
GROUP COMMUNICATION

IN DISTRIBUTED

COMPUTER SYSTEMS

M.F. Kaashoek

VRIJE UNIVERSITEIT

GROUP COMMUNICATION
IN DISTRIBUTED

COMPUTER SYSTEMS

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit te Amsterdam,
op gezag van de rector magnificus

dr. C. Datema,
hoogleraar aan de faculteit der letteren,

in het openbaar te verdedigen
ten overstaan van de promotiecommissie

van de faculteit der wiskunde en informatica
op maandag 14 december 1992 te 10.30 uur

in het hoofdgebouw van de universiteit, De Boelelaan 1105

door

MARINUS FRANS KAASHOEK

geboren te Leiden

Centrale Huisdrukkerij Vrije Universiteit

Amsterdam 1992

Promotor: prof.dr. A.S. Tanenbaum
Copromotor: dr. H.E. Bal
Referent: prof. W. Zwaenepoel Ph.D

© 1992 M.F. Kaashoek

Parts of Chapters 1 have been published inComputer Communications.

Parts of Chapter 2 have been accepted for publication inACM Transactions on Com-
puter Systems.

Parts of Chapter 3 have been published in theProceedings of the Eleventh International
Conference on Distributed Computing Systems.

Parts of Chapters 4 have been published inIEEE Computer, in IEEE Transactions on
Software Engineering, and in theProceedings of the 1990 International Conference on
Computer Languages.

Parts of Chapter 5 have been published in theProceedings of the USENIX Symposium
on Experiences with Building Distributed and Multiprocessor Systems IIIand in the
Proceedings of the Fifth ACM SIGOPS European Workshop.

Stellingen

1. Een besturingssysteem voor een gedistribueerde architectuur zou naast remote
procedure call ook groepscommunicatie moeten ondersteunen, waardoor grote
klassen van programmatuur eenvoudiger te programmeren zijn en ook duidelijk
betere prestaties leveren.

Lit: dit proefschrift.

2. De meest economische supercomputer van de toekomst zal een parallelle com-
puter zijn, bestaande uit een verzameling van multiprocessor-machines verbon-
den door een snel datanetwerk.

3. Het Shared Data-Object Model is een beter model voor gedistribueerd gemeen-
schappelijk geheugen dan het op pagina’s gebaseerde Virtual Shared Memory.

W. Levelt, F. Kaashoek, H. Bal en A. Tanenbaum, ‘‘A Comparison of Two Paradigms for

Distributed Shared Memory,’’ Software−Practice and Experience, 1992.

4. De vraag of microkernen beter zijn dan monolitische kernen kan nu definitief
met ‘‘ja’’ beantwoord worden.

D. Golub, R. Dean, A. Forin en R. Rashid, ‘‘Unix as an Application Program,’’ Proc.

Usenix 1990 Summer Conference, June 1990.

F. Douglis, F. Kaashoek, J. Ousterhout en A. Tanenbaum, ‘‘A Comparison of Two Distri-

buted Systems: Amoeba and Sprite,’’ Computing Systems, Vol. 4, No. 4, Fall 1991.

5. Het succes van de ouderwetse en primitieve programmeertaal FORTRAN is
opmerkelijk: na tientallen jaren ´eén van de meest gebruikte programmeertalen te
zijn geweest voor sequenti¨ele programmatuur, lijkt het nu ook de meest gebruikte
parallelle programmeertaal te zijn.

6. De prestaties van veel computerprogramma’s kunnen met een paar zeer een-
voudige wijzigingen enorm verbeterd worden.

A. Tanenbaum, F. Kaashoek, K. Langendoen en C. Jacobs, ‘‘The Design of Very Fast

Portable Compilers,’’ SIGPLAN Notices, Vol. 24, No. 11, Nov. 1989.

7. Het succes van expertsystemen kan afgelezen worden uit het succes van Sky
Radio en Radio 10, die in plaats van de diskjockey een rule-based computerpro-
gramma de muziekkeuze laten bepalen.

8. De definitie van langzaam verkeer is in grote steden als Amsterdam onjuist: de
fiets is in dergelijke steden een sneller vervoermiddel dan de auto. Door aan-
passing van de definitie zou de fietser dan ook in meer verkeerssituaties voorrang
kunnen krijgen op de automobilist.

9. Bij het invoeren van het AiO/OiO-stelsel zijn de Nederlandse Overheid en
universiteiten niet ver genoeg gegaan met het kopi¨eren van het Amerikaanse sys-
teem.

a) Een AiO/OiO moet als student gezien worden. Deze keuze ontslaat de
AiO/OiO van de verplichting om kostbare tijd te verspillen aan onderwijs
geven en heeft als neveneffect een bezuiniging op de overheidsuitgaven.

b) De verdediging van het proefschrift moet plaats vinden v´oór het drukken
van het proefschrift. Deze keuze maakt de verdediging zinvol en verhoogt
de kwaliteit van het proefschrift.

c) De AiO/OiO moet niet verplicht zijn het proefschrift te laten drukken. De
universiteit zou de dissertatie alleen d´an in grotere aantallen moeten uit-
geven, als er voldoende belangstelling is. Deze keuze is financieel aan-
trekkelijk voor de AiO/OiO en heeft een positief effekt op het milieu.

10. Wetenschap is in menig opzicht vergelijkbaar met topsport. Zo hanteren beide
disciplines eenvoudige maatstaven voor succes, tellen zowel de individuele pres-
taties als de resultaten van een team, is een goede begeleiding van jong talent
essentieel en is een jarenlange training vaak noodzakelijk. De beste prestaties
worden in het algemeen jong geleverd. Tot slot spelen in beide takken de bobo’s
een belangrijke rol.

This page intentionally left blank

1

INTRODUCTION

Computer systems consisting of multiple processors are becoming commonplace.
Many companies and institutions, for example, own a collection of workstations con-
nected by a local area network (LAN). Although the hardware for distributed computer
systems is advanced, the software has many problems. We believe that one of the main
problems is the communication paradigms that are used. This thesis is concerned with
software for distributed computer systems. In it, we will study an abstraction, called
group communicationthat simplifies building reliable efficient distributed systems.
We will discuss a design for group communication, show that it can be implemented
efficiently, and describe the design and implementation of applications based on group
communication. Finally, we will give extensive performance measurements. Our goal
is to demonstrate that group communication is a suitable abstraction for distributed sys-
tems.

Distributed computer systems, or distributed systems for short, consist of
hardware and software components. The term ‘‘distributed system’’ is used for many
hardware configurations. In this thesis a distributed computing system is defined as
follows:

A distributed computing system consists of multiple autonomous machines
that do not share primary memory, but cooperate by sending messages over
a communication network.

This definition includes architectures like the hypercube [Athas and Seitz 1988],
a set of workstations connected by a LAN, or a set of computers geographically distri-
buted over the world connected by a wide-area network (WAN). It does not include
multiprocessors, because the processors in a multiprocessor can communicate through
shared memory. However, the nodes in a distributed system may themselves be mul-
tiprocessors. In effect, the key property of a distributed system is that there is no physi-
cally shared memory present.

1

Software for distributed systems can be divided between application software
(user programs, text editor, etc.) and system software (operating system, compilers,
etc.). In this thesis we will focus mainly on system software. The task of an operating
system for a distributed system is to hide the distribution of the hardware from the user.
No matter where a user logs in, he† should be able to access his files. When a user
starts a process, he should not be aware where the process is running. To summarize:

The goal of a distributed operating system is to make a collection of com-
puters look like a single computer to the user. It is the operating system’s
responsibility to allocate resources to users in a transparent way [Tanen-
baum 1992].

To understand what distributed operating systems are, it is useful to compare
them with the more commonnetwork operating systems. In a network system each
user has a computer for his exclusive use. The computer has its own operating system
and may have its own disks. All commands are normally run locally on the user’s
computer. If a user wants to copy a remote file, he explicitly has to tell where the file
is located. If a user wants to start a program on another computer, he has to start the
command explicitly on the remote computer. More advanced network systems may
provide some degree of transparency by, for example, having a shared file system, but
the key point is that the user is always aware of the distribution of the hardware.
Unlike true distributed systems, network systems are very common.

Both network and distributed systems are an active area of research. One of the
main problems is that existing network and distributed operating systems do not pro-
vide adequate support for writing distributed applications. In particular, many distri-
buted applications can profit from an operating system primitive that allows for send-
ing a message from 1 process ton processes. Few operating systems, however, provide
primitives that make the hardware facilities for 1-to-n communication available to
applications. The main thesis of the work presented here is that a distributed operating
system should provide support for group communication (1-to-n communication),
because:

d It simplifies distributed programming.

d It potentially gives substantial performance benefits.

