
SAT vs. CSP Solver on Identical Problems

Julian Straub - JulianStraub@gatech.edu

Problem De�nition

In this project we want to investigate whether it is
faster to solve a Satis�ability (SAT) problem using
a SAT solver or to solve the dual Constraint Satis-
faction Problem (CSP) using a CSP solver. Being
able to solve SAT problems is important in many
�elds of industry and development. One of the most
important examples where it is necessary to solve
large SAT problems is electronic design automation
(EDA). Those techniques aid the development of
advanced electronic circuits on which the techno-
logical progress of our society relies.

To enable fast prototyping processes high speed SAT
solvers are essential. As described in [6] it is possible
to convert any SAT problem into a CSP. Hence the
question arises whether it is possible to get faster
SAT solvers in resolving the associated CSP instead
of the original SAT problem.

Related Work

In literature there have been attempts to compare
the theoretic expected performance of SAT and CSP
solvers on speci�c problem types [6]. However, there
has been little investigation in direct comparison
between solvers of the two di�erent types.

Most SAT solvers are a variant of the DPLL algo-
rithm [3], which performs a backtracking search to
�nd a satis�able solution given a knowledge base
consisting of logical sentences. A high-performance
general SAT solver is the Cha� algorithm [5], which
according to its developers outperforms other avail-
able SAT solvers by at least one order of magnitude
on hard SAT problems.

CSP solvers are mostly based on backtracking search
combined with techniques such as back-jumping,
look-ahead and constraint propagation to enforce
arc-consistency. One of the best solvers for CSPs
that was recently developed is Minion [4].

Obviously both the SAT and the CSP solvers rely
on backtracking search methods but deploy di�er-
ent problem speci�c techniques to speed up the pro-
cess of �nding a solution. This fact makes the com-
parison even more interesting since we could gain
insight into which techniques are more e�cient.

Approach

We want to compare the performance of the state of
the art SAT and CSP solvers on a given SAT prob-
lem. Since the code for the previously mentioned

Figure 1: SAT problem (¬M ∨ I) ∧ (¬I ∨ H) ex-
pressed in a factor graph.

solvers Cha� and Minion is openly available from
the respective developers we were able to deploy
the original algorithms for the desired comparison.

A general SAT problem can be given as a set of log-
ical expressions. For the purpose of a uni�ed inter-
face for SAT solvers, the convention is to give this
set of logical sentences in the conjunctive normal
form (CNF). This is possible since all logical expres-
sions, no matter how complex, can be reformulated
to have the CNF. The standard for benchmark SAT
problems in research is the DIMACS CNF format
[1]. Since the zCha� implementation of Cha� that
we use takes such �les as input we were able to make
use of benchmarks available from SATLIB [2].

In order to be able to compare the performance of
zCha� against the CSP solver Minion we have to
translate the SAT problem to a CSP. This conver-
sion can be done since a CSP is the dual problem to
a SAT problem [6]. For example the SAT problem

(M ⇒ I) ∧ (I ⇒ H) ⇐⇒ (¬M ∨ I) ∧ (¬I ∨H)

converts to a CSP with four Boolean variables M ,
I1, I2 and H with the three constraints

(M, I1)ε{(0, 0); (0, 1); (1, 1)}
(I2, H)ε{(0, 0); (0, 1); (1, 1)}

I1 = I2

The benchmark SAT problems from SATLIB con-
tain hundreds of clauses, which makes it impossible
to convert each of the problems to a CSP by hand.
Looking at the structure of both problems we are
able to formulate a algorithm to convert from a SAT
to a CSP problem.

Figure 1 depicts the factor graph representation of
the SAT problem of the example above. The three
variables M , I and H are connected by the two
factors C1 = ¬M ∨ I and C2 = ¬I ∨ H. Solving
this graph means �nding assignments for all three
variables that satisfy both constraints.

In a CSP we are given a set of possible assignments
for each variable, like for example in the map color-
ing problem R, G and B, and we search for valid as-
signments of those values to the respective variables



M I C1 = ¬M ∨ I
0 0 1
0 1 1
1 0 0
1 1 1

I H C2 = ¬I ∨H
0 0 1
0 1 1
1 0 0
1 1 1

Table 1: Truth tables of the constraints

Figure 2: CSP problem derived from (¬M ∨ I) ∧
(¬I ∨H) expressed in a factor graph

subject to certain constraints. In the map coloring
problem we have the constraint that no neighboring
states may have the same color.

Coming back to the example problem, we realize
that the two constraints C1 = ¬M ∨ I and C2 =
¬I∨H of the SAT problem can be expressed in two
truth tables as shown in Table 1. For the CSP we
now introduce two 2-D Boolean variables c1 and c2
that are associated with the two SAT constraints.
The fact that each of the SAT constraints has to
be true in order to get a valid solution to the prob-
lem, restricts the set of values that c1 and c2 are
allowed to take on. Looking at Table 1, we see that
c1ε{[0, 0]; [0, 1]; [1, 1]} and c2ε{[0, 0]; [0, 1]; [1, 1]} be-
cause these are the assignments for which the two
SAT constraints C1 and C2 are true. Finally, we see
that the SAT variable I shows up in both C1 and
C2. This is modeled in the CSP by the constraint
c1(1) = c2(0).

Figure 2 displays the factor graph representation of
the CSP that we retrieved from the original SAT
problem. We now have two Boolean 2-D variables
c1 and c2 that are constrained to take on only a
certain set of values i.e. c1ε{[0, 0]; [0, 1]; [1, 1]} and
c2ε{[0, 0]; [0, 1]; [1, 1]}. This is expressed as two unary
factors in the graph. Both variables are connected
by a binary factor specifying that c1(1) = c2(0)

This example lets us deduce an algorithm to convert
from a SAT to a CSP problem:

For each constraint in the SAT problem:

� Create a new Boolean variable ci in the CSP
with dim(ci) =Number of literals in the ith

SAT constraint.

