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ABSTRACT

The DIET (Digital Image Elasto Tomography) system is a novel approach to screen for breast cancer using only
optical imaging information of the surface of a vibrating breast. 3D tracking of skin surface motion without the
requirement of external markers is desirable. A novel approach to establish point correspondences using pure skin
images is presented here. Instead of the intensity, motion is used as the primary feature, which can be extracted
using optical flow algorithms. Taking sequences of multiple frames into account, this motion information alone is
accurate and unambiguous enough to allow for a 3D reconstruction of the breast surface. Two approaches, direct
and probabilistic, for this correspondence estimation are presented here, suitable for different levels of calibration
information accuracy. Reconstructions show that the results obtained using these methods are comparable in
accuracy to marker-based methods while considerably increasing resolution. The presented method has high
potential in optical tissue deformation and motion sensing.

Keywords: Shape Reconstruction, Breast Cancer Screening, Digital Image Elasto-Tomography, Correspondence
Estimation, Non-Rigid Deformation

1. INTRODUCTION

Breast cancer is the most common cancer type in women, accounting for about one fifth of cancer deaths.1 Since
mortality rates heavily depend on the cancer progress at the time of diagnosis, extensive screening programs have
been established in most western countries, usually by means of X-ray mammography. The practice of regular,
frequent screening, however, is not unquestioned. The main counter argument is that the radiation exposure
might in some cases cause cancer itself. Besides the X-ray exposure, the heavy mechanical stress imposed on the
breast is another shortcoming of mammography. Together, these factors lead generally to low compliance rates.2

The Digital Image Elasto Tomography (DIET) technology3 is a non-invasive elastographic screening approach
that is based on the high stiffness contrast of a factor five to fifteen between cancerous and healthy breast tissue.
Herein, the breast is actuated by a sinusoidally vibrating device, inducing oscillatory vibrations in the breast.
The breast surface is then tracked through a single oscillation period, and the motion of the surface is analyzed.
Additionally, the three-dimensional breast shape is reconstructed and used to simulate the surface motion for
varying elastic property distributions within the breast. Comparing the real with the simulated surface motion
gives an estimation of the presence, size, and location of a potential tumor. Alternatively, the surface motion
can be used directly to estimate the presence of a tumor.4

To estimate the surface motion and reconstruct the breast shape, five calibrated cameras are positioned
around the breast. The image processing then consists of two steps: tracking and correspondence estimation. In
this context, tracking is the process of following a single point through the sequence (in this case, one period of
steady-state motion). This step is necessary to determine the surface motion. Correspondence estimation, on the
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(a) Detached markers (b) Uncovered area (c) Highlight caused by the ad-
hesive

Figure 1: Examples for problems arising from the use of colored markers

other hand, refers to the detection of the same point in the views of multiple cameras at a given point in time.
Correspondence estimation is required for the reconstruction of the breast shape, which in turn is necessary for
the simulation.

In the original DIET approach, both processes are facilitated by small, colored markers. Using an adhesive,
these markers are attached to the breast, covering the whole surface. With the markers, both tracking and
correspondence estimation can be robustly achieved using nearest neighbor methods.5 The use of colored markers,
however, introduces a number of problems:

• Due to the breast movement, markers can detach from the surface, potentially disturbing the image pro-
cessing (Fig. 1(a)).

• Some areas of the breast, especially those near the inframammary fold, can remain unmarked, causing
either holes or large areas of imprecision in the final triangulation (Fig. 1(b)).

• The adhesive causes highlights, overexposing certain breast areas, rendering image processing in these areas
impossible (Fig. 1(c)).

• The procedure of attaching the adhesive and the markers and removing them afterwards is cumbersome
for the patient.

• The achievable resolution is limited by the number of markers.

To overcome these problems, a method for both tracking and correspondence estimation using only skin texture
was developed. Since the breast skin texture provides sufficient detail invariant to small motion, tracking is done
by standard optical flow based methods.6

At a first glance, the geometric reconstruction resembles a Structure-from-Motion (SfM) problem. However,
existing algorithms in this field (e.g.7, 8) usually assume established correspondences. These are used to determine
camera calibration information - an approach that generalizes to problems such as determination of egomotion7, 8

or calibration of intrinsic camera parameters.9 Even approaches that do not need explicit a-priori feature
correspondences but establish correspondences in the process still rely on some sets of relatively sparse, distinct
features such as corners.10

In the case presented here, the calibration information is known, whereas the feature correspondences are
unknown. Direct feature matching using a feature descriptor such as SIFT11 or SURF12 is not possible, due
to the heavy geometric distortions the features undergo in viewpoint changes between the cameras. Feature
detectors that are invariant to some of these transformations exist, such as ASIFT,13 an affine-invariant feature
detector. Preliminary tests conducted with some of these detectors, however, showed unacceptable performance.