To validate this thesis we have designed new protocols for doing group communica-
tion, and implemented them as part of the Amoeba distributed operating system. Then,
using this group communication, we have designed and implemented both parallel and
fault-tolerant applications, showing that group communication can be used effectively
in distributed systems.

The outline of the rest of this chapter is as follows. In Section 1.1 we discuss
distributed applications, as the goal of systems research is to provide the appropriate

333333333333333
† ‘‘He’’ should be read throughout this thesis as ‘‘he or she.’’

2 INTRODUCTION CHAP. 1

hardware and software base for these applications. In Section 1.2, we motivate why
group communication is needed. In Section 1.3, we state the problems that are solved
in this thesis and preview the solutions. Like most research, the work presented here
builds on previous work, so we discuss related research in Section 1.4. This thesis is
not a theoretical thesis. Everything described has been implemented as part of the
Amoeba distributed system, which is in day-to-day use. To understand the design deci-
sions and performance measurements, it is required that the reader has some knowledge
of Amoeba, so we review Amoeba in Section 1.5. In Section 1.6, we outline the rest of
the thesis.

1.1. Applications for Distributed Computer Systems
Applications that make use of a distributed system can be categorized in four dif-

ferent types: functional specialization, parallel applications, fault-tolerant applications,
and geographically distributed applications (see Fig. 1.1) [Bal et al. 1989b]. We will
discuss each class of applications in turn below.

222
Type of application Example22
Functional specialization File service222
Parallel Parallel chess program222
Fault-tolerant Banking system222
Geographically distributed Electronic mail2221
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

Fig. 1.1. Categorization of applications that can use a distributed system.

Some distributed applications can be written as a set of specialized services. For
example, a distributed operating system may be written as a collection of services, such
as a file service, a directory service, a printer service, and a time-of-day service. In a
distributed system it makes sense to dedicate one or more processors to each service to
achieve high performance and reliability.

Because distributed systems consist of multiple processors, they can also be used
to run parallel applications. The goal in a parallel application is to reduce the turn-
around time of asingle program by splitting the problem into multiple tasks, all run-
ning in parallel on separate processors. A chess program, for example, can be written
to allow each processor to evaluate different parts of the game tree simultaneously.

Distributed systems are potentially more reliable than centralized systems,
because each processor is independent; if one fails, it need not affect the others. Relia-
bility can therefore be increased by replicating an application on multiple processors.
If one of the processors fails, another one can finish the job. A banking system, for
example, can be made fault-tolerant by replicating all bank accounts on multiple disks

SEC. 1.1 Applications for Distributed Computer Systems 3

and processors. If a disk becomes unreadable or if one of the processors fails, the
banking system can use one of the other disks or processors to complete a transaction.

Finally, there are applications which are inherently distributed in nature. A good
example of such an application is the international electronic mail system. Mail dae-
mons spread all over the world cooperate to deliver messages from one user to another.

All these classes of applications, except for geographically distributed applica-
tions will show up in this thesis. This chapter, for example, describes how the Amoeba
operating system is built out of specialized services. Chapter 4 discusses a number of
parallel applications and Chapter 5 discusses two classes of fault-tolerant applications.

1.2. Why Group Communication?
Most current distributed operating systems are based onRemote Procedure Call

(RPC) [Birrell and Nelson 1984]. The idea is to hide the message passing, and make
the communication look like an ordinary procedure call (see Fig. 1.2). The sender,
called theclient, calls astub routineon its own machine that builds a message contain-
ing the name of the procedure to be called and all the parameters. It then passes this
message to the driver for transmission over the network. When it arrives, the remote
driver gives it to a stub, which unpacks the message and makes an ordinary procedure
call to theserver. The reply from server to client follows the reverse path.

Client machine Server machine

Client Stub Driver Driver Stub ServerNetwork

Fig. 1.2. Remote procedure call from a client to a server. The reply follows

the same path in the reverse direction.

RPC is very useful, but inherently point-to-point. Many applications also need
1-to-n communication [Chang 1984; Gehani 1984; Dechter and Kleinrock 1986;
Ahamad and Bernstein 1985; Cheriton and Zwaenepoel 1985; Joseph and Birman
1986; Liang et al. 1990; Cristian 1991]. Consider, for example, a parallel application.
Typically in a parallel application a number of processes cooperate to compute a single
result. If one of the processes finds a partial result (e.g., a better bound in a parallel
branch-and-bound program) it is desirable that this partial result be communicated
immediately to the other processes. By receiving the partial result as soon as possible,
the other processes do not waste cycles on computing something that is not interesting
anymore, given the new partial result.

Now consider a second application: a fault-tolerant storage service. A reliable
storage service can be built by replicating data on multiple processors each with its
own disk. If a piece of data needs to be changed, the service either has to send the new
data to all processes or invalidate all other copies of the changed data. If only point-
to-point communication were available, then the process would have to sendn − 1 reli-

4 INTRODUCTION CHAP. 1

able point-to-point messages. In most systems this will cost at least 2(n − 1) packets
(one packet for the actual message and one packet for the acknowledgement). If the
message sent by the server has to be fragmented into multiple network packets, then the
cost will be even higher. This method is slow, inefficient, and wasteful of network
bandwidth.

In addition to being expensive, building distributed applications using only
point-to-point communication is often difficult. If, for example, two servers in the reli-
able storage service receive a request to update the same data, they need a way to con-
sistently order the updates, otherwise the data will become inconsistent. The problem
is illustrated in Figure 1.3. The copies of variableX become inconsistent because the
messages from Server 1 and Server 2 are not ordered. What is needed is that all servers
receive all messages in the same order.

1

X

2

X

3

X

1

X

3

X

2

X

X = 2 X = 3

X = 3

X = 2

Done Done

Fig. 1.3. Server 1 and 2 receive at approximately the same time an update

message for the shared variableX. The copies ofX become inconsistent

because the messages from Server 1 and Server 2 are not ordered.

Many network designers have realized that 1-to-n communication is an important
tool for building distributed applications;broadcastcommunication is provided by
many networks, including LANs, geosynchronous satellites, and cellular radio systems
[Tanenbaum 1989]. Several commonly used LANs, such as Ethernet and some rings,
even providemulticastcommunication. Using multicast communication, messages can
be sent exactly to the group of machines that are interested in receiving the message.
Future networks, like Gigabit LANs, are also likely to implement broadcasting and/or
multicasting to support high-performance multi-media applications [Kung 1992].

The protocol presented in this thesis for group communication uses the hardware
multicast capability of a network, if one exists. Otherwise, it uses broadcast messages
or point-to-point messages, depending on the size of the group and the availability of

SEC. 1.2 Why Group Communication? 5

broadcast communication. Thus, this system makes any existing hardware support for
group communication available to application programs.

A word on terminology. The terms ‘‘broadcasting,’’ ‘‘multicasting,’’ and ‘‘group
communication’’ are often confused. We will refer to the abstraction of a group of
processes communicating by sending messages from 1 ton destinations as ‘‘group
communication.’’ We consider ‘‘broadcasting’’ and ‘‘multicasting’’ as two hardware
mechanisms that can be used to implement the abstraction of group communication. A
broadcast message on a network is received by all processors on that network. A mul-
ticast message on a network is only received by the processors on that network that are
interested in receiving it. We will often use the term ‘‘broadcasting’’ to refer to any of
the three terms, as this is the term generally used in the literature.

1.3. Problems and Solutions
The goal of this thesis is to present a system that simplifies distributed program-

ming. Fundamental to our proposal is the usage of group communication. The system
can best be described using a three layer model (see Fig. 1.4). The bottom two layers
deal with multicast and group communication. The top layer uses group communica-
tion to implement applications, such as a run-time system for parallel programming or
a fault-tolerant file service. To validate our approach, this thesis discusses the design,
implementation, usage, and performance of each layer. We will now overview the sys-
tem, starting at the bottom layer.

22
3 Applications (e.g., parallel programs or a fault-tolerant file system)22
2 Group communication22
1 Fast Local Internet Protocol (FLIP)2211

1
1
1
1
1

11
1
1
1
1
1

Fig. 1.4. Structure of the proposed system.

Layer 1, the Fast Local Internet Protocol (FLIP), implements a new network pro-
tocol specifically designed to meet the requirements of distributed systems. Current
network protocols, like IP [Postel 1981a; Comer 1992], have been designed for net-
work systems. To meet distributed system requirements using IP, new protocols have
been invented for each subset of requirements. For example, the Internet Control Mes-
sage Protocol (ICMP) has been introduced to implement dynamic routing and to cope
partially with network changes [Postel 1981b]. The Address Resolution Protocol
(ARP) has been introduced to map IP addresses on hardware addresses [Plummer
1982]. The Reverse Address Resolution Protocol (RARP) has been introduced to
acquire an IP address [Finlayson et al. 1984]. Internet Group Management Protocol
(IGMP) has been introduced to implement group communication [Deering 1988]. The
Versatile Message Transport Protocol (VMTP) has been introduced to meet the

6 INTRODUCTION CHAP. 1

requirements for group communication and a secure, efficient, and at-most-once RPC
protocol [Cheriton 1986].

