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Basic Goals

Compute shape descriptors



Basic Goals
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Basic Goals

Map shapes to one another



Basic Goals

http://www.hao-li.com/publications/papers/siggraph2011RPBFA.pdf

Relate new scans to known models



Basic Goals

Understand collections of shapes



Example Applications

| .
I O It I n atte rn S http://people.csail.mit.edu/tmertens/papers/textransfer_electronic.pdf
http://graphics.stanford.edu/~mdfisher/Data/Context.pdf
http://graphics.stanford.edu/~niloy/research/symmetrization/paper_docs/symmetrization_sig_o7.pdf
http://fwww.mpi-inf.mpg.de/~mbokeloh/project_dockingSites.html

Graphics



Example Applications

IS

== Recognition

o= Plan 436

FINDING CLOSEST MATCH...

;|

TN
%

Segmentation
 Reconstruction %&

ttp://eijournal.com/newsite/wp-content/uploads/2012/01/VELODYNE-IMAGE.jpg

http://www.stanford.edu/~jinhae/iccvog/
http://www.stanford.edu/~justso1/assets/intrinsic_part_discovery.pdf

http://www.cs.technion.ac.il/~ron/PAPERS/BroBroKimlJCVos.pdf

Vision



Example Applications

Segmentation

] ]
Re g I St rat I o n http://dmfr.birjournals.org/content/33/4/226/F3.large.jpg

http://www-sop.inria.fr/asclepios/software/inriaviz4d/SphericallmTransp.png
http://www.creatis.insa-lyon.fr/site/sites/default/files/segm2.png

edical Imaging



Example Applications

Scanning Defect detection

http://www.conduitprojects.com/php/images/scan.jpg
http://www.emeraldinsight.com/content_images/fig/0330290204005.png

Manufacturing



Obvious Observation

Analysis and
correspondence form a

large and diverse
field.




Plan for today

Summarize approaches to
Local descriptors

Shape understanding
Correspondence
Shape collections



Part I:
Local Descriptors

vision.in.tum.de/_media/spezial/bib/aubry-et-al-4dmoda1.pdf



Shape Descriptors

http://liris.cnrs.fr/meshbenchmark/images/fig_attacks .jpg

Pointwise quantity



Discrete Representation

http:/fisg.cs.tcd.ie/spheretree/pics/bunny.gif

Pointwise quantity



Desirable Properties

Distinguishing

Provides useful information about a point

Stable

Numerically and geometrically

Intrinsic

No dependence on embedding



Desirable Properties

Distinguishing

Provides useful information about a point

Stable

Numerically and geometrically

Intrinsic Controversial!

No dependence on embedding



Isometry

[ahy-som-i-tree]:
Bending without stretching.

—




Intrinsic Descriptors

iih
i ASPPTIS 2

http://www.revedreams.com/crochet/yarncrochet/nonorientable-crochet/

Isometry invariant




Isometry Invariance: Hope

http://www.flickr.com/photos/melvinvoskuijl/galleries/72157624236168459



Isometry Invariance: Reality

Few shapes can deform isometrically



Isometry Invariance: Reality

Few shapes can deform isometrically



Descriptors We've Seen Before

Y6

= K1Ko 1/2 Ii1 —I— /%'2)

Gaussian and mean curvature



Descriptors We've Seen Before

Theorema Egregium
(“Remarkable Theorem"”):

Gaussian curvature
IS Intrinsic.

K = R1R9

Gaussian and mean curvature



Problems

K:Iﬁlllig'

Localized differential descriptors



Problems

Nonunique



Functions of Curvature

Principal curvatures ki, k2

Shape index Zartan (1422)

s K1 — R9

1
Curvedness \/§(m% + Kk2)



Incorporate
neighborhood information
In an intrinsic fashion.




Incorporate
neighborhood information
In an intrinsic fashion.