Besides these approaches, the work done in the field of incorporating motion information to correspondence
estimation is fairly sparse and, in general, restricted to rigid objects.14–16 For such constrained objects, motion
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Figure 2: Epipolar setup.

information from several locations can be integrated into a single motion model for the whole object, an approach
that is not feasible here. Thus, a correspondence estimation method was developed that is invariant to a change
in an object’s visual appearance when observed from different viewing angles and explicitly utilizes motion
information.

2. METHODOLOGY

Consider a usual epipolar setup as depicted in Fig. 2, consisting of two calibrated views, the reference view and
the correspondence view. The relationship between points in both views, given in pixel coordinates, is defined by
the fundamental matrix F. Given a point xR = (xR, yR, 1)

� in homogeneous coordinates in the reference view,

the corresponding point xC = (xC , yC , 1)
�

in the correspondence view lies on the epipolar line defined by the
epipolar constraint:

x�
CF

�xR = 0 (1)

As shown in Fig. 2, the epipolar constraint holds at any subsequent point in time, at which the points xR

and xC have moved by the amounts u (x) = (Δx (x) ,Δy (x) , 0)
�

(indices R/C omitted for clarity). Defining
x (t+Δt) = x (t) + u (x (t)), Eq. (1) has to hold not only for xR/C , but also for xR/C (t+Δt) for all Δt:

(xC (t+Δt))
�
F�xR (t+Δt) = 0 ∀t,Δt (2)

Fig. 3(a) illustrates the actual matching process in a single frame, using a set of sampled points x̃i along the
epipolar line. In this case, x̃3 would be the best match. However, one problem with Eq. (2) is that due to small
errors (most notably errors in the estimated motion and pixel sampling) it does not necessarily hold exactly true.
Furthermore, the motion might match at multiple locations along the epipolar line. In Fig. 3(b) the error as
given by Eq. (2) is shown against the possible position i (i.e. the sampling index as shown in Fig. 3(a)) along the
epipolar line, emphasizing this ambiguity. These problems can be solved by integrating the matching information
over time. Given a finite number T of frames (in the DIET context: one period of sinusoidal movement) and
introducing a time and location dependent weighting factor w (t,x (t)), the best correspondence x̃C for a specified
reference point xR can be found using

x̃C = argmin
xC

T∑

t=1

w (t,xR (t)) | (xR (t))
�
F�xC (t) | (3)

Here, x(t) denotes an image point, and its tracked positions over time. The weighting factor w (t,x (t)) is subject
to the following constraints:

w (t,x (t)) ≥ 0 ∀t ∈ {1, . . . , T }
T∑

t=1

w (t,x (t)) = 1 (4)
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(c) Extended epipolar error, using a period

Figure 3: Matching process and extended epipolar errors using direct reconstruction

Thus w (t,x (t)) weights the influence of the information for a given point x(t) inherent in the frame at time
t. Considering Fig. 3(a) again, it can be seen that the more the motion around the match varies, the better
this match can be estimated. This chicken-and-egg problem is solved by taking the fact into account that the
point to be corresponded is given in the reference view. Therefore, the variation of motion surrounding that
point in the reference view is a good estimate for the variation of motion surrounding the correct match in the
correspondence view. Thus, given uR (t,x) = (ΔxR (t,x) ,ΔyR (t,x) , 0)� , w (t,x (t)) can be estimated as

w̃ (t,x (t)) = ‖∇ [ΔxR (t,x (t))]‖2 + ‖∇ [ΔyR (t,x (t))]‖2 (5)

Fulfilling condition (4), the final weights are written as

w (t,x (t)) =
w̃ (t,x (t))∑
t
w̃ (t,x (t))

. (6)

Given sufficiently accurate calibration information, this approach already facilitates 3D reconstruction. It is
henceforth referred to as direct reconstruction.