One of the main contributions of this thesis is a protocol (FLIP) that tries to
address the distributed system requirements that we have identified in a clean, simple,
and integrated way. FLIP is designed to support efficient RPC communication, group
communication, location transparency, security, and process migration. One key idea
is that FLIP addresses do not identify locations (machines), as in IP, but logical entities
such as processes or process groups.

Layer 2 implements a new abstraction for efficient reliable group communica-
tion. This layer offers a primitive that guarantees delivery of a message to a group of
processes, even in the face of communication failures. Furthermore, it guarantees that
every process receives all messages, and in the same order. If required, the protocol
can also recover from arbitrary processor failures at some cost in performance.

The group communication primitives are based on a protocol that guarantees
total ordering and which is much more efficient than sendingn unordered reliable
point-to-point messages. If two application processes, on two different machines,
simultaneously broadcast two messages,A and B respectively, then our primitive
guarantees that either (1) every process in the group receives firstA and thenB or (2)
every process in the group receives firstB and thenA. Under no conditions do some
processes getA first and others getB first. By making the broadcast both reliable and
indivisible in this way, the user semantics become simple and easy to understand.

Applications that use group communication run in layer 3. One possible applica-
tion is a run-time system for a form of distributed shared memory (DSM), called the
Shared Data-Object Model [Bal 1990; Bal et al. 1992a]. A data-object is an instance of
an abstract data type that can be shared among multiple processes, typically running on
different processors, without requiring physically shared memory. Shared objects are
replicated in the private memory of the processors and are kept consistent using the
group primitives of layer 2. By using group communication and objects to store shared
data, we are able to achieve a more efficient implementation of distributed shared
memory than a model based on virtual memory pages [Levelt et al. 1992]. We have
used the shared object model successfully to run a number of parallel applications, such
as the Traveling Salesman Problem [Lawler and Wood 1966], parallel Alpha-Beta
search [Knuth and Moore 1975], the All Pairs Shortest Path Problem [Aho et al. 1974],
and Successive Overrelaxation [Stoer and Bulirsch 1983].

Although it is efficient and simple to replicate data using group communication,
some data structures are better not replicated at all. For example, when a shared
integer is mostly written by one processorp and almost never accessed by another pro-
cessor, it is better to store the integer at processorp. The problem is to detect such
cases automatically without bothering the programmer. We have investigated an
approach based on run-time support combined with compile-time information.

In addition to parallel programs, many other applications can profit from group
communication. We discuss two kinds of fault-tolerant applications: fault-tolerant

SEC. 1.3 Problems and Solutions 7

parallel applications and fault-tolerant distributed services. When a number of proces-
sors work in parallel on a problem, the chance that one of them will fail increases with
the number of processors. In most systems a failure of one processor will terminate the
complete application. For applications that have to meet a deadline, such as weather
prediction, this is unacceptable. We have developed a new scheme to make parallel
applications that do not perform I/O, fault-tolerant in a transparent and efficient way.

The second class of fault-tolerant applications that we discuss are distributed ser-
vices. We demonstrate that group communication is important for this class of applica-
tions by showing that a fault-tolerant directory service is easier to implement with
groups than with RPC and is also more efficient. The directory service exemplifies dis-
tributed services that provide high reliability and availability by replicating data.

In summary, this thesis makes the following research contributions:

d A new network protocol, FLIP, that meets the communication require-
ments of a distributed system.

d An efficient protocol for reliable and totally-ordered group communica-
tion.

d A new model and implementation for DSM based on compiler optimiza-
tions, group communication, and shared data-objects.

d An efficient scheme to make a broad class of parallel applications fault-
tolerant in a transparent way.

d A fault-tolerant directory service based on group communication, demon-
strating that fault-tolerant services based on group communication are
easier to implement and more efficient than the same service implemented
using RPC.

Although on first sight some of the contributions may seem unrelated, a single theme
runs through all of them: group communication is a fundamental abstraction in a distri-
buted operating system. All these contributions relate to group communication and its
implementation.

1.4. Related Work
The research discussed in this thesis builds on previous work. There are four

other kinds of work with which we can compare ours:

d Network protocols for distributed systems.

d Broadcasting as an operating system service.

d Distributed shared memory.

d Systems providing fault tolerance.

We will briefly compare our work to each of these four in turn. Subsequent chapters
will contain more detailed comparisons.

8 INTRODUCTION CHAP. 1

Most of the research in communication protocols has resulted in new protocols
on top of IP. The key idea in FLIP isnot to build on existing protocols to meet new
requirements, but to design a single protocol that integrates all the desired functional-
ity. The result is a protocol that is better for distributed systems than existing ones.
The main disadvantage of our approach is that it is incompatible with existing proto-
cols. We believe, however, that a Ph.D. thesis shouldnot be restricted to research that
is backward compatible with work that was done 10 years ago.

The second related area is systems that provide broadcasting as a user primitive.
A number of systems (e.g., Isis, Psync, and V) provide group communication in some
form. Isis is a toolkit especially designed to implement fault-tolerant distributed appli-
cations. The toolkit provides a number of group communication primitives that allow
the user to program as if the system were in virtual synchrony [Birman and Joseph 87].
Our system also provides support for fault-tolerant applications, but in addition it pro-
vides a very cheap broadcast primitive for applications that are not concerned with
fault tolerance.

Psync is a communication mechanism based oncontext graphs [Peterson et al.
1989]. Psync provides the programmer with a number of communication primitives on
which more powerful primitives can be built. One of Psync’s library functions con-
tains a primitive that provides reliable and totally-ordered group communication, built
out of the basic primitives. The performance of this primitive is worse than ours,
because it is based on a less efficient protocol.

Another system that provides group communication as an operating system prim-
itive is the V system [Cheriton and Zwaenepoel 1985; Cheriton 1988b]. The main
difference between the V system and our system is that V provides unreliable and unor-
dered group communication, while ours provides reliable and totally-ordered group
communication. Our interface to the programmer is therefore easier to understand and
to use. The advantage of the V approach is that different group communication inter-
faces (e.g., reliable and totally-ordered) can be layered over their basic interface, each
interface exactly matching the requirements of the program and giving optimal perfor-
mance. We prefer, however, to have one simple and powerful interface to avoid an
explosional number of interfaces. In general, having many slightly different interfaces
results in programs that are hard to understand and therefore are error-prone. We are
willing to pay performance to win uniformity in software.

The third area that relates to our research is distributed shared memory. In gen-
eral, the approach taken in DSM research is to use the hardware memory management
unit (MMU) to implement the illusion of one virtual memory that is shared among mul-
tiple processors, even though there is no physically shared memory present. Typically,
these systems divide the shared virtual memory in fixed-size pages and only use point-
to-point communication [Li and Hudak 1989; Nitzberg and Lo 1991]. The main goal in
implementing DSM systems is to reduce the number of messages sent, because sending
a message is orders of magnitude more expensive than accessing a value in private
memory. Our approach to DSM does not require any special hardware support, and is

SEC. 1.4 Related Work 9

completely implemented outside the operating system kernel. This has the advantage
that the shared memory can be divided in pieces that correspond to the requirements of
the application, reducing the interprocess communication for shared memory. Further-
more, our approach allows for extensive compile-time optimization, reducing the costs
for interprocess communication even more.

The fourth and last related area is systems that support fault-tolerant applications.
Most efforts in research on fault tolerance are focused on making an arbitrary applica-
tion fault-tolerant. This can either be done transparently to the programmer as in
[Strom and Yemini 1985; Johnson 1989], or require involvement of the programmer as
in [Liskov 1988; Spector et al. 1988]. The advantage of having the programmer
involved is that the programmer can specify which parts of the program have to be
fault-tolerant, which can result in better performance. Our approach is simple, trans-
parent to the programmer, and efficient. We achieve these properties by restricting our
application domain to computationally intensive parallel programs that do not perform
I/O with the outside world. Although we are considering only a restricted domain, it
includes a large set of important applications.

Very little research has been published that compares different methods for
building fault-tolerant applications. Elnozahy, Johnson, and Zwaenepoel give perfor-
mance figures for different methods of making a consistent checkpoint [Elnozahy et al.
1992]. In this thesis, we compare two implementations of a fault-tolerant application:
one based on RPC and one based on group communication.