INFS IR \
l s

ooooooooooooooooooooooooooooooooooooooooooooooooooo




The Laplacian

AN=dxdx+xd*d

An intrinsic operator



The Laplacian

AN=dxdx+xd*d
‘L

{l L (\ (1 ((

Apr =M1 Aga =X Apz = A3¢3 APy = s Ads = 505
(Agy = 0)

An intrinsic operator



Global Point Signature (GPS)

1 1 1
GPS(p) = (\/—)\—1¢1(p): ﬁ% (p), \/—A_g(b?’(p)’ X )

Good properties:
Isometry-invariant

Unique to each point
Complete description of intrinsic

geometry
Dot products, distances meaningful



Global Point Signature (GPS)

1 ——(p), ——5(p), )

GPS(p) — (\/—)qubl(p): \/)\—2 7\/)\—3

Bad properties:
Assumes unique A’s
Potential for eigenfunction

“switching” upon deformation
Nonlocal feature



PDE Applications of the Laplacian

ou
ot

= —Au

Heat equation



PDE Applications of the Laplacian

= .‘ !
"ot

ttp://www.ceremade.dauphine.fr/~peyre/nu
W ti



PDE Applications of the Laplacian

Wave equation



Solutions in the LB Basis

ou
— A
ot ¢

Heat equation

O
U = Z ane Mo, ()
n=0

(an:/zuo-gbn dA)



Heat Kernel Signature (HKS)

Continuous function on [0,00)

How much heat
diffuses from x to
itself in time t?



Heat Kernel Signature (HKS)

http://graphics.stanford.edu/projects/Igl/papers/sog-hks-og9/sog-hks-og.pdf



Heat Kernel Signature (HKS)

Good properties:
Isometry-invariant

Multiscale

Not subject to switching

Easy to compute

Related to curvature at small scales



Heat Kernel Signature (HKS)

Bad properties:
Issues remain with repeated

eigenvalues
Theoretical guarantees require
(near-)isometry



HKS Extensions

Scale-Invariant HKS (SI-HKS)



HKS Extensions

http://www.cs.technion.ac.il/~darav/RavBroBroKimAffine1oTR.pdf
[ | [ |
Affine-Invariant HKS



HKS Extensions

h

|
e ,/ \, ’,

.’

http://www.cs.technion.ac.il/[~mbron/publications_conference.html
Phot tric HKS



HKS Extensions

http://www.cs.technion.ac.il/~mbron/publications_conference.html



Wave Kernel Signature (WKS)

T—o00 1

WKS(E,z) = lim —/ Ve (x,t)]? dt = qun

Initial energy
distribution

Average probability
over time that
particle is at x.



Wave Kernel Signature (WKS)




Wave Kernel Signature (WKS)

Good properties:

[Similar to HKS]

Localized in frequency

Stable under some non-isometric
deformation

Some multi-scale properties



Wave Kernel Signature (WKS)

Bad properties:
[Similar to HKS]

Can filter out large-scale features



Spectral Descriptors

Considerations:
Collection of shapes

Can you learn the function f?



2-D points

spin-image

AB

Other Descriptors

»

2-D points spin-image

AB AB
-

o

Tr

2-D points spin-image
AB AB

o

"ﬁ_'n

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00765655

Bin points using:
o = distance to normal line

3 = distance to tangent plane

Can use low-rank
approximation!

Spin images



Other Descriptors

2 Bin directions y-x
for each x




Other Descriptors

Related to mean curvature
Integral invariants > robust

http://graphics.stanford.edu/~niloy/research/global_registration/paper_docs/global_registration_sg

Integral volume



Other Descriptors

Weighted average
distance along the surface

Lightweight version of
medial axis distance

Shape Diameter Function



Other Descriptors

Bin nearby normalsin a
canonical orientation

http://www.vision.deis.unibo.it/fede/papers/eccvio.pdf

Signature of Histograms of OrienTations



Many Others

Structural indexing

Point signatures

Point fingerprints

ntrinsic shape signature
Multi-scale surface descriptors
Slippage

Spherical harmonics

RIFT

HMM




Part ll:

Shape Understanding

http://graphics.stanford.edu/~niloy/research/structure/paper_docs/structure_sig_o8.pdf



