \inf_{y \in Y} d(x,y), \sup_{y \in Y} \inf_{x \in X} d(x,y)\right\}$$
Easy to compute

 $d_{GH}(X,Y) = \min_{\substack{f,g \text{ isometries} \\ \text{Hard to compute} \\ \text{Less hard to approximate} \\ \text{Related to Gromov-Wasserstein distance} }$

(Gromov-)Hausdorff distance

Distances Between Surfaces



distortion, etc.) with user studies.

http://liris.cnrs.fr/guillaume.lavoue/travaux/conference/SPIE-2006.pdf

Perceptual distance

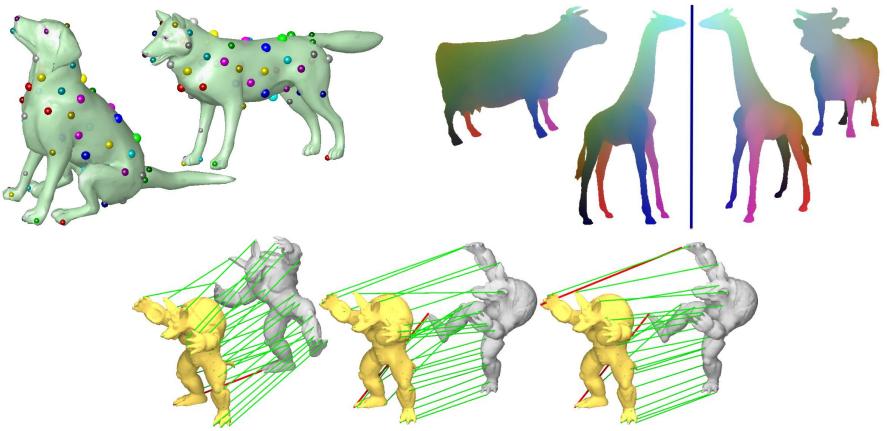
Many Potential Tasks

- Segmentation
- Symmetry detection
- Global shape description
- Retrieval
- Recognition
- Feature extraction
- Alignment

Intermission

Part III: Correspondence

Goal



http://graphics.stanford.edu/projects/lgl/papers/ommg-opimhk-10/ommg-opimhk-10.pdf http://www.cs.princeton.edu/~funk/sig11.pdf http://gfx.cs.princeton.edu/pubs/Lipman_2009_MVF/mobius.pdf

Which points map to which?

Maks Ovsjanikov and Mirela Ben-Chen, CS 468

Taxonomy

Local vs. global Refinement or alignment?

Rigid vs. deformable Rotation/translation or stretching?

Pair vs. collection Two shapes or many shapes?

(Only?) Solved Case

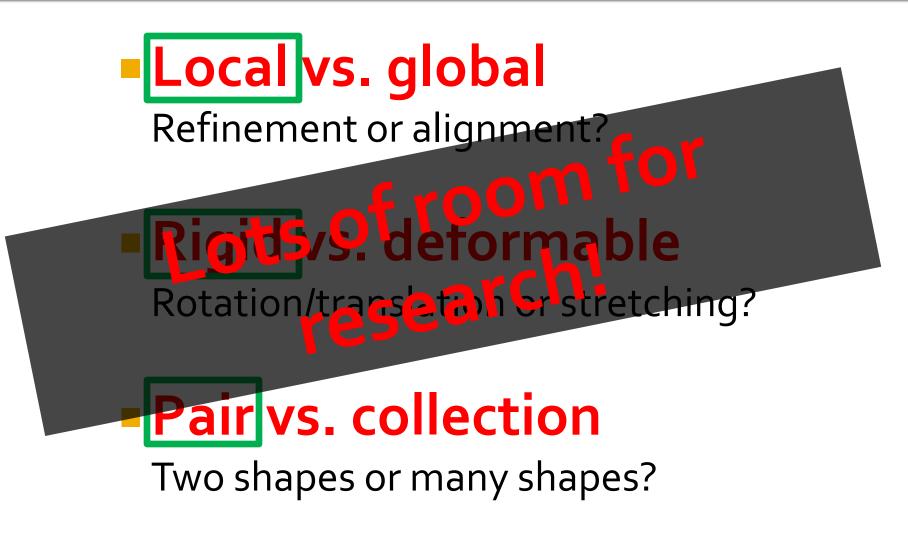
Local vs. global Refinement or alignment?

Rigid vs. deformable

Rotation/translation or stretching?

Pair vs. collection Two shapes or many shapes?

(Only?) Solved Case



Local/Rigid/Pairwise Mapping

Repeat: 1. For each x_i in X, find closest y_i in Y. 2. Find rigid deformation (R,T) minimizing $\sum_i ||(Rx_i + T) - y_i||$

> http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf http://www.gris.uni-tuebingen.de/people/staff/bokeloh/gallery/bunny_res1.png

Iterative Closest Point (ICP)

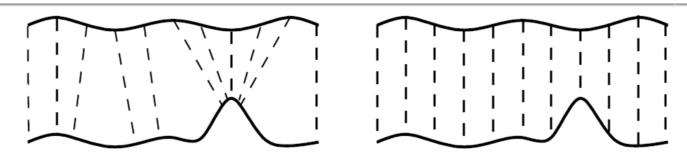
Local/Rigid/Pairwise Mapping

Repeat: 1. For each X 00 2. Find rigid deformation minimizing $\|(Rx_i+T)-y_i\|$

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf http://www.gris.uni-tuebingen.de/people/staff/bokeloh/gallery/bunny_res1.png

Iterative Closest Point (ICP)

ICP Variations



Selection of sample points

One or both surfaces? How many?