1.5. Experimental Environment: Amoeba
All the research contributions of this thesis have been implemented as part of the

Amoeba distributed operating system [Mullender 1985; Van Renesse 1989; Mullender
et al. 1990; Tanenbaum et al. 1990]. Amoeba is a true distributed system; to the user
the complete system looks like a single computer. Before describing how Amoeba
achieves this goal, it is useful to describe for which hardware configuration Amoeba
was designed, because it differs from what most companies and institutions currently
have.

The driving force behind the system architecture is the need to incorporate large
numbers of CPUs in a straightforward way. In other words, what do you do when you
can afford 10 or 100 CPUs per user? One solution is to give each user a personal 10-
node or 100-node multiprocessor. However, we do not believe this is an effective way
to spend the available budget. Most of the time, nearly all the processors will be idle,
which by itself is not so bad. However, some users will want to run massively parallel
programs, and will not be able to harness all the idle CPU cycles, because they are in
other users’ personal machines.

Instead of this personal multiprocessor approach, we believe that the processor
pool model, shown in Figure 1.5, is a better approach. In this model, all the computing
power is located in one or moreprocessor pools. Each processor pool consists of a
substantial number of CPUs, each with its own local memory and its own network con-

10 INTRODUCTION CHAP. 1

nection. At present, we have a prototype system operational, consisting of three stan-
dard 19-inch equipment racks, each holding 16 single board computers (MC68020 and
MC68030, with 3-4 Mbyte RAM per CPU), a number of Intel 386s, and a number of
Sun 3/60s. Each CPU has its own Ethernet connection. Our model does not assume
that any of the CPUs share physically memory, in order to make it possible to scale the
system. While it would be easy to build a 16-node shared memory multiprocessor, it
would not be easy to build a 1000-node shared memory multiprocessor. However, if
shared memory is present, it can be utilized to optimize message passing by just doing
memory-to-memory copying instead of sending messages over the LAN.

Processor Pool Workstations

Specialized Servers

(File, Data Base, etc)

WAN

Gateway

Fig. 1.5. The Amoeba System Architecture.

Pool processors are not ‘‘owned’’ by any one user. When a user types a com-
mand, the Amoeba system automatically and dynamically allocates one or more pro-
cessors for that command. When the command completes, the processors are released
and go back into the pool, waiting for the next command, which may be from a dif-
ferent user. If there is a shortage of pool processors, individual processors are
timeshared, with new jobs being assigned to the most lightly loaded CPUs. The impor-
tant point to note here is that this model is quite different from current systems in
which each user has exactly one personal workstation for all his computing activities.
The pool processor model is flexible, and provides for good sharing of resources.

The second element in the Amoeba architecture is the workstation. It is through
the workstation that the user accesses the system. Although Amoeba does not forbid
running user programs on the workstation, normally the only program that runs there is
the window manager. For this reason, X-terminals can also be used as workstations.

Another important component of the Amoeba configuration consists of special-
ized servers, such as file servers, which for hardware or software reasons need to run

SEC. 1.5 Experimental Environment: Amoeba 11

on a separate processor. Finally, we have the gateway, which interfaces to wide-area
networks and isolates Amoeba from the protocols and idiosyncrasies of the wide-area
networks in a transparent way.

Amoeba Microkernel
All the machines in Amoeba run the same microkernel. Amicrokernel is an

operating system kernel that contains only the basic operating system functionality. In
Amoeba it has four primary functions:

d Manage processes and threads.

d Provide low-level memory management support.

d Support communication.

d Handle low-level I/O.

Let us consider each of these functions in turn.
Like most operating systems, Amoeba supports the concept of a process. In

addition, Amoeba also supports multiple threads of control within a single address
space. A process with one thread is essentially the same as a process in theUNIX† sys-
tem. Such a process has a single address space, a set of registers, a program counter,
and a stack.

In contrast, although a process with multiple threads still has a single address
space shared by all threads, each thread logically has its own registers, its own program
counter, and its own stack. In effect, a collection of threads in a process is similar to a
collection of independent processes inUNIX, with the one exception that they all share
a single common address space.

A typical use for multiple threads might be in a file server, in which every
incoming request is assigned to a separate thread. That thread might begin processing
the request, then block waiting for the disk, then continue work. By splitting up the
server in multiple threads, each thread can be purely sequential, even if it has to block
waiting for I/O. Nevertheless, all the threads can, for example, have access to a single
shared software data cache. Threads can synchronize using semaphores or mutexes to
prevent two threads from accessing the shared cache simultaneously.

The second task of the kernel is to provide low-level memory management.
Threads can allocate and deallocate blocks of memory, calledsegments. These seg-
ments can be read and written, and can be mapped into and out of the address space of
the process to which the calling thread belongs. A process must have at least one seg-
ment, but it may have many more of them. Segments can be used for text, data, stack,
or any other purpose the process desires. The operating system does not enforce any
particular pattern on segment usage. Normally, users do not think in terms of seg-
ments, but this facility can be used by libraries or language run-time systems.

333333333333333
† UNIX is a Registered Trademark of AT&T.

12 INTRODUCTION CHAP. 1

The third job of the kernel is to handle interprocess communication. Two forms
of communication are provided: RPC communication and group communication.
Group communication is the main topic of this thesis.

Both the point-to-point message system and the group communication make use
of a specialized protocol called FLIP. This protocol is a network layer protocol, and
has been specifically designed to meet the needs of distributed computing. It deals
with both point-to-point communication and multicast communication on complex
internetworks. FLIP is another topic of this thesis.

The fourth function of the kernel is to manage low-level I/O. For each I/O dev-
ice attached to a machine, there is a device driver in the kernel. The driver manages all
I/O for the device. Drivers are linked with the kernel, and cannot be loaded dynami-
cally.

Amoeba Objects
Amoeba is organized as a collection of objects (essentially abstract data types),

each with some number of operations that processes can perform on it. Objects are
generally large, like files, rather than small, like integers, due to the overhead in access-
ing an object. Each object is managed by an object server process. Operations on an
object are performed by sending a message to the object’s server.

When an object is created, the server returns acapability to the process creating
it. The capability is used to address and protect the object. A typical capability is
shown in Figure 1.6. ThePort field identifies the server. TheObject field tells which
object is being referred to, since a server may manage thousands of objects. TheRights
field specifies which operations are allowed (e.g., a capability for a file may be read-
only). Since capabilities are managed in user space theCheckfield is needed to protect
them cryptographically, to prevent users from tampering with them.

Port Object Rights Check

Bits 48 24 8 48

Fig. 1.6. A typical capability.

The basic algorithm used to protect objects is as follows [Tanenbaum et al.
1986]. When an object is created, the server picks a randomCheckfield and stores it
both in the new capability and inside its own tables. All the rights bits in a new capa-
bility are initially on, and it is thisowner capabilitythat is returned to the client. When
the capability is sent back to the server in a request to perform an operation, theCheck
field is verified.

To create a restricted capability, a client can pass a capability back to the server,
along with a bit mask for the new rights. The server takes the originalCheck field
from its tables,EXCLUSIVE ORs it with the new rights (which must be a subset of the
rights in the capability), and then runs the result through a one-way function. Such a

SEC. 1.5 Experimental Environment: Amoeba 13

function, y = f(x), has the property that givenx it is easy to findy, but given onlyy,
finding x requires an exhaustive search of all possiblex values [Evans et al. 1974].

The server then creates a new capability, with the same value in theObject field,
but the new rights bits in theRights field and the output of the one-way function in the
Checkfield. The new capability is then returned to the caller. In this way, processes
can give other processes restricted access to their objects.

Summarizing, Amoeba’s hardware configuration is based on the processor pool
model. The software of Amoeba is organized as a microkernel and a collection of
objects. Each object can be transparently accessed through capabilities. Because
access to objects is location-independent, the user has the illusion that he is working on
a single computer, although the system is distributed over many processors.

1.6. Outline of the Thesis
This thesis is structured bottom-up (see Fig. 1.7). In the next chapter we will dis-

cuss the design and implementation of FLIP. We will first describe the requirements
that a protocol to support a distributed system must address. Then, we will introduce
FLIP and describe how it is used in Amoeba and what its performance is. Also, we
will evaluate how well it succeeds in meeting the requirements and compare it to other
work.

222
Parallel applications (Chapter 4)11 Fault-tolerant applications (Chapter 5)222

Group communication (Chapter 3)222
FLIP (Chapter 2)222

Hardware2221
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

Fig. 1.7. Structure of this thesis.

