Supplemental Materials

1 Proofs of Propositions

Proposition 1. The transportation plan $\boldsymbol{\pi} \in \boldsymbol{\pi}\left(\boldsymbol{\mu}_{0}, \boldsymbol{\mu}_{1}\right)$ minimizing (10) is of the form $\boldsymbol{\pi}=\mathbf{D}_{\mathbf{v}} \mathbf{H}_{t} \mathbf{D}_{\mathbf{w}}$, with unique vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ satisfying

$$
\left\{\begin{array}{l}
\mathbf{D}_{\mathbf{v}} \mathbf{H}_{t} \mathbf{D}_{\mathbf{w}} \mathbf{a}=\boldsymbol{\mu}_{0} \tag{1}\\
\mathbf{D}_{\mathbf{w}} \mathbf{H}_{t} \mathbf{D}_{\mathbf{v}} \mathbf{a}=\boldsymbol{\mu}_{1}
\end{array}\right.
$$

Proof. Decompressing notation, the optimization can be written as

$$
\begin{aligned}
\min _{\boldsymbol{\pi} \in \mathbb{R}^{n \times n}} & \sum_{i j} \boldsymbol{\pi}_{i j} \ln \left[\frac{\boldsymbol{\pi}_{i j}}{e \mathbf{H}_{i j}}\right] \mathbf{a}_{i} \mathbf{a}_{j} \\
\text { s.t. } & \boldsymbol{\pi} \mathbf{a}=\boldsymbol{\mu}_{0} \\
& \boldsymbol{\pi}^{\top} \mathbf{a}=\boldsymbol{\mu}_{1}
\end{aligned}
$$

After introducing Lagrange multipliers $\boldsymbol{\lambda}_{0}, \boldsymbol{\lambda}_{1} \in \mathbb{R}^{n}$, the first-order optimality conditions for this system take the form

$$
-\mathbf{a}_{i} \mathbf{a}_{j} \ln \frac{\boldsymbol{\pi}_{i j}}{\mathbf{H}_{i j}}=\mathbf{a}_{j} \boldsymbol{\lambda}_{0 i}+\mathbf{a}_{i} \boldsymbol{\lambda}_{1 j} \forall i, j \in\{1, \ldots, n\}
$$

Equivalently, we can write

$$
\boldsymbol{\pi}_{i j}=\mathbf{H}_{i j} \exp \left(-\frac{\boldsymbol{\lambda}_{0 i}}{\mathbf{a}_{i}}\right) \exp \left(-\frac{\boldsymbol{\lambda}_{1 j}}{\mathbf{a}_{j}}\right)
$$

Take $\mathbf{v} \stackrel{\text { def. }}{=} \exp \left(-\boldsymbol{\lambda}_{0} \oslash \mathbf{a}\right)$ and $\mathbf{w} \stackrel{\text { def. }}{=} \exp \left(-\boldsymbol{\lambda}_{1} \oslash \mathbf{a}\right)$, where \oslash denotes elementwise division. Then, this last expression shows $\boldsymbol{\pi}=\mathbf{D}_{\mathbf{v}} \mathbf{H}_{t} \mathbf{D}_{\mathbf{w}}$. Applying symmetry of \mathbf{H}_{t} and substituting into the two constraints shows (1).

Proposition 2. The $K L$ projection of $\left(\boldsymbol{\pi}_{i}\right)_{i=1}^{k}$ onto \mathcal{C}_{1} satisfies $\operatorname{proj}_{\mathcal{C}_{1}} \boldsymbol{\pi}_{i}=\boldsymbol{\pi}_{i} \mathbf{D}_{\boldsymbol{\mu}_{i} \oslash \boldsymbol{\pi}_{i}^{\top}}$ a for each $i \in\{1, \ldots k\}$.

Proof. The problem decouples, and hence projection can be carried out one transportation matrix at a time. Expanding the objective for a single transportation matrix yields the following problem:

$$
\begin{aligned}
\min _{\overline{\boldsymbol{\pi}} \in \mathbb{R}^{n \times n}} & \sum_{i j} \overline{\boldsymbol{\pi}}_{i j} \ln \left[\frac{\overline{\boldsymbol{\pi}}_{i j}}{e \boldsymbol{\pi}_{i j}}\right] \mathbf{a}_{i} \mathbf{a}_{j} \\
\text { s.t. } & \overline{\boldsymbol{\pi}}^{\top} \mathbf{a}=\boldsymbol{\mu}
\end{aligned}
$$