Matching points on the surfaces

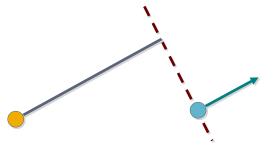
Closest? Approximate nearest? Normal lines? Compatible normal/curvature/color?

Weighting correspondences

Distance? Compatibility? Scanner certainty?

www.math.tau.ac.il/~dcor/Graphics/adv-slides/ICP.ppt

ICP Variations



Reject outlier pairs

Too far? Inconsistent with neighbors? Incompatible descriptors?

Modified error metric

Allow affine transformations? Nonrigid motion?

Optimization technique

Avoid local minima?

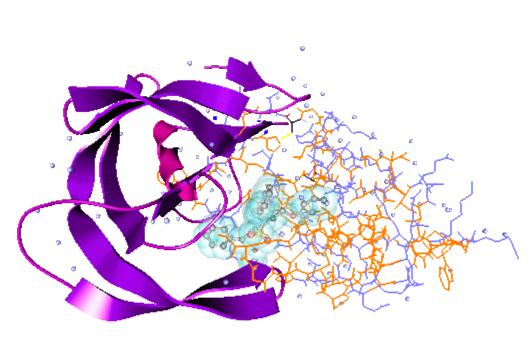
Global Matching

Align shapes in arbitrary positions

Starting point for ICP

http://gmsv.kaust.edu.sa/people/faculty/pottmann/pottmann_pdf/registration.pdf

Exhaustive search Normalization Random sampling Invariance

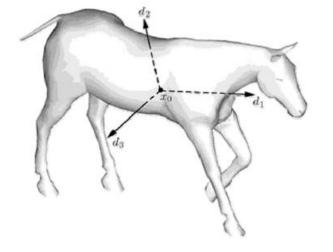


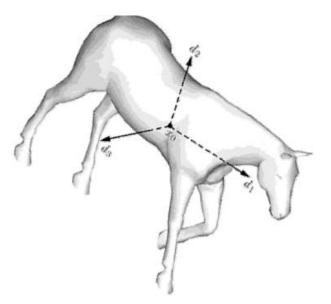
Sample possible alignments

Keep best post-ICP (Slow, only for rigid!)

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf http://vis.lbl.gov/~scrivelli/DShop_research.html

Exhaustive search





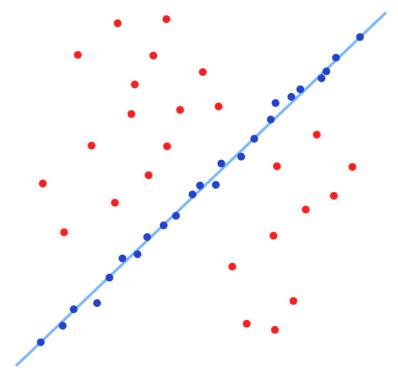
Find canonical alignment

e.g. using PCA; reduces number of starting points

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf

Normalization

RANSAC: Random Sample Consensus



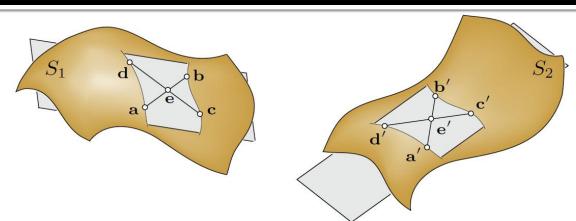
Repeat:

Guess minimum
 number of points to
 determine parameters
 Check if model works

for other points

http://upload.wikimedia.org/wikipedia/commons/d/de/Fitted_line.svg

Random sampling

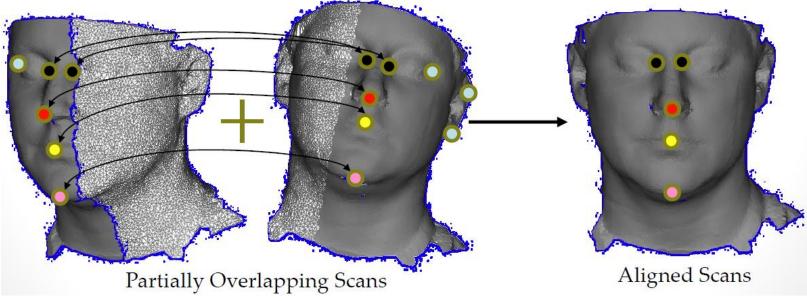


RANSAC with sets of four near-coplanar points. Affine maps preserve ||c-e||/||c-d||, so sample points e' with these ratios (n² time), then match those.

4-Points Congruent Sets for Robust Pairwise Surface Registration Aiger, Mitra, and Cohen-Or 2008

Random sampling

Find interesting points.
 Match feature vectors on those points.
 Compute the aligning transformation.

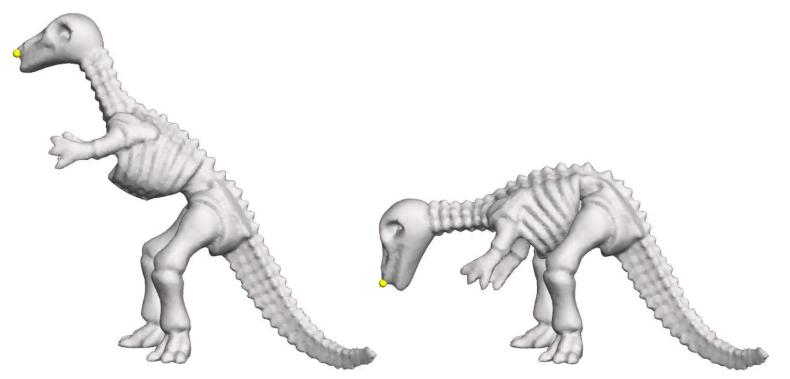


http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf

Invariance: Already done!