Many Potential Tasks

Segmentation
Symmetry detection
Global shape description
Retrieval

Recognition

Feature extraction
Alignment



Many Potential Tasks

Segmentation
Symmetry detection
Global shape description
Retrieval

Recognition

Feature extraction
Alignment

We .s’a/x/a/& a f&“’/



Symmetry Detection

Compression
Reconstruction
Classification

http://wwwo.cs.ucl.ac.uk/staff/n.mitra/research/symmetry_survey/symmetrySurvey_12.html
http://www.cs.princeton.edu/courses/archive/fallo3/cs597D/lectures/symmetry.pdf

Analysis
Alignment
Matching



Types of Symmetries

b -k *s?:a:-n ,
Trans v | 1 o v, R‘T
g~ B
_ i |\ - Rot Ya
Scale Rot + Trans Rot + Scale

&k

. . ' . = ] oA
3 | B
= -*.ji‘:. -
Vg m" ~
N )
Rot + Scale Rot X Trans Trans < Trans Rot x Scale
» Continuous

http://graphics.stanford.edu/~niloy/research/structure/paper_docs/structure_sig_o8.pdf



Symmetry Detection Methods

4 N\ 4 N\ 4 Y ' R i B
&0 cgncn
. input model Yy \_ sample set y \_ signatures 4 ktransformations) k density - \surface patchesJ

\> sampling /‘\ analysis j\’ pairing )\ clustering j\» patching -j

Partial and Approximate Symmetry Detection for 3D Geometry
Mitra, Guibas, Pauly 2006

Ex. 1: Discrete extrinsic symmetries



Symmetry Detection Methods

~ .
ode signatures ansformations L density - \surfac;patchesj
\> sampling j\ analysis \ pairing j\ clustering j\» patching -J

Compute simple curvature
features to help pair similar
points.

Partial and Approximate Symmetry Detection for 3D Geometry
Mitra, Guibas, Pauly 2006

Ex. 1: Discrete extrinsic symmetries



Symmetry Detection Methods

4 N 4 N ' ) 7 N
Q
k sample tJ \_ signét s L density - \surfac;patchesj
sampling j\ analysis j\ pairing \ clustering j\» patching -J

Pairs of points with similar
signatures vote for different
transformations.

Partial and Approximate Symmetry Detection for 3D Geometry
Mitra, Guibas, Pauly 2006

Ex. 1: Discrete extrinsic symmetries



Symmetry Detection Methods

pairing

Use mean shift clustering to
find prominent
transformations.

Partial and Approximate Symmetry Detection for 3D Geometry
Mitra, Guibas, Pauly 2006

Ex. 1: Discrete extrinsic symmetries



Symmetry Detection Methods

4 N\ 4 N\ 4 Y 4 R 4 B
Q r
S e 7
. input model Yy k sample set y \_ signatures 4 ktransformations) L density - \surface patchesJ

\> sampling /‘\ analysis j\’ pairing J\ clustering j\» patching -j

Partial and Approximate Symmetry Detection for 3D Geometry
Mitra, Guibas, Pauly 2006

Ex. 1: Discrete extrinsic symmetries



Symmetry Detection Methods

Transf0|_'m .
Analysis

Transform Clusters

!

Model
Estimation

f

T -« | Aggregation |-«
Am' a '{ ‘ 11
SR ay Magll

oene L

Regular Structures Transform Generators

Discovering Structural Regularity in 3D Geometry
Pauly et al. 2008

Ex. 1: Discrete extrinsic symmetries




Symmetry Detection Methods

Partial Intrinsic Reflectional Symmetry of 3D Shapes
Xu et al. 2009

Ex. 2: Discrete intrinsic symmetries



Symmetry Detection Methods

IRSA Transform
(“Intrinsic Reflectional Symmetry Axis")

Want T: M—>M (or parts thereof)
_~ preserving geodesic distances;
J fixed points are symmetry axis

ﬁ " Sample potential axes; voting
scheme for IRSA transform

Partial Intrinsic Reflectional Symmetry of 3D Shapes
Xu et al. 2009

Ex. 2: Discrete intrinsic symmetries



Symmetry Detection Methods

Intrinsic symmetries
become extrinsic in GPS
space!