In Chapter 3 we will introduce a new abstraction for group communication.
Then we will discuss the design issues for group communication and which choices
have been made for Amoeba. The main part of this chapter is devoted to the protocols
that allow us to provide efficient, reliable, and total-ordered group communication. To
validate the efficiency of the protocols, we discuss the results of extensive performance
measurements. The last part of Chapter 3 discusses and compares our work with other
protocols.

Chapter 4 is the first of two chapters that are concerned with applications. In this
chapter we will look at parallel applications. We first discuss existing architectures for
parallel computing, and then introduce a hybrid form that is based on shared data-
objects, group communication, and compile-time analysis. To validate this new
software architecture, we discuss the implementation and performance of three parallel

14 INTRODUCTION CHAP. 1

applications, each with different communication needs. Like the previous chapters,
this chapter also ends with a discussion and comparison of related work.

Chapter 5 is the other chapter concerned with applications; its topic is fault-
tolerant applications. We will first look at how to make parallel applications fault-
tolerant. This is an interesting problem, because a compromise between two conflict-
ing goals is needed. The main goal of a parallel application is to achieve speedup by
using cycles of multiple processors and not to waste cycles on implementing fault toler-
ance. On the other hand, parallel applications tend to run for a long time and on many
processors, so there is a real chance that due to software or hardware problems one of
the processors fails, terminating the whole application unsuccessfully. In the first part
of Chapter 5, we will discuss a compromise for these conflicting goals, an implementa-
tion, and the performance costs.

The second part of Chapter 5 is devoted to more traditional fault-tolerant applica-
tions. The main idea is to show that for these applications group communication is a
better approach than RPC. We will do so by comparing a fault-tolerant directory ser-
vice based on group communication with one based on RPC. The service chosen
exemplifies the class of services that are made fault-tolerant by replicating data on
more than one processor and updating the copies consistently when data is changed.

In the last chapter we will summarize the main results of this thesis.

Notes
The introduction and Section 1.1 are partly based on [Van Renesse 1989; Bal et al.
1989b; Tanenbaum 1992]. The section describing Amoeba contains material from
the paper by Tanenbaum, Kaashoek, van Renesse, and Bal published inComputer

Communications[Tanenbaum et al. 1991].

SEC. 1.6 Outline of the Thesis 15

2

FAST LOCAL INTERNET PROTOCOL

Most network protocols are designed to support a reliable bit stream between a
single sender and a single receiver. For applications such as remote login sessions or
bulk file transfer these protocols are adequate. However, distributed operating systems
have special requirements such as achieving transparency, specific RPC semantics even
in the face of processor crashes, group communication, security, network management,
and wide-area networking. Furthermore, applications on distributed operating systems
often use a complex localinternetwork(a network of networks) of communication sub-
systems including Ethernets, high-speed multiprocessor buses, hypercubes, and optical
fibers. These kinds of communication are not well supported by protocols such as
TCP/IP, X.25, and OSI TP4.

As part of our ongoing research on the Amoeba distributed operating system, we
have designed, implemented, and evaluated a new internet protocol that, in many
respects, is better suited for distributed computing than existing protocols. This new
protocol, called FLIP (Fast Local Internet Protocol), is the subject of this chapter.

Although the ISO OSI protocols are not widely used, the OSI model is con-
venient for describing where functionality can be put in a protocol hierarchy [Zimmer-
man 1980]. In Figure 2.1, we show the OSI model, along with TCP/IP and FLIP proto-
col hierarchies. Very briefly, FLIP is a connectionless (datagram) protocol, roughly
analogous to IP, but with increased functionality and specifically designed to support a
high-performance RPC protocol rather than a byte-stream protocol like TCP or OSI
TP4.

The outline of the rest of this chapter is as follows. In Section 2.1 we will
describe the requirements that a distributed operating system places on the underlying
protocol. In Section 2.2 we will discuss the FLIP service definition; that is, what FLIP
provides. In Section 2.3 we will discuss the interface between FLIP and higher layers.
In Section 2.4 we will discuss the protocol itself. In Section 2.5 we will discuss how
FLIP is implemented. In Section 2.6 we present measurements of its performance. In

16

22
Level OSI TCP/IP FLIP22

7 Application User-defined User-defined

6 Presentation User-defined Amoeba Interface Language (AIL)

5 Session Not used RPC and Group communication

4 Transport TCP or UDP Not needed

3 Network IP FLIP

2 Data Link E.g., Ethernet E.g., Ethernet

1 Physical E.g., Coaxial cable E.g., Coaxial cable221
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 2.1. Layers of functionality in OSI, TCP/IP, and FLIP.

Section 2.7 we will compare it to related work. Finally, in Section 2.8 we will draw
our conclusions. Appendix A describes the protocol itself in detail.

2.1. Distributed System Requirements
Distributed systems place different requirements on the operating system than

traditional network systems do. Network systems run all of a user’s applications on a
single workstation. Workstations run a copy of the complete operating system; the
only thing that is shared is the file system. Applications are sequential; they make no
use of any available parallelism. In such an environment, file transfer and remote login
are the two basic applications that the communication mechanisms in the operating sys-
tem must support. In a distributed system the situation is radically different. A user
process may run anywhere in the system, to allow efficient sharing of computing
cycles. Applications are rewritten to take advantage of the available parallelism. For
example, distributed systems can provide a version of theUNIX makeprogram that
allows compilations to run in parallel. Other applications may be rewritten to provide
fault tolerance by using the redundancy of hardware. In such an environment file
transfer is only one of the many applications that depend on the communication
mechanisms provided by the operating system.

In this section, we will investigate the requirements for communication in a dis-
tributed system and outline the approach taken by FLIP. We identify six requirements:
transparency, remote procedure call, group communication, security, network manage-
ment, and wide-area networking. We discuss each of these requirements in turn. It
should be noted that many existing network and distributed systems meet all or a subset
of the requirements, but in this chapter we argue that the implementation of these sys-
tems can often be simplified by using a better network protocol.

SEC. 2.1 Distributed System Requirements 17

Transparency
An important goal for distributed systems, such as Amoeba [Tanenbaum et al.

1990; Mullender et al. 1990], Chorus [Rozier et al. 1988], Clouds [Dasgupta et al.
1991], Sprite [Ousterhout et al. 1988], and V [Cheriton 1988b], is transparency. Distri-
buted systems are built from a large number of processors connected by LANs, buses,
and other communication media. No matter where a process runs, it should be able to
communicate with any other process in the system using a single mechanism that is
independent of where the processes are located. The communication system must be
able to route messages along the ‘‘best’’ route from one process to another. For exam-
ple, if two processes can reach each other through a LAN and high-speed bus, the com-
munication system should use the bus. The users, however, should not have to specify
which route is taken.

Most communication protocols do not provide the transparency that is required
by applications running on a distributed system. Addresses in these protocols identify a
host machine instead of a process. Once a process is started on a machine, it is tied to
that machine. For example, if the process is migrated to another processor, the process
has to inform its communication partners that it has moved. To overcome such prob-
lems, distributed systems require that an address identifies aprocess, not ahost.

Remote Procedure Call (RPC)
Distributed operating systems are typically structured around the client-server

paradigm. In this model, a user process, called theclient, requests another user pro-
cess, called theserver, to perform some work for it by sending the server a message
and then blocking until the server sends back a reply. The communication mechanism
used to implement the client-server model is called RPC [Birrell and Nelson 1984].

The RPC abstraction lets the programmer think in terms of normal procedure
calls, which are well understood and have been around for a long time. This is in sharp
contrast with, for example, the ISO OSI model. In this model, communication is
treated as an input/output device, with user primitives for sending messages and getting
indications of message arrivals. Many people think that input/output should not be the
central abstraction of a modern programming language. Therefore, most distributed
system builders, language designers, and programmers prefer RPC.

Group Communication
Although RPC is a good abstraction for the request/reply type of communication,

there is a large body of applications that require a group of several processes to interact
closely. Group communication allows a message to be sent reliably from 1 sender ton
receivers. As discussed in Chapter 1, many applications can profit from such a com-
munication primitive and many networks provide mechanism to do broadcast or multi-
cast at the data-link layer.

One of the difficulties in making a protocol that allows user applications to use
the data-link broadcast or multicast capability of a network is routing. A group address

18 FAST LOCAL INTERNET PROTOCOL CHAP. 2

has to be mapped on one or more data-link addresses, possibly on different networks.
The protocol has to make sure that messages will not loop and that a minimum number
of messages are used to transmit user data to the group. Groups may change over time,
so routing tables have to be dynamically updated. Furthermore, to achieve good per-
formance, the routing protocol should use a data-link multicast address to send a mes-
sage to a number of receivers whenever possible.