where $\bar{\pi}$ is the projection of $\boldsymbol{\pi}$ onto \mathcal{C}_{1}. For Lagrange multiplier $\boldsymbol{\lambda} \in \mathbb{R}^{n}$, the first-order optimality condition for element $\overline{\boldsymbol{\pi}}_{i j}$ is

$$
-\mathbf{a}_{i} \mathbf{a}_{j} \ln \frac{\overline{\boldsymbol{\pi}}_{i j}}{\boldsymbol{\pi}_{i j}}=\mathbf{a}_{i} \boldsymbol{\lambda}_{j} \Longrightarrow \overline{\boldsymbol{\pi}}_{i j}=\boldsymbol{\pi}_{i j} \exp \left(-\frac{\boldsymbol{\lambda}_{j}}{\mathbf{a}_{j}}\right)
$$

After taking $\mathbf{c} \stackrel{\text { def. }}{=} \exp (-\boldsymbol{\lambda} \oslash \mathbf{a})$, this expression shows $\overline{\boldsymbol{\pi}}=\boldsymbol{\pi} \mathbf{D}_{\mathbf{c}}$. Since $\overline{\boldsymbol{\pi}}^{\top} \mathbf{a}=\boldsymbol{\mu}$, we now can write $\mathbf{D}_{\mathbf{c}} \boldsymbol{\pi}^{\top} \mathbf{a}=\boldsymbol{\mu}$, showing $\mathbf{c}=$ $\boldsymbol{\mu} \oslash \boldsymbol{\pi}^{\top} \mathbf{a}$, as needed.
Proposition 3. The KL projection of $\left(\boldsymbol{\pi}_{i}\right)_{i=1}^{k}$ onto \mathcal{C}_{2} satisfies $\operatorname{proj}_{\mathcal{C}_{2}} \boldsymbol{\pi}_{i}=\mathbf{D}_{\boldsymbol{\mu} \oslash \mathbf{d}_{i}} \boldsymbol{\pi}_{i}$ for each $i \in\{1, \ldots k\}$, where $\mathbf{d}_{i}=\boldsymbol{\pi}_{i} \mathbf{a}$ and $\boldsymbol{\mu}=\prod_{i} \mathbf{d}_{i}^{\alpha_{i} / \sum_{\ell} \alpha_{\ell}}$.

Proof. Take $\left(\overline{\boldsymbol{\pi}}_{i}\right)_{i=1}^{k}$ to be the projection onto \mathcal{C}_{2}, with unknown common marginal $\boldsymbol{\mu}$. As in [Benamou et al. 2015], expanding the optimization problem provides the form

$$
\begin{aligned}
\min _{\left\{\overline{\boldsymbol{\pi}}_{\ell}\right\}, \boldsymbol{\mu}} & \sum_{\ell i j} \alpha_{\ell} \overline{\boldsymbol{\pi}}_{\ell i j} \ln \left[\frac{\overline{\boldsymbol{\pi}}_{\ell i j}}{e \boldsymbol{\pi}_{\ell i j}}\right] \mathbf{a}_{i} \mathbf{a}_{j} \\
\text { s.t. } & \overline{\boldsymbol{\pi}}_{\ell} \mathbf{a}=\boldsymbol{\mu} \forall \ell \in\{1, \ldots, k\}
\end{aligned}
$$

The Lagrange multiplier expression for this optimization is

$$
\Lambda \stackrel{\text { def. }}{=} \sum_{\ell}\left(\sum_{i j} \alpha_{\ell} \overline{\boldsymbol{\pi}}_{\ell i j} \ln \left[\frac{\overline{\boldsymbol{\pi}}_{\ell i j}}{e \boldsymbol{\pi}_{\ell i j}}\right] \mathbf{a}_{i} \mathbf{a}_{j}+\boldsymbol{\lambda}_{\ell}^{\top}\left(\overline{\boldsymbol{\pi}}_{\ell} \mathbf{a}-\boldsymbol{\mu}\right)\right)
$$

Differentiating with respect to $\overline{\boldsymbol{\pi}}_{\ell i j}$ shows

$$
0=\frac{\partial \Lambda}{\partial \overline{\boldsymbol{\pi}}_{\ell i j}}=\alpha_{\ell} \mathbf{a}_{i} \mathbf{a}_{j} \ln \frac{\overline{\boldsymbol{\pi}}_{\ell i j}}{\boldsymbol{\pi}_{\ell i j}}+\boldsymbol{\lambda}_{\ell i} \mathbf{a}_{j}
$$

or equivalently,

$$
\overline{\boldsymbol{\pi}}_{\ell i j}=\boldsymbol{\pi}_{\ell i j} \exp \left(-\frac{\boldsymbol{\lambda}_{\ell i}}{\mathbf{a}_{i} \alpha_{\ell}}\right)
$$