In order to generalize this approach to a wider range of applications beyond the DIET technology, it could
be required to cope with distorted calibration information. A probabilistic approach to overcome these problems
can be applied. In the theoretical case of a perfect match, instead of zero, Eq. (1) takes the finite value dl (l
for location), which is a function of xR and xC . Using the long form of Eq. (3) and further incorporating errors
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Figure 4: Possible distance cases

caused by an inaccurate motion estimation, an additional distance dm (m for motion) can be defined as

dm (xR,xC) = (xR + uR (xR))
�
F� (xC + uC (xC))− dl (xR,xC) (7)

The rationale of subtracting dl in Eq. (7) is illustrated in Fig. 4: Case (a) shows a perfect match, case (b) a good
match with respect to location (in this case, dl = 0) but not with respect to motion, case (c) a bad match in
both respects. Without including dl in Eq. (7), (e) would result in a better match than (d). However, the motion
of (d) is equal to the motion of the correct match (a) and should therefore be preferred. This can be achieved
by virtually shifting case (d) by dl, so that it falls on the epipolar line. Mathematically, without this shift, dm
would be influenced by both motion estimation and calibration errors, while dl is only subject to the calibration
error. Subtracting dl thus effectively removes the calibration error from dm. Assuming a Gaussian error on dl,
the probability pl for a point to correspond to a given reference point with respect only to the corresponding
point’s location (hence the index l) is:

p̃l (xC |xR) =
1√
2πσl

exp

(
−dl (xR,xC)

2

2σ2
l

)
(8)

pl (xC |xR) =
p̃l (xC |xR)∫

x̃C

p̃l (x̃C |xR)
(9)

It should be noted that p̃l, as defined in Eq. (8), is a true probability only over dl, i.e. over the orthogonal
distance to the epipolar line. Since multiple points in 2D image space can have the same distance dl from the
epipolar line, Eq. (8) does not sum to one over this space. Therefore Eq. (8) is not a probability over the 2D
image space and the normalization in Eq. (9) is required.

The completely analogous definition for pm, the probability of a match with respect to motion, is omitted
here for brevity. The standard deviations σl and σm should be set according to the expected error in calibration
information.

Thus, for each possible correspondence point, two probabilities are computed: the probability that it is a
good match according to its location (pl; this can be understood as a fuzzy version of the epipolar constraint),
and the probability that it is a good match according to its motion (pm). Further assuming that dl and dm are
independent, a combined correspondence probability pl,m can be written as

pl,m (xC |xR) =
pl (xC |xR) pm (xC |xR)∫

x̃C

pl (x̃C |xR) pm (x̃C |xR)
(10)

In a similar fashion to Eq. (3), Eq. (10) can be refined taking a whole sequence (or period) of frames into account
instead of only two subsequent points in time. Taking T frames into consideration and again using a weighting
factor as in Eq. (3), the best correspondence x̃C is computed as

x̃C = argmax
xC

T∑

t=1

w (t,xR (t)) pl,m (xC (t) |xR (t)) . (11)
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Reconstruction results based on this will henceforth be referred to as probabilistic reconstruction.

3. RESULTS

The presented method is verified on one in vivo experiment obtained during an ongoing DIET clinical trial.
Ethics approval for this study was obtained from the ”Upper South A Ethics Commitee”, and written consent
was obtained from all subjects. In order to allow a comparison of results from both the marker-based and
the motion-based reconstruction, image sequences with attached markers were used. These images were first
analyzed using the traditional, marker-based approach (the result of which are shown in the top row of Fig. 5).
Afterwards, the markers were digitally removed from the images by skin-tone filtering, thus forcing the motion-
based approaches to take only pure skin patches into account. Results are shown in Fig. 5.

The sampling distance used in the direct reconstruction was 4 samples per pixel, using bicubic interpolation
of the optical flow information. The parameters used in the probabilistic reconstruction were σl = 0.01, σm =
0.0025.

The breast geometries reconstructed using marker-based, direct, and probabilistic reconstruction are shown in
Fig. 5(a), Fig. 5(d), and Fig. 5(g), respectively. In this example, the number of tracked surface points was 1364 for
the marker-based reconstruction, 3896 for the direct reconstruction and 3901 for the probabilistic reconstruction.
The surface-to-surface error (i.e. the mean squared distance between points in the motion-based reconstructions
and their respective projection onto the marker-based reconstruction) was 8.27 mm2 for the direct reconstruction
and 8.29 mm2 for the probabilistic reconstruction.