Global Intrinsic Symmetries of Shapes
Ovsjanikov, Sun, and Guibas 2008

Ex. 2: Discrete intrinsic symmetries



Symmetry Detection Methods

Flows of Killing vector
3 fields (KVFs) generate
Isometries

DEC framework for finding
approximate KVFs

On Discrete Killing Fields and Patterns on Surfaces
Ben Chen et al. 2010

Ex. 3: Continuous Intrinsic symmetries



Symmetry Detection Methods

Approximate KVFs can be
used to find nearly
symmetric pieces

Discovery of Intrinsic Primitives on Triangle Meshes
Solomon et al. 2011

Ex. 3: Continuous Intrinsic symmetries



Feature Extraction Methods

Maxima of k,(x,x) for large t.

A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion
Sun, Ovsjanikov, and Guibas 2009

Feature points



Feature Extraction Methods

i

Filter out extraneous feature curves

iy,

Separatrix Persistence: Extraction of Salient Edges on Surfaces Using Topological Methods
Weinkauf and Gunther 2009

Feature curves



Feature Extraction Methods

Morse-Smale Complex:
Topological skeleton of
critical points and
separatricies

x is in the descending manifold of critical point p if
there exists a gradient flow curve connecting p to x

Separatrix Persistence: Extraction of Salient Edges on Surfaces Using Topological Methods
Weinkauf and Gunther 2009

Feature curves



Feature Extraction Methods

Morse-Smale Complex:
Topological skeleton of
critical points and
separatricies

x is in the ascending manifold of critical point p if
there exists a gradient flow curve connecting xto p

Separatrix Persistence: Extraction of Salient Edges on Surfaces Using Topological Methods
Weinkauf and Gunther 2009

Feature curves



Feature Extraction Methods

Morse-Smale Complex:
Topological skeleton of
critical points and
separatricies

Separatrix: intersection of one ascending and one
descending manifold

Separatrix Persistence: Extraction of Salient Edges on Surfaces Using Topological Methods
Weinkauf and Gunther 2009

Feature curves



Feature Extraction Methods

1. Build combinatorial 2. Apply persistence to
Morse-Smale complex. simplify.

Separatrix Persistence: Extraction of Salient Edges on Surfaces Using Topological Methods
Weinkauf and Gunther 2009

Feature curves



Feature Extraction Methods

Use curvature to choose
better contour lines

Suggestive contour generator:
Points with zero/increasing
curvature in view direction

Feature curves



Feature Extraction Methods

A Benchmark for 3D Mesh Segmentation

Xiaobai Chen, Aleksey Golovinskiy, Thomas Funkhouser
Princeton University

Figure 1: Composite images of segment boundaries selected by different people (the darker the seam the more people have chosen a cut
= (= - s r AP
along that edge). One example is shown for each of the 19 object categories considered in this study.

Abstract processing alporithms, including skeleton extraction [Biasotti et al.
2003; Katz and Tal 2003], modeling [Funkhouser et al. 2004],
morphing [Zidckler et al. 2000: Grezory et al. 1999], shape-based

Thiz naner describes a henchmark for evaluation of 30 mesh seo-

“Feature patches” > Segmentation



Feature Extraction Methods

Simplest strategy:
Cluster feature points
(k-means, mean shift,
etc.); use standard
vision techniques for
continuous regions

“Feature patches” = Segmentation



Feature Extraction Methods

E. Kalogerakis, A. Hertzmann, K. Singh / Learning 3D Mesh Segmentation and Labeling, TOG 29{3 }, Siggraph 2010
: ; S Iz

Learning 3D Mesh Segmentation and Labeling

Evangelos Kalogerakis Aaron Hertzmann Karan Singh

University of Toronto
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“Feature patches” > Segmentation



Feature Extraction Methods

Partitio Proxies Simplified

Variational Shape Approximation
Cohen-Steiner, Alliez, and Desbrun 2004

“Feature patches” > Segmentation



Feature Extraction Methods

Partitio Proxies Simplified

Variational Shape Approximation
Cohen-Steiner, Alliez, and Desbrun 2004

“Feature patches” > Segmentation



Feature Extraction Methods

Flood using /¢ " 1 [ (X, N)
priority queuve | | | [ § minimizing
==\ fixed functional