Taking $\mathbf{c}_{\ell} \stackrel{\text { def. }}{=} \exp \left(-\boldsymbol{\lambda}_{\ell} \oslash \mathbf{a}\right)$, we can write $\overline{\boldsymbol{\pi}}_{\ell}=\mathbf{D}_{\mathbf{c}_{\ell}{ }^{1 / \alpha_{\ell}}} \boldsymbol{\pi}_{\ell}$.
Differentiating Λ with respect to $\boldsymbol{\mu}$ shows

$$
\begin{gathered}
\mathbf{0}=\nabla_{\boldsymbol{\mu}} \Lambda=-\sum_{\ell} \boldsymbol{\lambda}_{\ell} \\
\Longrightarrow \prod_{\ell} \mathbf{c}_{\ell}=\exp \left(-\sum_{\ell} \boldsymbol{\lambda}_{\ell} \oslash \mathbf{a}\right)=\mathbf{1}
\end{gathered}
$$

Define $\mathbf{d}_{\ell} \stackrel{\text { def. }}{=} \boldsymbol{\pi}_{\ell} \mathbf{a}$. Then, substituting our new variables into the constraint $\overline{\boldsymbol{\pi}}_{\ell} \mathbf{a}=\boldsymbol{\mu}$ shows

$$
\begin{aligned}
\mathbf{c}_{\ell}^{1 / \alpha_{\ell}} \otimes \mathbf{d}_{\ell} & =\boldsymbol{\mu} \forall \ell \\
\Longrightarrow \mathbf{c}_{\ell} & =\left(\boldsymbol{\mu} \oslash \mathbf{d}_{\ell}\right)^{\alpha_{\ell}}
\end{aligned}
$$

Define $A \stackrel{\text { def. }}{=} \sum_{\ell} \alpha_{\ell}$. By the relationship above,

$$
\begin{aligned}
\mathbf{1} & =\prod_{\ell} \mathbf{c}_{\ell}=\prod_{\ell}\left(\boldsymbol{\mu} \oslash \mathbf{d}_{\ell}\right)^{\alpha_{\ell}}=\boldsymbol{\mu}^{A} \prod_{\ell} \mathbf{d}_{\ell}^{-\alpha_{\ell}} \\
\Longrightarrow \boldsymbol{\mu} & =\prod_{\ell} \mathbf{d}_{\ell}^{\alpha_{\ell} / A}
\end{aligned}
$$

Hence, $\mathbf{c}_{\ell}^{1 / \alpha_{\ell}}=\boldsymbol{\mu} \oslash \mathbf{d}_{\ell}$, showing $\overline{\boldsymbol{\pi}}_{\ell}=\mathbf{D}_{\boldsymbol{\mu} \oslash \mathbf{d}_{\ell}} \boldsymbol{\pi}_{\ell}$.

Proposition 4. There exists $\beta \in \mathbb{R}$ such that the $K L$ projection of $\left(\boldsymbol{\pi}_{i}\right)_{i=1}^{k}$ onto $\overline{\mathcal{C}}_{2}$ satisfies $\operatorname{proj}_{\overline{\mathcal{C}}_{2}} \boldsymbol{\pi}_{i}=\mathbf{D}_{\boldsymbol{\mu} \oslash \mathbf{d}_{i}} \boldsymbol{\pi}_{i}$ for all $i \in$ $\{1, \ldots, k\}$, where $\mathbf{d}_{i}=\boldsymbol{\pi}_{i} \mathbf{a}$ and $\boldsymbol{\mu}=\left(\prod_{i} \mathbf{d}_{i}^{\alpha_{i}}\right)^{\beta}$.

Proof. Similarly to the previous proposition, we write the optimization problem as follows:

$$
\begin{aligned}
\min _{\left\{\overline{\boldsymbol{\pi}}_{\ell\}, \boldsymbol{\mu}}\right.} & \sum_{\ell i j} \alpha_{\ell} \overline{\boldsymbol{\pi}}_{\ell i j} \ln \left[\frac{\overline{\boldsymbol{\pi}}_{\ell i j}}{e \boldsymbol{\pi}_{\ell i j}}\right] \mathbf{a}_{i} \mathbf{a}_{j} \\
\text { s.t. } & \overline{\boldsymbol{\pi}}_{\ell} \mathbf{a}=\boldsymbol{\mu} \forall \ell \in\{1, \ldots, k\} \\
& \sum_{i} \mathbf{a}_{i} \boldsymbol{\mu}_{i}\left(\ln \boldsymbol{\mu}_{i}-1\right) \geq-H_{0}-1
\end{aligned}
$$

When the constraint is inactive, the optimization is solved by the previous proposition. Hence, we will focus on the active case, that is, when $\sum_{i} \mathbf{a}_{i} \boldsymbol{\mu}_{i}\left(\ln \boldsymbol{\mu}_{i}-1\right)=-H_{0}-1$.