For the actual diagnosis following the geometric reconstruction, the surface motion is characterized by a
number of metrics. Since the breast moves in a steady state, each point on the surface moves on a closed,
elliptical curve during one vibration period. The metrics describe properties such as the sizes, orientations,
rotations and shapes of these ellipses. A number of these metrics is then used for the actual tumor classification.

Fig. 5(b), Fig. 5(e) and Fig. 5(h) show one of the motion metrics, the total displacement amplitude, i.e. the
L2-Norm of a vector containing the amplitudes of the periodic movements in all three dimensions. It is displayed
on the reconstructed surface, viewed from above. In order to allow a classification of these surface motion
metrics independent of the breast shape, the metrics are first projected onto a half-sphere. This half-sphere
is then equally divided into segments in both φ (or longitudinal) and θ (or latitudinal) directions, and, for a
given metric, the mean is computed for each segment. Fig. 5(c), Fig. 5(f) and Fig. 5(i) show the segment means
for the total displacement amplitude for marker-based reconstruction, direct reconstruction and probabilistic
reconstruction, respectively. Total errors for the segment means compared to the marker-based approach are
shown in Fig. 6.

4. DISCUSSION AND CONCLUSIONS

The DIET system relies on surface motion of an oscillating human breast. This is currently performed by tracking
externally applied fiducial markers in 3D. To improve resolution and practical implementation shortcomings, a
direct tracking of skin patterns is desired. A new, motion-based epipolar constraint approach was thus developed,
that is able to achieve this task. Two alternative correspondence estimation techniques are presented, direct and
probabilistic, and are validated in vivo.

Visual inspection of Fig. 5 shows that the results obtained using only motion are comparable to those relying
on markers. This is not only the case for the geometric reconstructions, but also for the tracked motion of the
surface, as can be seen in the amplitude of motion shown in Fig. 5(b), Fig. 5(e) and Fig. 5(h) and in the segment
mean values. The problem of marker-less regions, as shown in the lower right of Fig. 5(a), where a large cutoff
is visible, is solved.

As given in the results, using motion-based reconstruction (either direct or probabilistic), the resolution of
the reconstruction does not depend on the number of markers. Given sufficiently accurate motion information,
an arbitrary large number of correspondences can be reconstructed, leading to meshes with very high resolutions.
Furthermore, the finer resolution might provide means for additional accuracy in determining the presence and
characteristics of a tumor within the breast.
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(a) Geometry reconstruc-
tion, marker-based
approach

(b) Metric reconstruction, marker-
based approach

(c) Metric segment means, marker-based approach

(d) Geometry reconstruc-
tion, motion-based
approach (direct)

(e) Metric reconstruction, motion-
based approach (direct)

(f) Metric segment means, motion-based approach
(direct)

(g) Geometry reconstruc-
tion, motion-based
approach (probabilistic)

(h) Metric reconstruction, motion-
based approach (probabilistic)

(i) Metric segment means, motion-based approach
(probabilistic)

Figure 5: Reconstructions of breast breast geometry and surface motion. The surfaces are triangulated from the
motion centerpoints.
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(a) Segment mean errors, direct reconstruction (b) Segment mean errors, probabilistic reconstruction

Figure 6: Segment mean errors

Fig. 5, Fig. 6, and the quantitative results given show that, in practical applications for the DIET system,
direct reconstruction does not perform worse than the more complicated and computationally more expensive
probabilistic reconstruction. However, as stated above, this is largely due to the availability of highly accurate
calibration information (i.e. F), and cannot be expected in general applications.

One drawback is the roughness of the surface, caused by small imprecisions in the optical flow computation.
Further research on the possible benefits of different, more precise optical flow computation methods to overcome
this are being evaluated. Additionally, the surfaces shown in Fig. 5 are created using simple triangulation from
the reconstructed points and, as such, are linear interpolations. We expect a much better shape to result from
non-interpolation methods, e.g. using the reconstructed points to fit a smooth model.

Furthermore, the methods presented here were only tested on a single dataset. More extensive validation
on multiple datasets will be required to identify optimal values for the tunable parameters and robustness on
varying skin types.

Overall, the presented method is able to robustly estimate correspondences from non-rigid motion information,
in this case the surface of a vibrating breast. The improvements in handling and resolution are invaluable for
the further development of the DIET system.
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