Security
Although security cannot be provided by a communication protocol alone, a good

protocol can provide mechanisms to build a secure, yet efficient distributed system.
With current protocols, addresses can often be faked, making it possible for a process
to impersonate an important service. For example, in many systems a user process can
impersonate the file server once it knows the address of the file server (which is typi-
cally public knowledge). Most protocols do not provide any support for encryption of
data. Users must decide whether or not to use encryption. Once they have decided to
do so, they have to encrypt every message, even if both source and destination are
located in the same secure room. A protocol provides much better performance by
avoiding encryption if it knows a network is trusted, and using encryption if the net-
work is not trusted.

Network Management
In an environment with many processors and networks, it often happens that a

processor has to be taken down for maintenance or a network has to be reconfigured.
With current software, reconfiguring a network typically requires manual intervention
by a system administrator to assign new network numbers and to update the configura-
tion files. Furthermore, taking some machines down often introduces communication
failures for the rest of the machines. Ideally, a protocol makes it possible that network
management can be done without any manual intervention.

Wide-Area Networking
Most processes in a distributed system communicate with services that are

located nearby. For example, to read a file, users normally do an RPC with their local
file server and not with a file server in another domain on another continent. Although
communication with another domain must be possible, it should not introduce a perfor-
mance loss for the more common, local case.

Why a New Protocol?
None of the current protocols addresses the requirements for distributed systems

and applications adequately. The TCP and OSI protocols are connection-oriented and
require a setup before any message can be sent. In a distributed system, processes are
often short-lived and perform mostly small RPCs. In such an environment the time
spent in setting up a connection is wasted. Indeed, almost none of the current RPC

SEC. 2.1 Distributed System Requirements 19

implementations are based on connections. Although IP is a connectionless protocol, it
still has some serious disadvantages. Because addresses in IP identify hosts instead of
processes, systems based on IP are less transparent, making certain functionality, such
as network management, harder to implement.

To meet the distributed system requirements using IP, a new protocol was
invented for each subset of requirements. Protocols like ICMP, ARP, RARP, IGMP,
and VMTP are examples. A big advantage of this approach is that one can adjust to
new requirements without throwing away existing software. However, it is sometimes
better to start from scratch. FLIP addresses the requirements in a clean, simple, and
integrated way. The following FLIP properties allow us to achieve the requirements:

1. FLIP identifies entities with a location-independent 64-bit identifier. An
entity can, for example, be a process.

2. FLIP uses an one-way mapping between the ‘‘private’’ address, used to
register an endpoint of a network connection, and the ‘‘public’’ address
used to advertise the endpoint.

3. FLIP routes messages based on the 64-bit identifier.

4. FLIP discovers routes on demand.

5. FLIP uses a bit in the message header to request transmission of sensitive
messages across trusted networks.

In the next sections we will present FLIP, discuss our experience using it, and its
performance in the Amoeba distributed system. FLIP is the basis for all communica-
tion within Amoeba and is in day-to-day use.

2.2. Flip Service Definition
This section describes the services that FLIP delivers. Communication takes

place betweenNetwork Service Access Points(NSAPs), which are addressed by 64-bit
numbers. NSAPs are location-independent, and can move from one node to another
(possibly on different physical networks), taking their addresses with them. Nodes on
an internetwork can have more than one NSAP, typically one or more for each entity
(e.g., process). FLIP ensures that this is transparent to its users. FLIP messages are
transmitted unreliably between NSAPs and may be lost, damaged, or reordered. The
maximum size of a FLIP message is 232−1 bytes. As with many other protocols, if a
message is too large for a particular network, it will be fragmented into smaller chunks,
called fragments. A fragment typically fits in a single networkpacket. The reverse
operation, re-assembly, is (theoretically) possible, but receiving entities have to be able
to deal with fragmented messages.

The address space for NSAPs is subdivided into 256 56-bit address spaces,
requiring 64 bits in all. The null address is reserved as the broadcast address. In this
thesis we will define the semantics of only one of the address spaces, called thestan-

20 FAST LOCAL INTERNET PROTOCOL CHAP. 2

dard space, and leave the others undefined. Later these other address spaces may be
used to add additional services.

The entities choose their own NSAP addresses at random (i.e., stochastically)
from the standard space for four reasons. First, it makes it exceedingly improbable that
an address is already in use by another, independent NSAP, providing a very high pro-
bability of uniqueness. (The probability of two NSAPs generating the same address is
much lower than the probability of a person configuring two machines with the same
address by accident.) Second, if an entity crashes and restarts, it chooses a new NSAP
address, avoiding problems with distinguishing reincarnations (which, for example, is
needed to implement at-most-once RPC semantics). Third, forging an address is hard,
which, as we will see, is useful for security. Finally, an NSAP address is location-
independent, and a migrating entity can use the same address on a new processor as on
the old one.

Each physical machine is connected to the internetwork by aFLIP box. The
FLIP box can either be a software layer in the operating system of the host, or be run
on a separate communications processor. A FLIP box consists of several modules. An
example of a FLIP box is shown in Figure 2.2.

Host

Host interface

Packet switch

Network interfaces

Ethernet
Token

Ring

FLIP box

Fig. 2.2. A FLIP box consists of an host interface, packet switch, and network

interfaces.

The packet switchis the heart of the FLIP box. It transfers FLIP fragments in
packets between physical networks, and between the host and the networks. It main-
tains a dynamic hint cache mapping NSAP addresses on data-link addresses, called the

SEC. 2.2 Flip Service Definition 21

routing table, which it uses for routing fragments. As far as the packet switch is con-
cerned, the attached host is just another network. Thehost interfacemodule provides
the interface between the FLIP box and the attached host (if any). A FLIP box with
one physical network and an interface module can be viewed as a traditional network
interface. A FLIP box with more than one physical network and no interface module is
a router in the traditional sense.

2.3. The Host Interface
In principle, the interface between a host and a FLIP box can be independent of

the FLIP protocol, but for efficiency and simplicity, we have designed an interface that
is based on the FLIP protocol itself. The interface consists of seven downcalls (for out-
going traffic) and two upcalls (for incoming traffic), as shown in Figure 2.3.

222
Routine Description22
Flip3init(ident, receive, notdeliver)→ ifno Allocate an entry in the interface222
Flip3end(ifno) Close entry in the interface222
Flip3register(ifno, Private-Address)→ EP Listen to address222
Flip3unregister(ifno, EP) Remove address222
Flip3unicast(ifno, msg, flags, dst, EP, length) Send a message todst222
Flip3multicast(ifno, msg, flags, dst, EP, length, ndst) Send a multicast message222
Flip3broadcast(ifno, msg, EP, length, hopcnt) Broadcastmsghopcnt hops22
Receive(ident, fragment description) Fragment received222
Notdeliver(ident, fragment description) Undelivered fragment received2221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 2.3. Interface between host and packet switch. A fragment description

contains the data, destination and source, message identifier, offset, fragment

length, total length, and flags of a received fragment (see next section).

An entity allocates an entry in the interface by callingflip3init . The call allo-
cates an entry in a table and stores the pointers for the two upcalls in this table. Furth-
ermore, it stores an identifier used by higher layers. An allocated interface is removed
by calling flip3end.

By calling flip3register one or more times, an entity registers NSAP addresses
with the interface. An entity can register more than one address with the interface
(e.g., its own address to receive messages directed to the entity itself and the null
address to receive broadcast messages). The address specified, thePrivate-Address,is
not the (public) address that is used by another entity as the destination of a FLIP mes-

22 FAST LOCAL INTERNET PROTOCOL CHAP. 2

sage. However, public and private addresses are related using the following function
on the low-order 56 bits:

Public-Address = One-Way-Encryption(Private-Address)

The One-Way-Encryption function generates the Public-Address from the Private-
Address in such a way that one cannot deduce the Private-Address from the Public-
Address. Entities that know the (public) address of an NSAP (because they have com-
municated with it) are not able to receive messages on that address, because they do not
know the corresponding private address. Because of the special function of the null
address, the following property is needed:

One-Way-Encryption(Address) = 0 if and only if Address = 0

This function is currently defined using DES [National Bureau of Standards 1977]. If
the 56 lower bits of the Private-Address are null, the Public-Address is defined to be
null as well. The null address is used for broadcasting, and need not be encrypted.
Otherwise, the 56 lower bits of the Private-Address are used as a DES key to encrypt a
64-bit null block. If the result happens to be null, the result is again encrypted, effec-
tively swapping the result of the encrypted null address with the encrypted address that
results in the null address. The remaining 8 bits of the Private-Address, concatenated
with the 56 lower bits of the result, form the Public-Address.

Flip3register encrypts a Private-Address and stores the corresponding Public-
Address in the routing table of the packet switch. A special flag in the entry of the
routing table signifies that the address is local, and may not be removed (as we will see
in Section 2.4). A small EP-identifier (End Point Identifier) for the entry is returned.
Calling flip3unregisterremoves the specified entry from the routing table.

