Supplemental Materials

1 Proofs of Propositions

Proposition 1. The transportation plan © € (g, p,) mini-
mizing (10) is of the form m = DyH:D, with unique vectors
v, w €R" satisfying

{ D H:Dwa = p,,

(1
D.H:Dva = p,.

Proof. Decompressing notation, the optimization can be written as

Milgegnxn Yo, Tijln [ ] a;a;
st mwa= p,
a
T a=p,.

After introducing Lagrange multipliers Ao, A1 € R", the first-order
optimality conditions for this system take the form

: = a]AOI + azAlg VZ7] € {1 }

ij

—a;a; 1n
J

Equivalently, we can write

Tij = Hij exp (— AaO’L> exp (—%)
? J

Take v < exp(—Xo @ a) and w < exp(—A; © a), where ©
denotes elementwise division. Then, this last expression shows
7w = DyH;Dvw. Applying symmetry of H; and substituting into
the two constraints shows (1). O

Proposition 2. The KL projection of (7rL) _1 onto Cy satisfies
proje, mi = wiD,, o7, foreachi € {1,.. . k}.

Proof. The problem decouples, and hence projection can be carried
out one transportation matrix at a time. Expanding the objective for
a single transportation matrix yields the following problem:

minzcgnxn Z” i In [ ] a;a;
st. ®la=up,

where 7 is the projection of 7 onto C;. For Lagrange multiplier
A € R", the first-order optimality condition for element 7;; is

Tij _ Aj
J :ai)\j = Tij = T;j €XpP (_73>_
ij aj

—a;a;ln

After taking ¢ &£ exp(—\ @ a), this expression shows 7 = 7wDe.
Since 7 ' a = p, we now can write Dem ' a = p, showing ¢ =
no 7'rTa, as needed. O

Proposition 3. The KL projection of (m;)¥_, onto Co satisfies
proje, i = Dyuga, m; for each i € {1,...k}, where d; = m;a
and p = T, d/ =

Proof. Take (7;)F_; to be the projection onto Cz, with unknown
common marginal . As in [Benamou et al. 2015], expanding the
optimization problem provides the form

mingz,y,, Ze” QT ei; In [5” ]] a;a;
st. wmea=pVle{l,. ... k}

The Lagrange multiplier expression for this optimization is

AL (Z Qe In { } a;a; + )\[ (rea — u)) .

Differentiating with respect to 7r,;; shows

3 7/1'

A T 0ij

= — = aya;a;ln + Aiay,
O pij T i

or equivalently,

_ Agi
Teij = Teijexp | — .
a; Oy
Taking c, & exp(—A¢ @ a), we can write 7T, = Dcl/w .
£
Differentiating A with respect to p shows

0=VuA=-> X
4

— Hce:exp <—ZAg®a> =1.
¢

L

Define dg et mea. Then, substituting our new variables into the
constraint w,a = p shows

e/ @dy = pVe
= ¢ = (pody)™

Define A & >~ . By the relationship above,

ap

Hence, ce = p @ dg, showing T, = Dypgpa, e.

O

Proposition 4. There exists 3 € R such that the KL projection
of (ﬂi)le onto Cy satisfies projg, mi = Dyuga,m: forall i €

{1,...,k}, where d; = m;aand p = (], df‘i)’g

Proof. Similarly to the previous proposition, we write the opti-
mization problem as follows:

mingz,y,,. Zm e In [ew ] a;a;
st. waa=pWell,... k}
doiaip(Inp; — 1) 2 —Ho — 1.

When the constraint is inactive, the optimization is solved by the
previous proposition. Hence, we will focus on the active case, that
is, when ). a;p;(Inp;, — 1) = —Ho — 1.



The Lagrange multiplier expression for this optimization is

AL (Z e Ttyij In [ ] a;a; + Ae (wea — u))
+7 (Z aip;(Inp; — 1) + Ho + 1)

i

Differentiating with respect to Ag, 7,
optimality criteria:

7, and p yields the following

p,:ﬂ'laVEG {1,...,k}
—Ho—1= Zaiﬂi(lnﬂi -1

A

0 = ara;a; i Vi, 5,4

Tlij
O=7ailnp, — > A Vi
£

As before, the third condition shows

_ Aci
TCpij = Tpij €Xp | — A .
1

The fourth condition shows
= exp (Z)\g @a) .

Take ¢/ = exp(—A; @ a). Then, the conditions above become

1/ay
Mhij = TeijCyf

= H Coi
‘
Define d, &L mea. Since pu = 7,4, for all £ we can write
B, = Zﬂ'h‘jaa Zﬂ't’uch a; = Ce/aedll
J
Taking the log of both sides of this expression and the relationship
p] =TI, ces shows

aelnp;, =Inceg + oplnde; V2
ylnp, = Zlncei.
¢

Summing the first equation over ¢ and removing the c,; term by the
second equation shows

(7 +> ae) Inp; = Z aclnde
4

[ IJ‘Z Hdak/( 'Y+Zg/ ae’)

Identically to the previous proposition, ¢ = D ¢4, ¢, with this
new choice of p; taking v = 0 recovers the inactive constraint case.

Defining
1

-7+ Ze (67

provides the desired formula. O
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Figure 3: Additional soft map example.
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2 Proof of Formula in Algorithm 1

We simplify the convolutional distance between pt, and i, as fol-
lows:

v[1 4+ KL(w|Hy)] = Z i In Lj”aiaj
ij

= Z 7 In(v,w;)a;a; since Hy = DyH Dy,

ij

=7 [Z a;(Inv;) ijaj + Zaj(lnwj) Zm].al}
=7 [Z a;(Invi)pg, + Zaj(ln W)y

J

since wa = p and mla= ey

= 'yaT [(/J’O % an) + (H’l 24 h’lW)]

3 Additional Examples

Figs. 1 and 2 (full page) show additional examples of color transfer
on images.

Fig. 3 shows an additional example of a soft map.
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Figure 1: Additional results: Color transfer with 2D transportation over chrominance space.
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Figure 2: Additional results: Color transfer with 2D transportation over chrominance space.