Partitio Proxies

Variational Shape Approximation
Cohen-Steiner, Alliez, and Desbrun 2004

“Feature patches” > Segmentation



Distances Between Surfaces

dr(X,Y) =max < sup int d(x,vy), sup inf d(z,
(X, Y) = max { sup inf d(z. ), sup inf (o) |

Easy to compute

dep(X,Y)=  min  dg(f(z),9(y))
f,g 1sometries

Hard to compute
Less hard to approximate
Related to Gromov-Wasserstein distance

(Gromov-)Hausdorff distance



Distances Between Surfaces

(a) Original (b) High noise on (¢) High noise (d) High smoothing
model smooth areas uniform uniform

Combine simple metrics (curvature, edge length
distortion, etc.) with user studies.

http://liris.cnrs.fr/guillaume.lavoue/travaux/conference/SPIE-2006.pdf

Perceptual distance



Many Potential Tasks

Segmentation
Symmetry detection
Global shape description
Retrieval

Recognition

Feature extraction
Alignment



Intermission

http://en.wikipedia.org/wiki/Let%27s_All_Go_to_the_Lobby



Part llI:
Correspondence

http://www.cs.princeton.edu/~funk/sig11.pdf



L

P |

A ‘\ !
2 % 25 A
& ="

http://graphics.stanford.edu/projects/Igl/papers/ommg-opimhk-10/ommg-opimhk-10.pdf

http://www.cs.princeton.edu/~funk/sig11.pdf
http://gfx.cs.princeton.edu/pubs/Lipman_2009_MVF/mobius.pdf

Which points map to which?



A WARNING

MOSTLY
BORROWED

Maks Ovsjanikov and Mirela Ben-Chen, CS 468



Taxonomy

Local vs. global
Refinement or alignment?

Rigid vs. deformable

Rotation/translation or stretching?

Pair vs. collection
Two shapes or many shapes?



(Only?) Solved Case

Locallvs. global
Refinement or alignment?

Rigid lvs. deformable

Rotation/translation or stretching?

vs. collection

Two shapes or many shapes?



(Only?) Solved Case

Local|vs. global
Refinement or aligngaé

Palr|vs. collection

Two shapes or many shapes?



Local/Rigid/Pairwise Mapping

Repeat:

1.For each x; in X, find
closest y;InY.

2.Find rigid deformation
(R,T) minimizing

> (R +T) il

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf
http://www.gris.uni-tuebingen.de/people/staff/bokeloh/gallery/bunny_resi.png

Iterative Closest Point (ICP)



Local/Rigid/Pairwise Mapping

I(Rz; +T') — |

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf
http://www.gris.uni-tuebingen.de/people/staff/bokeloh/gallery/bunny_resi.png

Iterative Closest Point (ICP)



ICP Variations

! 1 IR

| I v \\]f/ | | | | |

L A 1 L T
I/],\‘/t\/\_’] ]/]]\]/]—\/\J’

Selection of sample points
One or both surfaces? How many?

Matching points on the surfaces

Closest? Approximate nearest? Normal lines? Compatible
normal/curvature/color?

Weighting correspondences
Distance? Compatibility? Scanner certainty?

www.math.tau.ac.il/~dcor/Graphics/adv-slides/ICP.ppt



ICP Variations

Reject outlier pairs
Too far? Inconsistent with neighbors? Incompatible
descriptors?

Modified error metric
Allow affine transformations? Nonrigid motion?

Optimization technique
Avoid local minima?

www.math.tau.ac.il/~dcor/Graphics/adv-slides/ICP.ppt



Global Matching

Align shapes
In arbitrary
positions

Starting point for ICP

http://gmsv.kaust.edu.sa/people/faculty/pottmann/pottmann_pdf/registration.pdf



Global Matching Strategies

Exhaustive search
Normalization
Random sampling
Invariance



Global Matching Strategies

Sample
possible
alignments

Keep best post-ICP
(Slow, only for rigid!)

http://vis.IbI.gov/~scriveIIi/BShop rrrrrrrrrrrrr

Exhaustive search



Global Matching Strategies

Find canonical alignment

e.d. using PCA; reduces number of startlng pomts

Normallzatlon



Global Matching Strategies

RANSAC: Random Sample Consensus

Repeat:

1.Guess minimum
number of points to
determine parameters

2.Check if model works
for other points

Random sampling



Global Matching Strategies

RANSAC with sets of four near-coplanar
points. Affine maps preserve ||c-e||/||c-d||, so
sample points e’ with these ratios (nz time),

then match those.