The Lagrange multiplier expression for this optimization is

$$
\begin{aligned}
& \Lambda \stackrel{\text { def. }}{=} \sum_{\ell}\left(\sum_{i j} \alpha_{\ell} \overline{\boldsymbol{\pi}}_{\ell i j} \ln \left[\frac{\overline{\boldsymbol{\pi}}_{\ell i j}}{e \boldsymbol{\pi}_{\ell i j}}\right] \mathbf{a}_{i} \mathbf{a}_{j}+\boldsymbol{\lambda}_{\ell}^{\top}\left(\overline{\boldsymbol{\pi}}_{\ell} \mathbf{a}-\boldsymbol{\mu}\right)\right) \\
& \quad+\gamma\left(\sum_{i} \mathbf{a}_{i} \boldsymbol{\mu}_{i}\left(\ln \boldsymbol{\mu}_{i}-1\right)+H_{0}+1\right)
\end{aligned}
$$

Differentiating with respect to $\boldsymbol{\lambda}_{\ell}, \gamma, \boldsymbol{\pi}$, and $\boldsymbol{\mu}$ yields the following optimality criteria:

$$
\begin{aligned}
\boldsymbol{\mu} & =\boldsymbol{\pi}^{\ell} \mathbf{a} \forall \ell \in\{1, \ldots, k\} \\
-H_{0}-1 & =\sum_{i} \mathbf{a}_{i} \boldsymbol{\mu}_{i}\left(\ln \boldsymbol{\mu}_{i}-1\right) \\
0 & =\alpha_{\ell} \mathbf{a}_{i} \mathbf{a}_{j} \ln \frac{\overline{\boldsymbol{\pi}}_{\ell i j}}{\boldsymbol{\pi}_{\ell i j}}+\boldsymbol{\lambda}_{\ell i} \mathbf{a}_{j} \forall i, j, \ell \\
0 & =\gamma \mathbf{a}_{i} \ln \boldsymbol{\mu}_{i}-\sum_{\ell} \boldsymbol{\lambda}_{\ell i} \forall i
\end{aligned}
$$

As before, the third condition shows

$$
\overline{\boldsymbol{\pi}}_{\ell i j}=\boldsymbol{\pi}_{\ell i j} \exp \left(-\frac{\boldsymbol{\lambda}_{\ell i}}{\mathbf{a}_{i} \alpha_{\ell}}\right)
$$

The fourth condition shows

$$
\boldsymbol{\mu}^{\gamma}=\exp \left(\sum_{\ell} \boldsymbol{\lambda}_{\ell} \oslash \mathbf{a}\right) .
$$

Take $\mathbf{c}_{\ell} \stackrel{\text { def. }}{=} \exp \left(-\boldsymbol{\lambda}_{\ell} \oslash \mathbf{a}\right)$. Then, the conditions above become

$$
\begin{aligned}
\overline{\boldsymbol{\pi}}_{\ell i j} & =\boldsymbol{\pi}_{\ell i j} \mathbf{c}_{\ell i}^{1 / \alpha_{\ell}} \\
\boldsymbol{\mu}_{i}^{\gamma} & =\prod_{\ell} \mathbf{c}_{\ell i}
\end{aligned}
$$

Define $\mathbf{d}_{\ell} \stackrel{\text { def. }}{=} \boldsymbol{\pi}_{\ell} \mathbf{a}$. Since $\boldsymbol{\mu}=\overline{\boldsymbol{\pi}}_{\ell} \mathbf{a}$, for all ℓ we can write

$$
\boldsymbol{\mu}_{i}=\sum_{j} \overline{\boldsymbol{\pi}}_{\ell i j} \mathbf{a}_{j}=\sum_{j} \boldsymbol{\pi}_{\ell i j} \mathbf{c}_{\ell i}^{1 / \alpha_{\ell}} \mathbf{a}_{j}=\mathbf{c}_{\ell i}^{1 / \alpha_{\ell}} \mathbf{d}_{\ell i}
$$