Deformable Shape Matching

Elastic, thin shell, volumetric, ARAP, bending, ...



igl.ethz.ch/projects/ARAP/

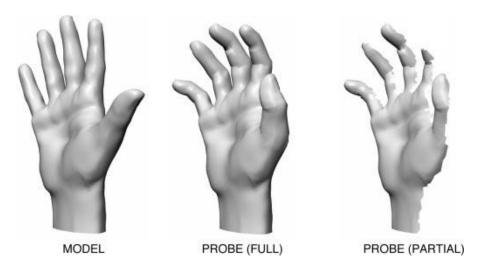
Needs a deformation model

Deformable Shape Matching

Elastic, thin shell, volumetric, ARAP, bending, ...

igl.ethz.ch/projects/ARAP/

Needs a deformation model



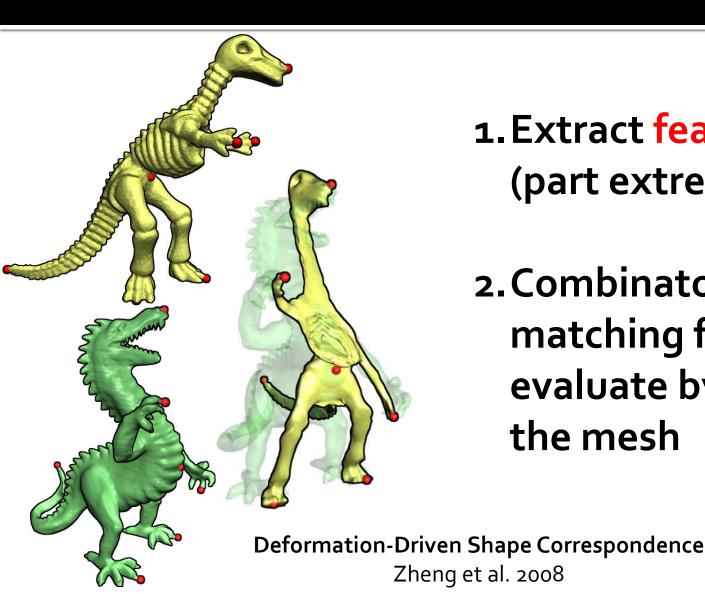
Embed samples of one surface directly over another by minimizing a "generalized stress" involving geodesics.

Generalized Multidimensional Scaling Bronstein, Bronstein, Kimmel 2006

Generalized Multi-Dimensional Scaling (GMDS)

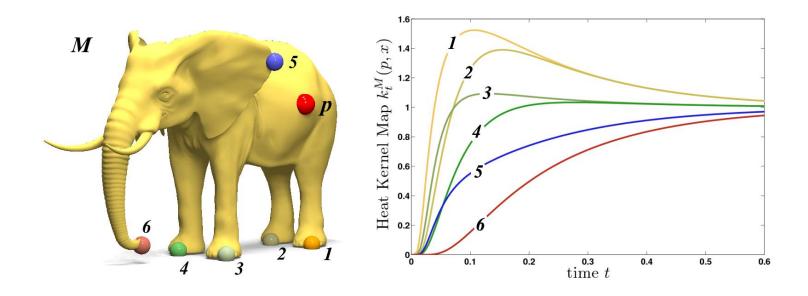
Alternate between matching feature points using descriptors and moving other points in rigid clusters; isometry assumption helps prune bad matches.

Non-Rigid Registration Under Isometric Deformations Huang et al. 2008



1. Extract feature points (part extrema)

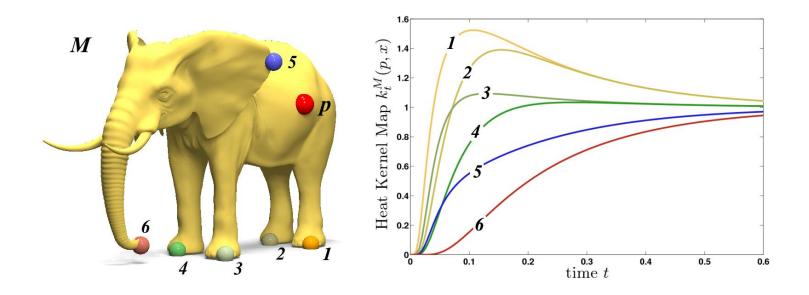
2. Combinatorial search matching features; evaluate by deforming the mesh Slow!



 $HKM_p(x,t) = k_t(p,x)$

How much heat diffuses from p to x in time t?

One Point Isometric Matching with the Heat Kernel Ovsjanikov et al. 2010



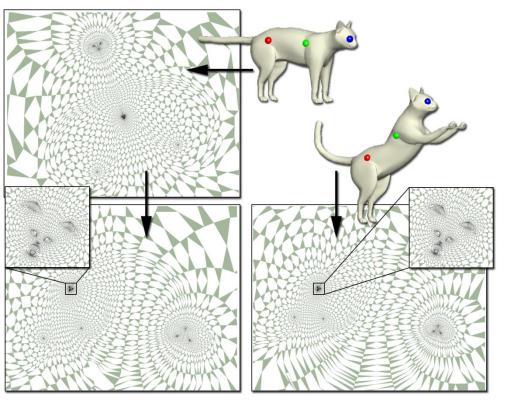
 $HKM_p(x,t) = k_t(p,x)$

Theorem: Only have to match one point!