4-Points Congruent Sets for Robust Pairwise Surface Registration
Aiger, Mitra, and Cohen-Or 2008

Random sampling



Global Matching Strategies

1.Find interesting points.
2.Match feature vectors on those points.
3.Compute the aligning transformation.

A

Aligned Scan

http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/11_shape_matching.pdf

Invariance: Already done!



Deformable Shape Matching

Elastic, thin shell, volumetric, ARAP, bending, ...

Needs a deformation model



Deformable Shape Matching

Elastic, thin shell, volumetric, ARAP, bending, ...

y LS \

S g P
——

y

[

""v 9 \
> 5 \\\
Loy il

- T

Needs a deformation model



Local Deformable Matching

http://www.hao-li.com/publications/papers/sgp2008GCO.pdf



Global Deformable Matching

7 R Embed samples of one
<)/ surface directly over

v’ A \ * | another by minimizing a
\ g R‘/ “generalized stress”

ey 1NVOIVING geodesics.

Generalized Multidimensional Scaling
Bronstein, Bronstein, Kimmel 2006

Generalized Multi-Dimensional Scaling (GMDS)



Global Deformable Matching

| / Alternate between

\ | matching feature points
S using descriptors and

<& » moving other points in

| rigid clusters; isometry

assumption helps prune

bad matches.

Non-Rigid Registration Under Isometric Deformations
Huang et al. 2008



Global Deformable Matching

1.Extract feature points
(part extrema)

2.Combinatorial search
matching features;
evaluate by deforming

the mesh
Slow!

Deformation-Driven Shape Correspondence
Zheng et al. 2008



Global Deformable Matching

Heat Kernel Map kM (p, z)
- \k\ ‘
: \\

HKM,(z,t) = k(p, )

How much heat diffuses from p to x in time t?

One Point Isometric Matching with the Heat Kernel
Ovsjanikov et al. 2010



Global Deformable Matching

)
~

ap kM (p, =
N

Heat Kernel Map k
\4\\
g.g \\
¢)

HKM,(z,t) = k(p, )

Theorem: Only have to match one point!

One Point Isometric Matching with the Heat Kernel /f/l//l/

Ovsjanikov et al. 2010



Global Deformable Matching

isometries C conformal maps
Hard! Easier

Mobius Voting for Surface Correspondence
Lipman and Funkhouser 2009



Global Deformable Matching

1. Map surfaces to

"‘1(7*/7'4 complex plane
f ‘> 2.5elect three points

/ 3.Map plane to itself
< « matching these points
" | 4.Vote for pairings using

distortion metric to

weight
5. Return to 2

Mobius Voting for Surface Correspondence
Lipman and Funkhouser 2009



Global Deformable Matching

Distortion of m, Distortion of m;

Different simple maps might be good in different places.

Blended Intrinsic Maps
Kim, Lipman, and Funkhouser 2011



Global Deformable Matching

Blending Weights for m, ., and m, Distortion of t/he Blended Map
Combine good parts of different maps!

Blended Intrinsic Maps
Kim, Lipman, and Funkhouser 2011



Global Deformable Matching

Generate j\i Find L Blend
consistent blending maps
set of maps weights

Blended Intrinsic Maps
Kim, Lipman, and Funkhouser 2011



Global Deformable Matching

Find groups of
consistent/similar maps
by clustering in a
similarity matrix.

Blended Intrinsic Maps
Kim, Lipman, and Funkhouser 2011



Global Deformable Matching

Weight maps at each
vertex based on
deviation from
Isometry. Output
weighted geodesic
centroid.