There are three calls to send an arbitrary-length message to a Public-Address.
They differ in the number of destinations to whichmsg is sent. None of them guaran-
tee delivery. Flip3unicast tries to send a message point-to-point to one NSAP.
Flip3multicast tries to send a message to at leastndst NSAPs. Flip3broadcasttries to
send a message to all NSAPs within a virtual distancehopcnt.If a message is passed to
the interface, the interface first checks if the destination address is present in the rout-
ing table and if it thinks enough NSAPs are listening to the destination address. If so,
the interface prepends a FLIP header to the message and sends it off. Otherwise, the
interface tries to locate the destination address by broadcasting aLOCATE message, as
explained in the next section. If sufficient NSAPs have responded to theLOCATE mes-
sage, the message is sent away. If not, the upcallnotdeliverwill be called to inform the
entity that the destination could not be located. When calling one of the send routines,
an entity can also set a bit inflags that specifies that the destination address should be
located, even if it is in the routing table. This can be useful, for example, if the RPC
layer already knows that the destination NSAP has moved. Using theflags parameter
the user can also specify that security is necessary.

SEC. 2.3 The Host Interface 23

When a fragment of a message arrives at the interface, it is passed to the
appropriate entity using the upcallreceive.

This interface delivers the bare bones services that are needed to build higher-
level protocols, such as RPC. Given the current low error-rates of networks, we
decided not to guarantee reliable communication at the network level, to avoid duplica-
tion of work at higher levels [Saltzer et al. 1984]. Higher-level protocols, such as RPC,
send acknowledgement messages anyway, so given the fact that networks are very reli-
able it is a waste of bandwidth to send acknowledgement messages at the FLIP level as
well. Furthermore, users will never call the interface directly, but use RPC or group
communication.

2.4. The Flip Protocol
A FLIP box implements unreliable message communication between NSAPs by

exchanging FLIP fragments and by updating the routing table when a fragment arrives.
In this section, we will describe the layout of a FLIP fragment and tell how the routing
table is managed.

2.4.1. The FLIP Fragment Format
Similar to fragments in many other protocols, a FLIP fragment is made up of two

parts: the FLIP header and the data. The general format of a FLIP header is depicted in
Figure 2.4. A header consists of a 40-byte fixed part and a variable part. The fixed part
of the header contains general information about the fragment. TheActual Hop Count
contains the weight of the path from the source. It is incremented at each FLIP box
with the weight of the network over which the fragment will be routed. If theActual
Hop Countexceeds theMaximum Hop Count, the fragment will be discarded. The
Reserved(Res.) field is reserved for future use.

7 6 5 4 3 2 1 0

Max HopCnt Actual HopCnt Res. Flags Type Vers.

0 Destination Address

0 Source Address

Length Message Identifier

Total Length Offset

Variable Part

Fig. 2.4. General format of a FLIP fragment.

24 FAST LOCAL INTERNET PROTOCOL CHAP. 2

The Flags field contains administrative information about the fragment (see
Fig. 2.5). Bits 0, 1, and 2 are specified by the sender. If bit 0 is set inFlags, the integer
fields (hop counts, lengths, Message Identifier, Offset) are encoded in big endian (most
significant byte first), otherwise in little endian [Cohen 1981]. If bit 1 is set inFlags,
there is an additional section right after the header. ThisVariable Partcontainsparam-
etersthat may be used as hints to improve routing, end-to-end flow control, encryption,
or other, but is never necessary for the correct working of the protocol. Bit 2 indicates
that the fragment must not be routed over untrusted networks. If fragments only travel
over trusted networks, the contents need not be encrypted. Each system administrator
can switch his own network interfaces from trusted to untrusted or the other way
around.

222
Bit Name Cleared Set22
0 Endian Little endian Big endian222
1 Variable Part Absent Present222
2 Security Not required Don’t route over untrusted networks222
3 Reserved22
4 Unreachable Location unknown Can’t route over trusted networks only222
5 Unsafe Safe Routed over untrusted network(s)222
6 Reserved222
7 Reserved2221

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 2.5. Bits (4 input and 4 output) in theFlags field.

Bits 4 and 5 are set by the FLIP boxes (but never cleared). Bit 4 is set if a frag-
ment that is not to be routed over untrusted networks (bit 2 is set) is returned because
no trusted network was available for transmission. Bit 5 is set if a fragment was routed
over an untrusted network (this can only happen if theSecuritybit, bit 2, was not set).
Using bits 2, 4, and 5 in theFlags field, FLIP can efficiently send messages over
trusted networks, because it knows that encryption of messages is not needed.

The Type field in the FLIP header describes which of the (six) messages types
this is (see below). TheVersion field describes the version of the FLIP protocol; the
version described here is 1. TheDestination Addressand theSource Addressare
addresses from the standard space and identify, respectively, the destination and source
NSAPs. The null Destination Addressis the broadcast address; it maps to all
addresses. TheLengthfield describes the total length in bytes of the fragment exclud-

SEC. 2.4 The Flip Protocol 25

ing the FLIP header. TheMessage Identifieris used to keep multiple fragments of a
message together, as well as to identify retransmissions if necessary.Total Lengthis
the total length in bytes of the message of which this fragment is a part, withOffsetthe
byte offset in the message. If the message fits in a single fragment,Total length is
equal toLengthandOffsetis equal to zero.

TheVariable Partconsists of the number of bytes in theVariable Partand a list
of parameters. The parameters are coded as byte (octet) strings as follows:

Bytes 0 1 2 … Size+122
Code Size2211

1
11
1

11
1

11
1

11
1

11
1

The (nonzero)Codefield gives the type of the parameter. TheSizefield gives the size
of the data in this parameter. Parameters are concatenated to form the completeVari-
able Part. The total length of theVariable Part must be a multiple of four bytes, if
necessary by padding with null bytes.

2.4.2. The FLIP Routing Protocol
The basic function of the FLIP protocol is to route an arbitrary-length message

from the source NSAP to the destination NSAP. In an internetwork, destinations are
reachable through any one of several routes. Some of these routes may be more desir-
able than others. For example, some of them may be faster, or more secure, than oth-
ers. To be able to select a route, each FLIP box has information about the networks it
is connected to.

In the current implementation of FLIP, the routing information of each network
connected to the FLIP box is coded in anetwork weightand asecure flag. A low net-
work weight means that the network is desirable to forward a fragment on. The net-
work weight can be based, for example, on the physical properties of the network such
as bandwidth and delay. Each time a fragment makes a hop from one FLIP box to
another FLIP box itsActual Hop Count† is increased with the weight of the network
over which it is routed (or it is discarded if itsActual Hop Countbecomes greater than
its Maximum Hop Count). A more sophisticated network weight can be based on the
type of the fragment, which may be described in theVariable Partof the header. The
secureflag indicates whether sensitive data can be sent unencrypted over the network
or not.

At each FLIP box a message is routed using information stored in the routing
table. The routing table is a cache of hints of the form:

(Address, Network, Location, Hop Count, Trusted, Age, Local)

333333333333333
† Hop Countis a misnomer, but it is maintained for historical reasons.

26 FAST LOCAL INTERNET PROTOCOL CHAP. 2

Addressidentifies one or more NSAPs.Network is the hardware-dependent network
interface on whichAddresscan be reached (e.g., Ethernet interface).Location is the
data-link address of the next hop (e.g., the Ethernet address of the next hop).Hop
Count is the weight of the route toAddress. Trusted indicates whether this is a secure
route towards the destination, that is, sensitive data can be transmitted unencrypted.
Age gives the age of the tuple, which is periodically increased by the FLIP box. Each
time a fragment fromAddressis received, theAge field is set to 0. Local indicates if
the address is registered locally by the host interface. If theAgefield reaches a certain
value and the address is not local, the entry is removed. This allows the routing table to
forget routes and to accommodate network topology changes. TheAge field is also
used to decide which entries can be purged, if the routing table fills up.

The FLIP protocol makes it possible for routing tables to automatically adapt to
changes in the network topology. The protocol is based on six message types (see
Fig. 2.6). The precise protocol is given in Appendix A; here we will give a short
description. If a host wants to send a message to a FLIP address that is not in its rout-
ing table, it tries to locate the destination by broadcasting aLOCATE message†.
LOCATE messages are propagated to all FLIP boxes until theActual Hop Count
becomes larger than theMaximum Hop Count. If a FLIP box has the destination
address in its routing table, it sends back anHEREIS message in response to the
LOCATE. User data is transmitted inUNIDATA or in MULTIDATA messages.UNIDATA

messages are used for point-to-point communication and are forwarded through one
route to the destination.MULTIDATA messages are used for multicast communication
and are forwarded through routes to all the destinations. If a network supports a multi-
cast facility, FLIP will send one message for all destinations that are located on the
same network. Otherwise, it will make a copy for each location in the routing table and
send point-to-point messages.