One Point Isometric Matching with the Heat Kernel Ovsjanikov et al. 2010

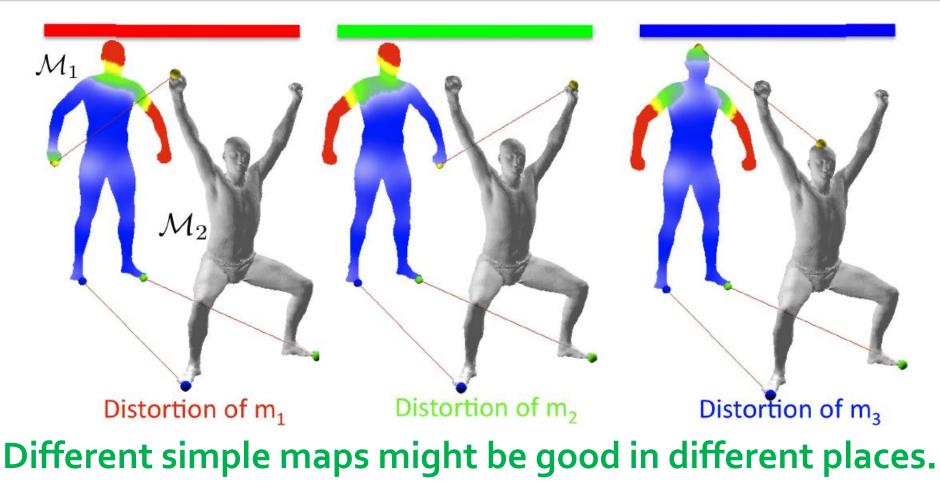
isometries \subseteq conformal maps Hard! Easier

Möbius Voting for Surface Correspondence Lipman and Funkhouser 2009

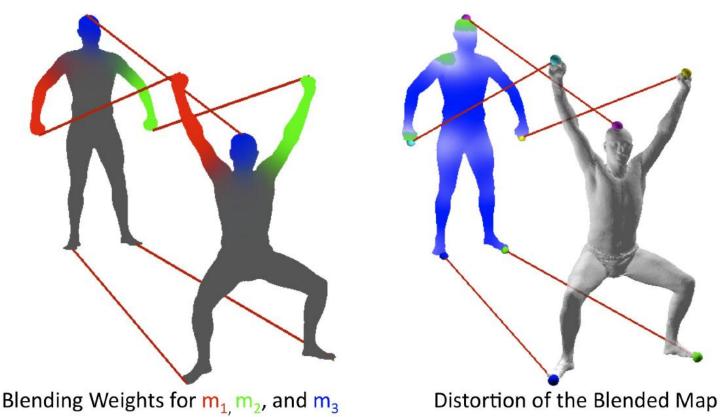


1. Map surfaces to complex plane 2. Select three points 3. Map plane to itself matching these points 4. Vote for pairings using distortion metric to weight 5. Return to 2

Möbius Voting for Surface Correspondence Lipman and Funkhouser 2009

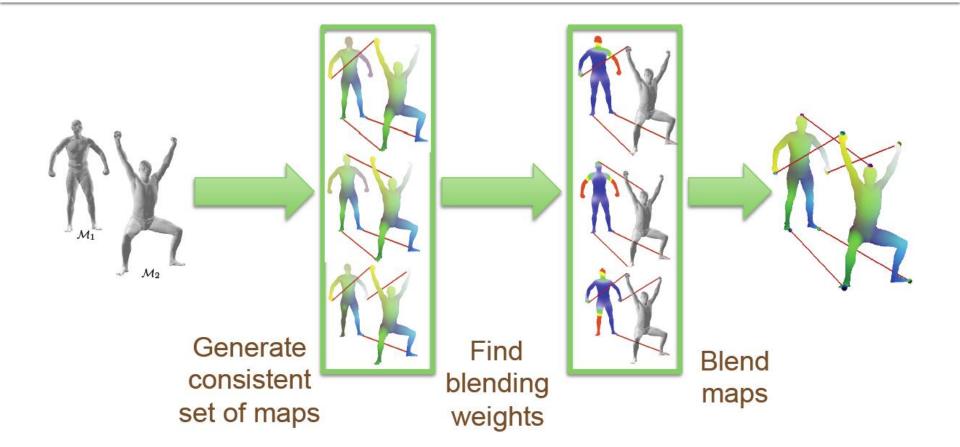


Blended Intrinsic Maps Kim, Lipman, and Funkhouser 2011



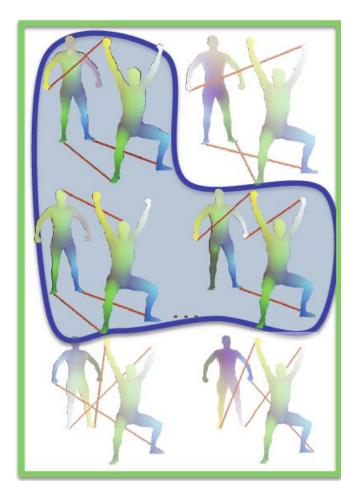
Combine good parts of different maps!

Blended Intrinsic Maps Kim, Lipman, and Funkhouser 2011



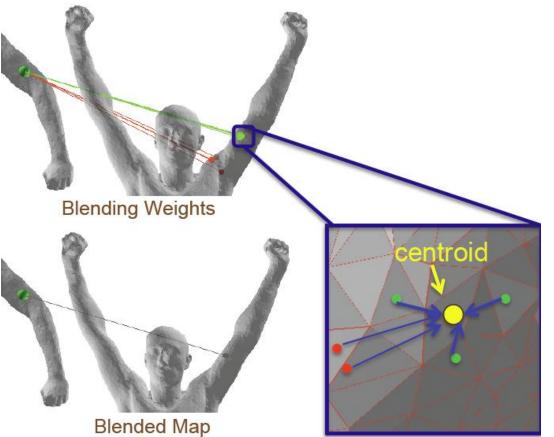
Blended Intrinsic Maps

Kim, Lipman, and Funkhouser 2011



Find groups of consistent/similar maps by clustering in a similarity matrix.