Taking the \log of both sides of this expression and the relationship $\boldsymbol{\mu}_{i}^{\gamma}=\prod_{\ell} \mathbf{c}_{\ell i}$ shows

$$
\begin{aligned}
\alpha_{\ell} \ln \boldsymbol{\mu}_{i} & =\ln \mathbf{c}_{\ell i}+\alpha_{\ell} \ln \mathbf{d}_{\ell i} \forall \ell \\
\gamma \ln \boldsymbol{\mu}_{i} & =\sum_{\ell} \ln \mathbf{c}_{\ell i} .
\end{aligned}
$$

Summing the first equation over ℓ and removing the $\mathbf{c}_{\ell i}$ term by the second equation shows

$$
\begin{aligned}
\left(-\gamma+\sum_{\ell} \alpha_{\ell}\right) \ln \boldsymbol{\mu}_{i} & =\sum_{\ell} \alpha_{\ell} \ln \mathbf{d}_{\ell i} \\
\Longrightarrow \boldsymbol{\mu}_{i} & =\prod_{\ell} \mathbf{d}_{\ell i}^{\alpha_{\ell} /\left(-\gamma+\sum_{\ell^{\prime}} \alpha_{\ell^{\prime}}\right)}
\end{aligned}
$$

Identically to the previous proposition, $\overline{\boldsymbol{\pi}}_{\ell}=\mathbf{D}_{\boldsymbol{\mu} \oslash \mathbf{d}_{\ell}} \boldsymbol{\pi}_{\ell}$, with this new choice of $\boldsymbol{\mu}$; taking $\gamma=0$ recovers the inactive constraint case. Defining

$$
\beta \stackrel{\text { def. }}{=} \frac{1}{-\gamma+\sum_{\ell} \alpha_{\ell}}
$$

provides the desired formula.

Figure 3: Additional soft map example.

2 Proof of Formula in Algorithm 1

We simplify the convolutional distance between $\boldsymbol{\mu}_{0}$ and $\boldsymbol{\mu}_{1}$ as follows:

$$
\begin{aligned}
\gamma & {\left[1+\mathrm{KL}\left(\boldsymbol{\pi} \mid \mathbf{H}_{t}\right)\right]=\gamma \sum_{i j} \boldsymbol{\pi}_{i j} \ln \frac{\boldsymbol{\pi}_{i j}}{\left(\mathbf{H}_{t}\right)_{i j}} \mathbf{a}_{i} \mathbf{a}_{j} } \\
& =\gamma \sum_{i j} \boldsymbol{\pi}_{i j} \ln \left(\mathbf{v}_{i} \mathbf{w}_{j}\right) \mathbf{a}_{i} \mathbf{a}_{j} \operatorname{since} \mathbf{H}_{t}=\mathbf{D}_{\mathbf{v}} \mathbf{H}_{t} \mathbf{D}_{\mathbf{w}} \\
& =\gamma\left[\sum_{i} \mathbf{a}_{i}\left(\ln \mathbf{v}_{i}\right) \sum_{j} \boldsymbol{\pi}_{i j} \mathbf{a}_{j}+\sum_{j} \mathbf{a}_{j}\left(\ln \mathbf{w}_{j}\right) \sum_{i} \boldsymbol{\pi}_{i j} \mathbf{a}_{i}\right] \\
& =\gamma\left[\sum_{i} \mathbf{a}_{i}\left(\ln \mathbf{v}_{i}\right) \boldsymbol{\mu}_{0 i}+\sum_{j} \mathbf{a}_{j}\left(\ln \mathbf{w}_{j}\right) \boldsymbol{\mu}_{1 j}\right] \\
& \quad \operatorname{since} \boldsymbol{\pi} \mathbf{a}=\boldsymbol{\mu}_{0} \text { and } \boldsymbol{\pi}^{\top} \mathbf{a}=\boldsymbol{\mu}_{1} \\
& \gamma \mathbf{a}^{\top}\left[\left(\boldsymbol{\mu}_{0} \otimes \ln \mathbf{v}\right)+\left(\boldsymbol{\mu}_{1} \otimes \ln \mathbf{w}\right)\right]
\end{aligned}
$$

3 Additional Examples

Figs. 1 and 2 (full page) show additional examples of color transfer on images.

Fig. 3 shows an additional example of a soft map.

References

Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., And Peyré, G. 2015. Iterative Bregman projections for regularized transportation problems. SIAM J. Sci. Comp., to appear.

Figure 1: Additional results: Color transfer with 2D transportation over chrominance space.

Figure 2: Additional results: Color transfer with 2D transportation over chrominance space.