SAT Problem N zCha� Minion

jnh 16 0.008s 32.414s
aim-sat 41 0.048s 1593.0s

Table 2: Cumulative times to solve sets of satis�-
able benchmark problems from SATLIB. N is the
Number of problem instances in the set that were
solved.

� From the truth table of the SAT constraint
take all assignments that are true and add
them to a binary constraint in the CSP on
the new variable ci.

For each variable in the SAT problem:

� Add equality constraints between ci(k) and
cj(l) if and only if the kth literal in the ith

SAT constraint is the same as the lth literal
in the jth SAT constraint.

This algorithm has been implemented in matlab to
produce input �les for the Minion solver. In the
CSP problem de�nition language of Minion it is
possible to specify the unary constraints by binary
tables containing all valid value assignments of a
Boolean vector variable. Also, equality constraints
between elements of Boolean vectors can easily be
added.

Evaluation

For the evaluation several of the benchmark SAT
problems from SATLIB [2] were converted to CSP
problems in the Minion input format [4] using the
algorithm described in the previous section. Then
both zCha� and Minion were used to solve those
problems and the time to solve the problem was
measured for each algorithm and each problem.

As seen in [5] the cumulative time to solve a set
of similar SAT problems will be used as a measure
for the performance of the two solvers. Table 2
lists the resulting total times for the two SAT prob-
lem sets �jnh� and �aim-sat�. An important fact is
that both sets contained only satis�able problems
i.e. the existed a solution to the problem. Figure 3
gives a more detailed view on the statistics of the
individual solving-times for both algorithms on the
�aim-sat� problem set.

Table 3 shows the results for the SAT problem set
�aim-unsat�. This is a set containing only unsatis�-
able problems. It has to be noted that seven of the
problems could not be proven to be unsatis�able by
Minion in a time less than 15 minutes. Those were
aborted and not taken into the statistic.



Figure 3: Statistic of the aim-sat benchmark prob-
lems for Minion and zCha�.

SAT Problem N zCha� Minion

aim-unsat 17 0.06s 1307.9s

Table 3: Cumulative times to solve sets of unsatis-
�able benchmark problems from SATLIB. N is the
Number of problem instances in the set that were
solved.

Note that every single SAT problem that was eval-
uated, satis�able or unsatis�able, was solved faster
by zCha� than by Minion.

Discussion

The results shown in the previous section clearly
indicate that zCha�'s performance in solving SAT
problems is superior to the one of Minion on the
dual CSP problems. While the time it took zCha�
to solve satis�able CNFs with hundreds of clauses
was barely noticeable, Minion was never faster than
zCHa� and in the worst case needed more than
three orders of magnitude more time to �nd a solu-
tion. This performance di�erence gets even clearer
when we look at the results of the unsatis�able
problems. Unsatis�able problems are more di�-
cult, because they require the solver to show that
non of all the combinations of possible variable as-
signments can be true. Here again zCha� shows its
performance. It is able to show that the benchmark
SAT problems are indeed unsatis�able in virtually
no time. In contrast to that seven of the unsatis-
�able CSP problems took Minion too long, so that
they had to be aborted. In the cases where Minion
found that the CSPs had no solution, the processing
times were again more than two orders of magnitude
slower than zCha�'s.

Obviously zCha� does a much better job in prop-
agating the binary constraints than Minion does.
It also seems that the non-forgetting restarts per-
formed by zCha� help to speed up the search. Non-

forgetting in this case means that zCha� only clears
the assignments to variables but does not forget
about clauses added by inference. This way the
algorithm does not run into the wrong direction for
a long time as Minion seems to. This behavior of
Minion can be inferred from the fact that the long
cumulative times originate from a small number of
very large run times as can be seen in Figure 3.

All in all the results are quite clear: It does not
make sense to use Minion instead of zCha� as a
SAT solver. This however might only be originating
from the implementation of Minion. Hence it would
be interesting to try other high performance CSP
solvers like the ILOG solver or GeCode instead. For
this however the output of the developed SAT to
CSP translator would have to be adapted to the
speci�c way those solvers need the CSP problem to
be speci�ed.

All in all the project was very interesting since in
developing the algorithm to convert from a SAT
problem in CN form to a CSP we gained a lot of in-
sight into the structure of SAT and CSP problems.
Especially the formalism of the factor graph helped
to grasp the nature of those two problem categories
in a graphical way. From this it also became clear
that the problems are not that dissimilar in their
very essence.

References

[1] Dimacs cnf format.
http://www.cs.ubc.ca/~hoos/SATLIB/
Benchmarks/SAT/satformat.ps.

[2] Satlib benchmark problems.
http://www.cs.ubc.ca/~hoos/SATLIB/
benchm.html.

[3] Martin Davis and Hilary Putnam. A computing
procedure for quanti�cation theory. Journal of

the ACM, 7(3):201�215, 1960.

[4] Ian P. Gent, Chris Je�erson, and Ian Miguel.
Minion: A fast scalable constraint solver. In
Proceedings of ECAI 2006, Riva del Garda,
pages 98�102. IOS Press, 2006.

[5] Matthew W. Moskewicz, Conor F. Madigan,
Ying Zhao, Lintao Zhang, and Sharad Malik.
Cha�: engineering an e�cient sat solver. In
Proceedings of the 38th annual Design Automa-

tion Conference, DAC '01, pages 530�535, New
York, NY, USA, 2001. ACM.

[6] Toby Walsh. Sat v csp. In Principles and Prac-

tice of Constraint Programming CP 2000, Lec-
ture Notes in Computer Science, chapter 32,
pages 441�456. 2000.