Blended Intrinsic Maps Kim, Lipman, and Funkhouser 2011



Weight maps at each vertex based on deviation from isometry. Output weighted geodesic centroid.

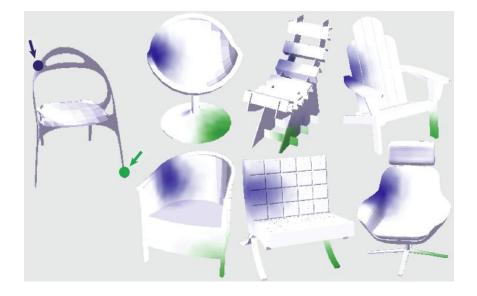
Blended Intrinsic Maps Kim, Lipman, and Funkhouser 2011

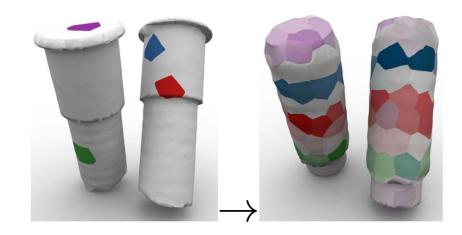
New Frontier in Mapping

 $f: M_2 \to \mathbb{R}$ Functional Maps: A Flexible Representation of Maps Between Shapes Ovsjanikov et al. 2012 (to appear)

Map representations

New Frontier in Mapping



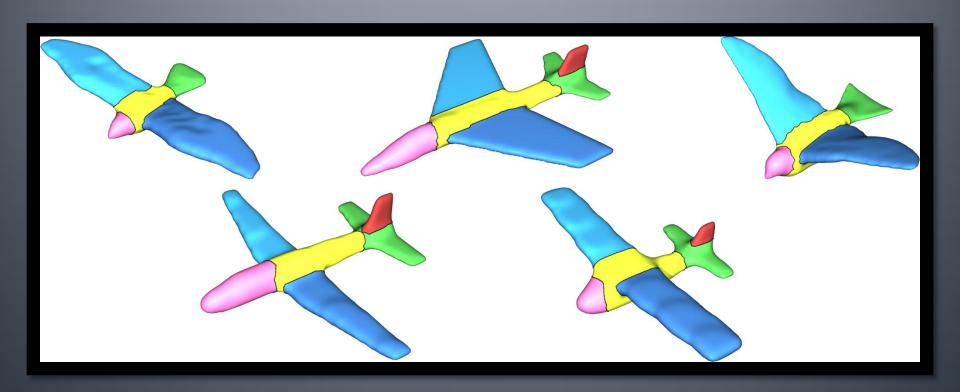


Exploring Collections of 3D Models using Fuzzy Correspondences Kim et al. 2012 (to appear)

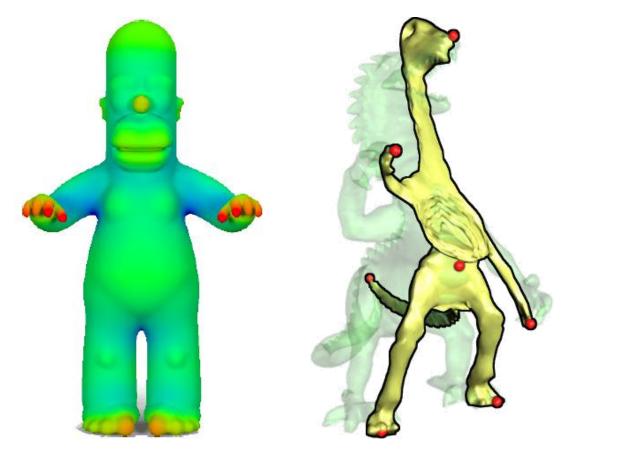
Soft Maps Between Surfaces Solomon et al. 2012 (to appear ... shortly!)

Map representations

Part IV: Shape Collections



Our Story So Far

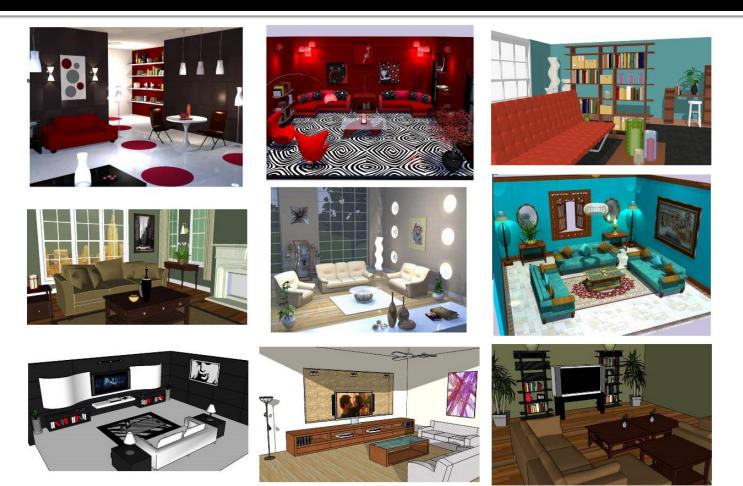


. . .

