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1 Proofs of Propositions

Proposition 1. The transportation plan π ∈ π(µ0,µ1) mini-
mizing (10) is of the form π = DvHtDw, with unique vectors
v,w∈R

n satisfying

{

DvHtDwa = µ0,

DwHtDva = µ1.
(1)

Proof. Decompressing notation, the optimization can be written as

minπ∈Rn×n

∑

ij πij ln
[

πij

eHij

]

aiaj

s.t. πa = µ0

π⊤
a = µ1.

After introducing Lagrange multipliers λ0,λ1 ∈ R
n, the first-order

optimality conditions for this system take the form

−aiaj ln
πij

Hij
= ajλ0i + aiλ1j ∀i, j ∈ {1, . . . , n}.

Equivalently, we can write

πij = Hij exp

(

−
λ0i

ai

)

exp

(

−
λ1j

aj

)

Take v
def.
= exp(−λ0 ⊘ a) and w

def.
= exp(−λ1 ⊘ a), where ⊘

denotes elementwise division. Then, this last expression shows
π = DvHtDw. Applying symmetry of Ht and substituting into
the two constraints shows (1).

Proposition 2. The KL projection of (πi)
k
i=1 onto C1 satisfies

projC1
πi = πiDµi⊘π

⊤
i a

for each i ∈ {1, . . . k}.

Proof. The problem decouples, and hence projection can be carried
out one transportation matrix at a time. Expanding the objective for
a single transportation matrix yields the following problem:

minπ̄∈Rn×n

∑

ij π̄ij ln
[

π̄ij

eπij

]

aiaj

s.t. π̄⊤
a = µ,

where π̄ is the projection of π onto C1. For Lagrange multiplier
λ ∈ R

n, the first-order optimality condition for element π̄ij is

−aiaj ln
π̄ij

πij
= aiλj =⇒ π̄ij = πij exp

(

−
λj

aj

)

.

After taking c
def.
= exp(−λ⊘ a), this expression shows π̄ = πDc.

Since π̄⊤
a = µ, we now can write Dcπ

⊤
a = µ, showing c =

µ⊘ π⊤
a, as needed.

Proposition 3. The KL projection of (πi)
k
i=1 onto C2 satisfies

projC2
πi = Dµ⊘diπi for each i ∈ {1, . . . k}, where di = πia

and µ =
∏

i d
αi/

∑
ℓ αℓ

i .

Proof. Take (π̄i)
k
i=1 to be the projection onto C2, with unknown

common marginal µ. As in [Benamou et al. 2015], expanding the
optimization problem provides the form

min{π̄ℓ},µ

∑

ℓij αℓπ̄ℓij ln
[

π̄ℓij

eπℓij

]

aiaj

s.t. π̄ℓa = µ ∀ℓ ∈ {1, . . . , k}.

The Lagrange multiplier expression for this optimization is

Λ
def.
=
∑

ℓ

(

∑

ij

αℓπ̄ℓij ln

[

π̄ℓij

eπℓij

]

aiaj + λ
⊤
ℓ (π̄ℓa− µ)

)

.

Differentiating with respect to π̄ℓij shows

0 =
∂Λ

∂π̄ℓij
= αℓaiaj ln

π̄ℓij

πℓij
+ λℓiaj ,

or equivalently,

π̄ℓij = πℓij exp

(

−
λℓi

aiαℓ

)

.

Taking cℓ
def.
= exp(−λℓ ⊘ a), we can write π̄ℓ = D

c
1/αℓ
ℓ

πℓ.

Differentiating Λ with respect to µ shows

0 = ∇µΛ = −
∑

ℓ

λℓ

=⇒
∏

ℓ

cℓ = exp

(

−
∑

ℓ

λℓ ⊘ a

)

= 1.

Define dℓ
def.
= πℓa. Then, substituting our new variables into the

constraint π̄ℓa = µ shows

c
1/αℓ
ℓ ⊗ dℓ = µ ∀ℓ

=⇒ cℓ = (µ⊘ dℓ)
αℓ

Define A
def.
=
∑

ℓ αℓ. By the relationship above,

1 =
∏

ℓ

cℓ =
∏

ℓ

(µ⊘ dℓ)
αℓ = µ

A
∏

ℓ

d
−αℓ
ℓ

=⇒ µ =
∏

ℓ

d
αℓ/A
ℓ

Hence, c
1/αℓ
ℓ = µ⊘ dℓ, showing π̄ℓ = Dµ⊘dℓπℓ.