X ; ji

Blended Map
Blended Intrinsic Maps

Kim, Lipman, and Funkhouser 2011



New Frontier in Mapping

Functional Maps: A Flexible Representation of Maps Between Shapes
Ovsjanikov et al. 2012 (to appear)

Map representations



New Frontier in Mapping

Exploring Collections of 3D Models using Soft Maps Between Surfaces
Fuzzy Correspondences Solomon et al. 2012 (to appear ... shortly!)
Kim et al. 2012 (to appear)

Map representations



Part IV:
Shape Collections




Our Story So Far

One surface Two surfaces



Shape Rarely Exist in aVacuum

http://graphics.stanford.edu/~mdfisher/Data/GraphKernel.pdf

Scenes
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Databases



Shape Rarely Exist in aVacuum

http://ars.sciencedirect.com/content/image/1-52.0-50097849311000501-gr9.jpg
Moti f bject



You can learn about
one shape using its
relationship to other shapes.




Function

Key features
Deformation model
Usability

Structure
Symmetries
Missing information



Shape Space

“There are manifoldnesses in which the
determination of position requires not a
finite number, but. . . a continuous
manifoldness of determinations of quantity.
Such manifoldnesses are, for example, the
possible determinations of a function for a
given region, the possible shapes of a solid
figure, and so on.”

- Riemann (via Clifford)

http://www.ics.uci.edu/~fowlkes/papers/f-maz240.pdf



Machine Learning Philosophy

Learn shape space from examples



Segmentation
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Joint Shape Segmentation with Linear Programming
Huang, Koltun, and Guibas 2011



Segmentation

max [score(S7) + score(Ss) + consistency(.S1, S2)]
segmentations S;,S;
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Joint Shape Segmentation with Linear Programming
Huang, Koltun, and Guibas 2011



Segmentation

max [score(S7) + score(Ss) + consistency(.S1, S2)]
segmentations S;,Ss

A segmentation

consists of decisions

about whether to

Include each piece,
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Joint Shape Segmentation with Linear Programming
Huang, Koltun, and Guibas 2011



Segmentation

max [score(S7) + score(Ss) + consistency(.S1, S2)]
segmentations S;,S;

Unary segmentation scores
measure segment quality
with area.

Binary consistency scores

e —— match segments (many-to-
Pa|rW|s.e.and then one) using geometric
joint similarity and adjacency.

Joint Shape Segmentation with Linear Programming
Huang, Koltun, and Guibas 2011



Segmentation

max [score(S7) + score(Ss) + consistency(.S1, S2)]
segmentations S;,S;
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Joint Shape Segmentation with Linear Programming
Huang, Koltun, and Guibas 2011




Segmentation

SD | RC | Supervised || Joint | JointAll || Human
Average | 17.2 | 15.3 10.7 10.5 10.1 10.3

Rand index (smaller is better)

JointAll uses the dog’s
neck to help segment
the geometry of the
human.

Joint Shape Segmentation with Linear Programming
Huang, Koltun, and Guibas 2011



Segmentation
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Joint Shape Segmentation with Linear Programming
Huang, Koltun, and Guibas 2011



Mapping

Shape collections indicate which maps make sense.

An Optimization Approach to Improving Collections of Shape Maps
Nguyen et al. 2012



Mapping
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Maps are edges in a graph of shapes.
Cycles are self maps after composition.

An Optimization Approach to Improving Collections of Shape Maps
Nguyen et al. 2012



Mapping
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Cycle consistency measured by displacement
around loop.

An Optimization Approach to Improving Collections of Shape Maps
Nguyen et al. 2011



Mapping

Iterate:

1. Compute error of each
three-cycle.

2. Assign errors to edges in
map graph by solving an LP
distributing cycle error.

3. Replace bad edges with
composition.

An Optimization Approach to Improving Collections of Shape Maps
Nguyen et al. 2012



Navigating Shape Collections

Exploration of Continuous Variability
in Collections of 3D Shapes

Maks Ovsjanikov
Wilmot Li

Leonidas Guibas

Niloy J. Mitra

Exploration of Continuous Variability in Collections of 3D Shapes
Ovsjanikov et al. 2012




Part V:
Conclusion




We've Covered a Lot of Ground




We've Covered a Lot of Ground

Summarized approaches to
Local descriptors

Shape understanding
Correspondence
Shape collections



We've Covered a Lot of Ground

Summarized approaches to

Local d

ape collections
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Shape Analysis and Correspondence

Questions?