One surface

Two surfaces

Shape Rarely Exist in a Vacuum



Scenes

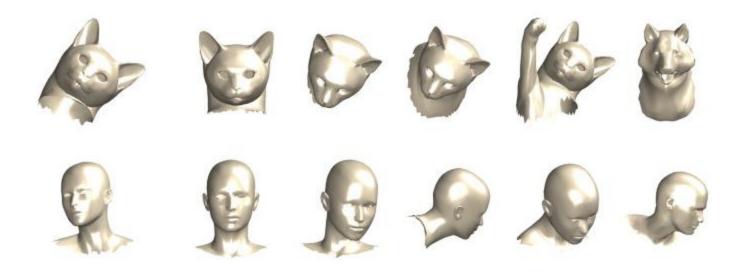
http://graphics.stanford.edu/~mdfisher/Data/GraphKernel.pdf

Shape Rarely Exist in a Vacuum

http://people.cs.umass.edu/~kalo/papers/ShapeSynthesis/index.html

Databases

Shape Rarely Exist in a Vacuum



http://ars.sciencedirect.com/content/image/1-s2.o-Soo97849311000501-gr9.jpg

Motions of one object

Motivation

You can learn about one shape using its relationship to other shapes.

Examples

- Function
- Key features
- Deformation model
- Usability
- Structure
- Symmetries
- Missing information

Shape Space

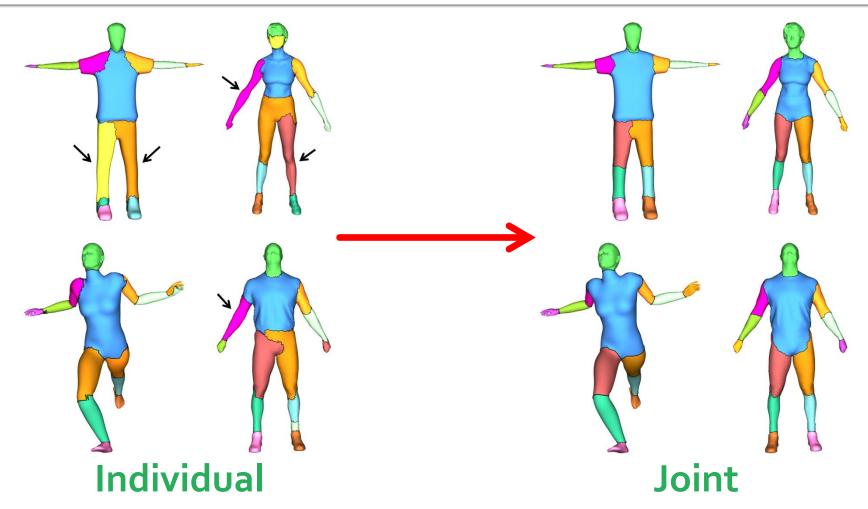
"There are manifoldnesses in which the determination of position requires not a finite number, but . . . a continuous manifoldness of determinations of quantity. Such manifoldnesses are, for example, the possible determinations of a function for a given region, the possible shapes of a solid figure, and so on."

- Riemann (via Clifford)

Machine Learning Philosophy

http://graphics.ethz.ch/Downloads/Publications/Papers/2011/Mar11/Mar11.pdf

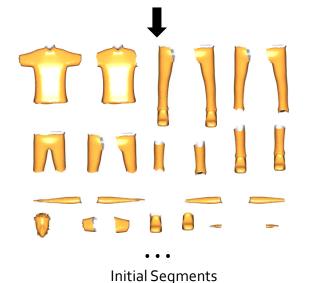
Learn shape space from examples



Joint Shape Segmentation with Linear Programming

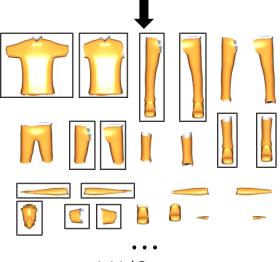
Huang, Koltun, and Guibas 2011

$$\max_{\text{segmentations } S_1, S_2} [\operatorname{score}(S_1) + \operatorname{score}(S_2) + \operatorname{consistency}(S_1, S_2)]$$



Create small discrete pieces by cutting surface in different ways.

 $\max_{\text{segmentations } S_1, S_2} \left[\text{score}(S_1) + \text{score}(S_2) + \text{consistency}(S_1, S_2) \right]$



Initial Segments

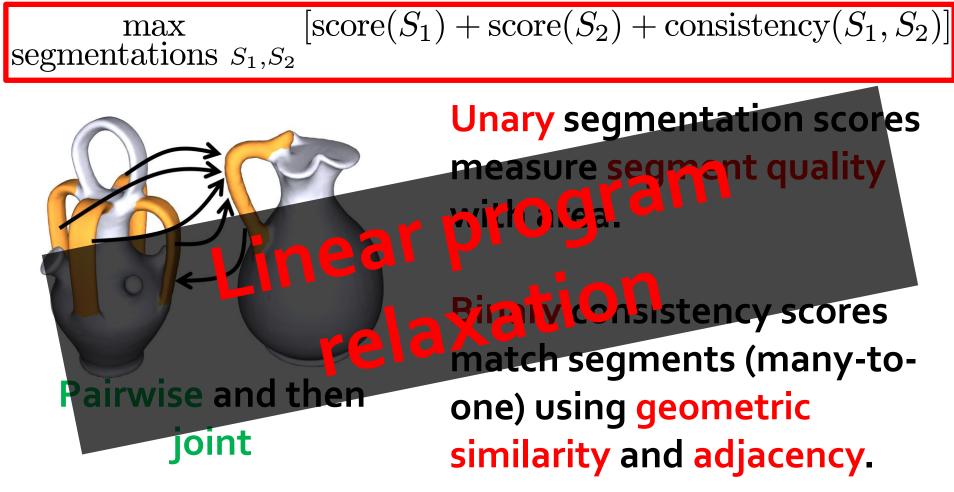
A segmentation consists of decisions about whether to include each piece, where each point is covered once.