Proposition 4. There exists β ∈ R such that the KL projection
of (πi)

k
i=1 onto C2 satisfies projC2

πi = Dµ⊘diπi for all i ∈

{1, . . . , k}, where di = πia and µ =
(
∏

i d
αi
i

)β
.

Proof. Similarly to the previous proposition, we write the opti-
mization problem as follows:

min{π̄ℓ},µ

∑

ℓij αℓπ̄ℓij ln
[

π̄ℓij

eπℓij

]

aiaj

s.t. π̄ℓa = µ ∀ℓ ∈ {1, . . . , k}
∑

i aiµi(lnµi − 1) ≥ −H0 − 1.

When the constraint is inactive, the optimization is solved by the
previous proposition. Hence, we will focus on the active case, that
is, when

∑

i aiµi(lnµi − 1) = −H0 − 1.



The Lagrange multiplier expression for this optimization is

Λ
def.
=
∑

ℓ

(

∑

ij

αℓπ̄ℓij ln

[

π̄ℓij

eπℓij

]

aiaj + λ
⊤
ℓ (π̄ℓa− µ)

)

+ γ

(

∑

i

aiµi(lnµi − 1) +H0 + 1

)

Differentiating with respect to λℓ, γ, π, and µ yields the following
optimality criteria:

µ = π
ℓ
a ∀ℓ ∈ {1, . . . , k}

−H0 − 1 =
∑

i

aiµi(lnµi − 1)

0 = αℓaiaj ln
π̄ℓij

πℓij
+ λℓiaj ∀i, j, ℓ

0 = γai lnµi −
∑

ℓ

λℓi ∀i

As before, the third condition shows

π̄ℓij = πℓij exp

(

−
λℓi

aiαℓ

)

.

The fourth condition shows

µ
γ = exp

(

∑

ℓ

λℓ ⊘ a

)

.

Take cℓ
def.
= exp(−λℓ ⊘ a). Then, the conditions above become

π̄ℓij = πℓijc
1/αℓ
ℓi

µ
γ
i =

∏

ℓ

cℓi

Define dℓ
def.
= πℓa. Since µ = π̄ℓa, for all ℓ we can write

µi =
∑

j

π̄ℓijaj =
∑

j

πℓijc
1/αℓ
ℓi aj = c

1/αℓ
ℓi dℓi.

Taking the log of both sides of this expression and the relationship
µ

γ
i =

∏

ℓ cℓi shows

αℓ lnµi = ln cℓi + αℓ lndℓi ∀ℓ

γ lnµi =
∑

ℓ

ln cℓi.

Summing the first equation over ℓ and removing the cℓi term by the
second equation shows

(

−γ +
∑

ℓ

αℓ

)

lnµi =
∑

ℓ

αℓ lndℓi

=⇒ µi =
∏

ℓ

d
αℓ/(−γ+

∑
ℓ′ αℓ′ )

ℓi

Identically to the previous proposition, π̄ℓ = Dµ⊘dℓπℓ, with this
new choice of µ; taking γ = 0 recovers the inactive constraint case.
Defining

β
def.
=

1

−γ +
∑

ℓ αℓ

provides the desired formula.
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Figure 3: Additional soft map example.

2 Proof of Formula in Algorithm 1

We simplify the convolutional distance between µ0 and µ1 as fol-
lows:

γ [1 + KL(π|Ht)] = γ
∑

ij

πij ln
πij

(Ht)ij
aiaj

= γ
∑

ij

πij ln(viwj)aiaj since Ht = DvHtDw

= γ

[

∑

i

ai(lnvi)
∑

j

πijaj +
∑

j

aj(lnwj)
∑

i

πijai

]

= γ

[

∑

i

ai(lnvi)µ0i +
∑

j

aj(lnwj)µ1j

]

since πa = µ0 and π
⊤
a = µ1

= γ a
⊤ [(µ0 ⊗ lnv) + (µ1 ⊗ lnw)]

3 Additional Examples

Figs. 1 and 2 (full page) show additional examples of color transfer
on images.

Fig. 3 shows an additional example of a soft map.
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Figure 1: Additional results: Color transfer with 2D transportation over chrominance space.
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Figure 2: Additional results: Color transfer with 2D transportation over chrominance space.