 $\max_{\text{segmentations } S_1, S_2} [\operatorname{score}(S_1) + \operatorname{score}(S_2) + \operatorname{consistency}(S_1, S_2)]$



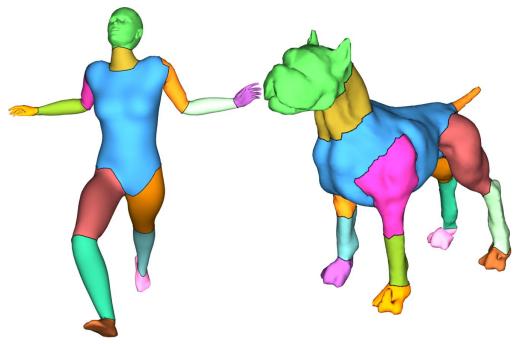
Unary segmentation scores measure segment quality with area.

Binary consistency scores match segments (many-toone) using geometric similarity and adjacency.

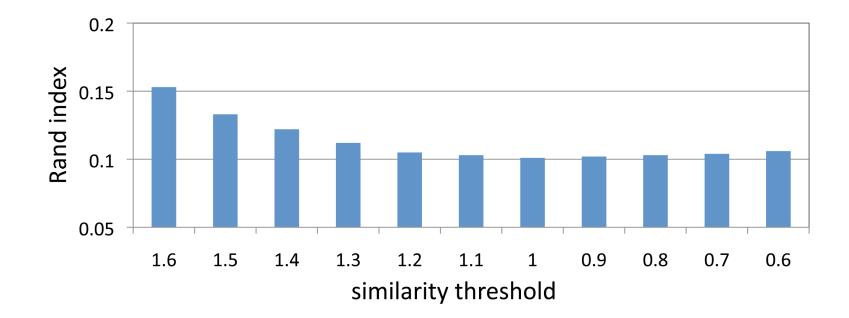


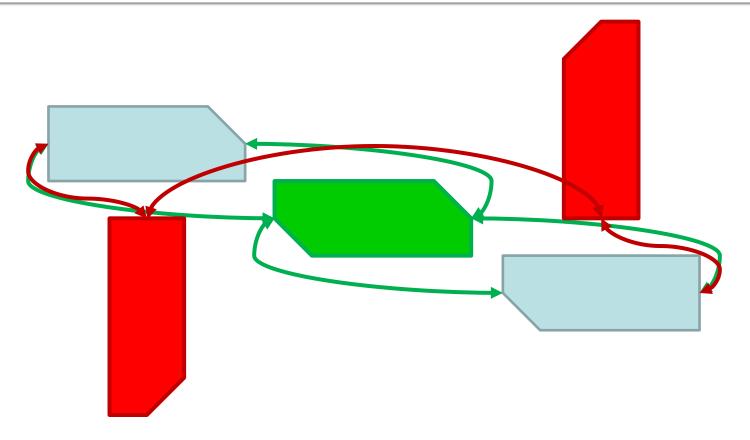
	SD	RC	Supervised	Joint	JointAll	Human
Average	17.2	15.3	10.7	10.5	10.1	10.3

Rand index (smaller is better)

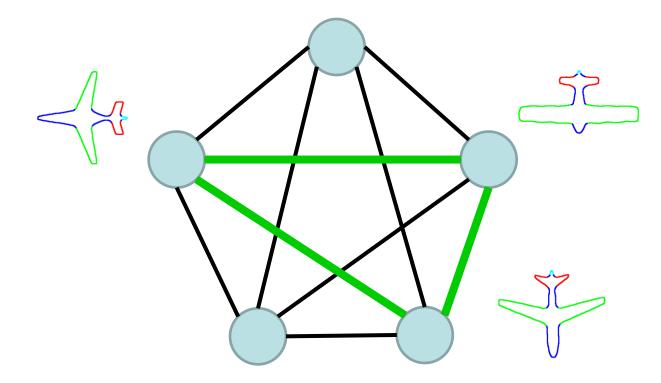


JointAll uses the dog's neck to help segment the geometry of the human.

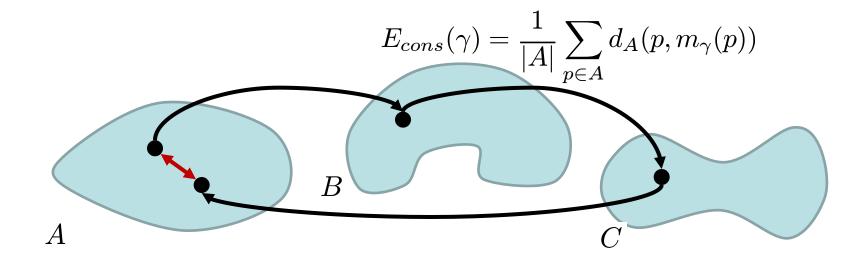




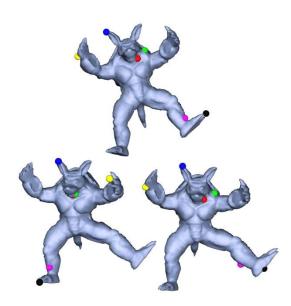
Shape collections indicate which maps make sense.



Maps are edges in a graph of shapes. Cycles are self maps after composition.



Cycle consistency measured by displacement around loop.



Iterate: **1.** Compute error of each three-cycle. 2. Assign errors to edges in map graph by solving an LP distributing cycle error. 3. Replace bad edges with composition.

Navigating Shape Collections

Exploration of Continuous Variability in Collections of 3D Shapes

Maks Ovsjanikov Stanford University

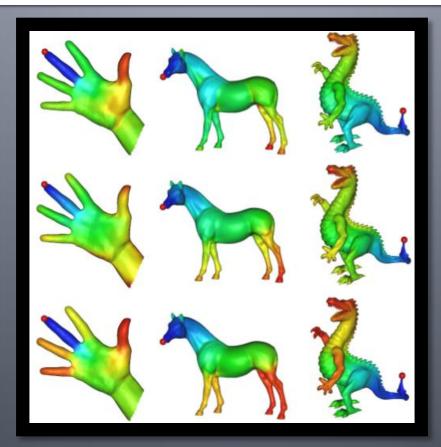
Wilmot Li Adobe Systems

Leonidas Guibas Stanford University

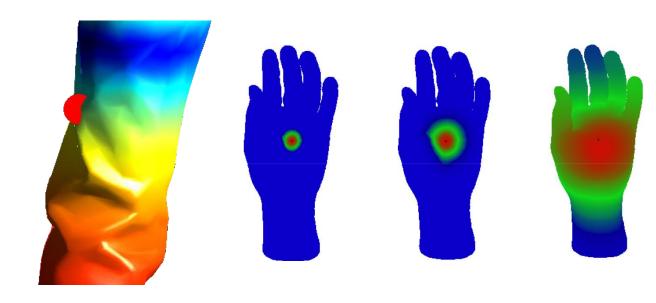
> Niloy J. Mitra KAUST

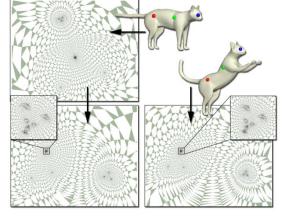
Exploration of Continuous Variability in Collections of 3D Shapes Ovsjanikov et al. 2011

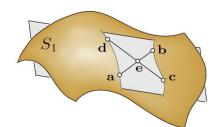
Part V: Conclusion



We've Covered a Lot of Ground









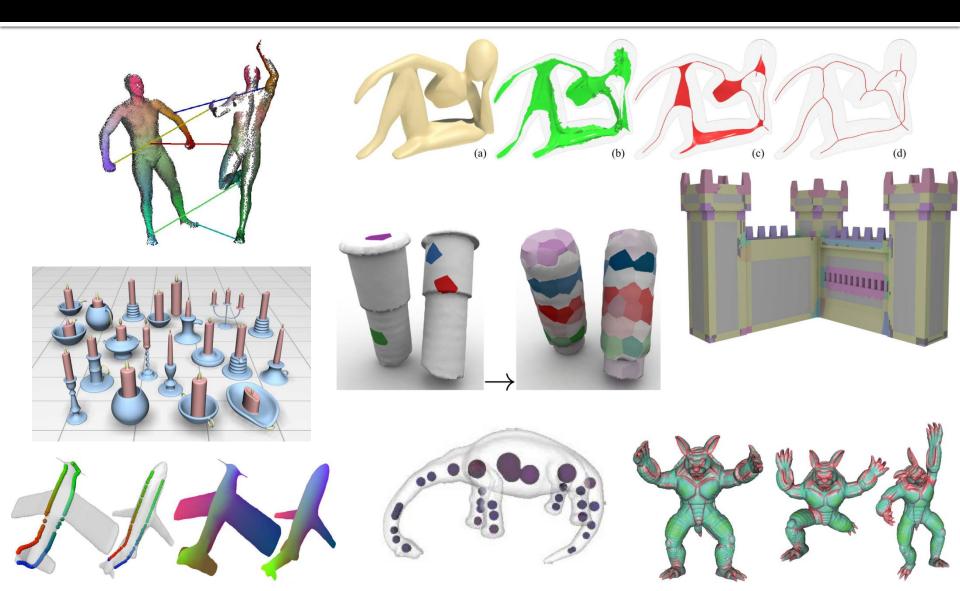
We've Covered a Lot of Ground

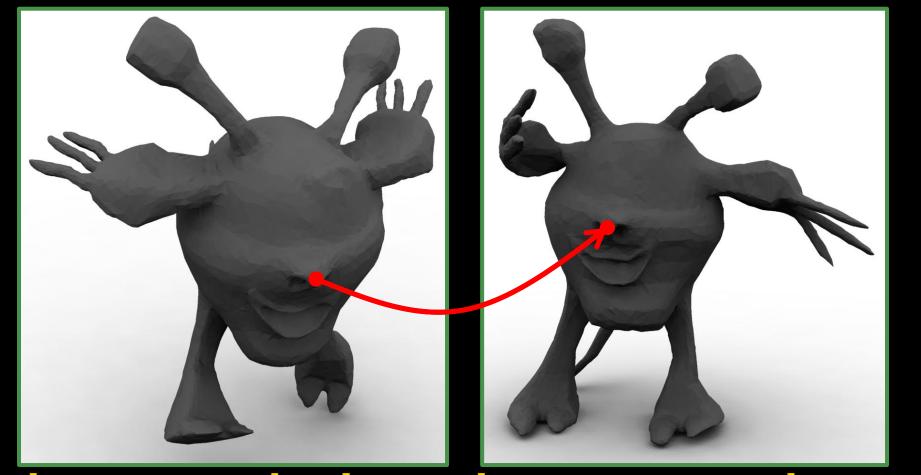
Summarized approaches to Local descriptors Shape understanding Correspondence Shape collections

We've Covered a Lot of Ground

Summarized approaches to Local descriptors he Sharp Maerstanding Correspondence Shape collections

At SGP 2012...





Shape Analysis and Correspondence

Questions?