If a FLIP box receives aUNIDATA message with an unknown destination, it turns
the message into aNOTHERE message and sends it back to the source. If a FLIP box
receives aUNIDATA message that cannot be routed over untrusted networks (as indi-
cated by theSecuritybit), and that cannot be routed over trusted networks, it turns the
message into anUNTRUSTED message and sends it back to the source just like aNOT-

HERE message. Moreover, it sets theUnreachablebit in the message (regardless of its
current value). For a message of any other type, including aMULTIDATA message, if
the Securitybit is set, and the message cannot be routed over trusted networks, it is
simply dropped. If, for aNOTHEREor anUNTRUSTED message, a FLIP box on the way
back knows an alternative route, it turns the message back into aUNIDATA message and
sends it along the alternative route. If, for aNOTHEREmessage, no FLIP box knows an

333333333333333
† We assume that a network has a broadcast facility. For networks that do not have such a facility, we
are considering adding a name server.

SEC. 2.4 The Flip Protocol 27

22
Type Function22
LOCATE Find network location of NSAP22
HEREIS Reply onLOCATE22
UNIDATA Send a fragment point-to-point22
MULTIDATA Multicast a fragment22
NOTHERE Destination NSAP is unknown22
UNTRUSTED Destination NSAP cannot be reached over trusted networks2211
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 2.6. FLIP message types.

alternative route, the message is returned to the source NSAP and each FLIP box
removes information about this route from the routing table.

LOCATE messages must be used with care. They should be started with aMax-
imum Hop Countof one, and incremented each time a new locate is done. This limits
the volume of broadcasts needed to locate the destination. Even though the hop counts
are a powerful mechanism for locating a destination and for finding the best route, if
routing tables become inconsistent,LOCATE messages may flood the internetwork (e.g.,
if a loop exists in the information stored in the routing tables in the internetwork). To
avoid this situation, each FLIP box maintains, in addition to its routing table, a cache of
(Source Address, Message Identifier, Offset, Destination Network, Location) tuples,
with a standard timeout on each entry. For each received broadcast message, after
updating the routing table, it checks whether the tuple is already in the cache. If not, it
is stored there. Otherwise, the timeout is reset and the message is discarded. This
avoids broadcast messages flooding the network if there is a loop in the network topol-
ogy.

To illustrate how the FLIP box works, let us look at an example of how the RPC
layer sends a point-to-point message to another process in the network topology dep-
icted in Figure 2.7. The topology consists of three machines. It is not very realistic, but
it allows us to explain some important properties of FLIP using a simple internetwork.
When a FLIP box boots, it reads information about its configuration from a table (i.e.,
the type of networks it is connected to and information about these networks, such as
the maximum packet size). This information tells the machine how many interfaces it
has, the type of the interfaces, and some network dependent information, such as the
weight of the network and whether the network has a multicast facility. After a FLIP
box is initialized, it starts running with an empty routing table.

The example network topology contains two network types: a VME-bus and an
Ethernet. Because a VME-bus is faster than an Ethernet, the weight given to the

28 FAST LOCAL INTERNET PROTOCOL CHAP. 2

VME-bus is lower than the weight given to the Ethernet. Every FLIP box is reachable
from another host through different routes. There is, for example, a path of weight 1
from A to B, but also a path of weight 4 (fromA to C over the Ethernet and then fromC
to B over the VME-bus).

A B C
VME-bus

1

VME-bus

1

Ethernet 3

Fig. 2.7. An example network topology. FLIP boxA and C both have two

network interfaces: one for the VME-bus and one for the Ethernet. FLIP box

B has 3 network interfaces: two to the VME-bus and one to the Ethernet. The

VME-bus has weight 1 and the Ethernet has weight 3.

Let us now consider the case that the RPC layer sends a message from process
P1 on host A to processP2 running on hostB. When both processes start, the RPC
layers register the FLIP addresses for the processes with their own FLIP box. The RPC
layer of P1 sends a message by callingflip3unicast with the public address ofP2 as
the destination address (we assume thatP1 knows the public address ofP2). Because
the address ofP2 is not initially present in the routing table ofA, A buffers the message
and starts to locateP2 by sending aLOCATE message withMax Hop Countset to 1.
A’s FLIP box will forward this message on the VME-bus, but not on the Ethernet,
because to forward a message across the Ethernet theMaximum Hop Countmust be at
least 3. When theLOCATE message arrives atB, the FLIP address ofP1 will be entered
in B’s routing table along with the weight of the route toP1, the VME-bus address of
A, and the network interface on whichA is reachable. Because the public address of
P2 is registered withB’s routing table,B will return anHEREIS message. When the
HEREISmessage arrives atA, A entersP2’s public address in its routing table and sends
the message that is waiting to be sent toP2. Lower layers in the FLIP box will cut the
message in fragments, if necessary.B receives the message forP2 from the VME-bus
and will forward it to the RPC layer ofP2 by calling receive. From now on, the routes
to bothP1 andP2 are known toA andB, so they can exchange messages without hav-
ing to locate each other.

Now, assume thatP2 migrates to hostC. The RPC layer unregisters the address
at hostB and registers it at hostC. Thus,P2 has removed its address fromB’s routing
table and has registered it with C’s routing table. The next FLIPUNIDATA message of
a message that arrives atB from A, will be returned toA as a FLIPNOTHERE message,
because the address ofP2 is not present inB’s routing table. WhenA receives the
NOTHERE message, it will invalidate the route toP2. As A does not know an alterna-
tive route with the same or less weight toP2, it will pass theNOTHERE message to the
interface. The interface forwards the message toP1’s RPC layer by callingnotdeliver.

SEC. 2.4 The Flip Protocol 29

P1’s RPC layer can now retransmit the message by callingflip3unicast again. As the
route toP2 has been invalidated, the interface will buffer the message and start by
locatingP2 with Max Hop Countset to 1. After a timeout it will locate withMax Hop
Countset to 2. Then, it will find a route toP2: a hop across the VME-bus toB and
another hop across the VME-bus fromB to C. It will enter this new route with weight
2 in its routing table and forward the message across the VME-bus toB. When B
receives the message, it will forward the message toC. From then on,P1 andP2 can
exchange messages without locating each other again.

If the topology changes and, for example,A is disconnected from the VME-bus,
the route toP2 in A’s routing table will be removed after a period of time, because no
messages will arrive via the VME-bus and therefore the age field of the entry in the
routing table will reach the value that causes it to be removed. IfP1 then tries to send
a message toP2, the interface will again start by locatingP2’s public address. This
time it will find a route with weight 3; one hop across the Ethernet. IfP1 sends a new
message before the route toP2 is purged fromA’s routing table, A will forward the
message across the VME-bus and the message will be lost (assuming that the driver for
the VME-bus does not return any error). In this case, the RPC layer has to tell the
interface explicitly (using theflagsparameter of flip3unicast) to purge the routing table
entry. It does this, for example, if it did not receive an acknowledgement after a
number of retrials.

Finally, assume that instead ofA, B is disconnected from the VME-bus. A will
first use its route with weight 2 and send the message to B across the VME-bus. If B
does not know yet that the route over the VME-bus to C disappeared, it will forward
the message over the VME-bus and the message will be lost. Otherwise, it will send
the message as aNOTHERE message back to A, because theMax Hop Countis set byA
to 2. In both cases,A will send the message toC using the Ethernet, possibly after
doing another locate.

2.5. Using Flip under Amoeba
FLIP is the basis for all communication within the Amoeba distributed system.

The configuration at the Vrije Universiteit is depicted in Figure 2.8. The pool proces-
sors, the I80486 router, and the specialized servers run the Amoeba kernel (see
Fig. 2.9). The workstations and the SPARC router run either Amoeba or a version of
UNIX containing a FLIP driver, so UNIX and Amoeba processes can communicate
transparently. All the 70 machines are connected through 3 Ethernets and the proces-
sors in the MC68030 pool are also connected by VME-buses. We also implemented
FLIP across TCP/IP and UDP/IP, so that we can use TCP/IP connections as a data link.
This implementation is the basis for a small scale WAN project that connects multiple
sites in The Netherlands, and has been tested across the Atlantic as well. We will now
describe how FLIP meets each of the distributed system requirements listed in Section
2.1.

30 FAST LOCAL INTERNET PROTOCOL CHAP. 2

Processor pool

MC68030

I80386

Specialized Servers

FLIP router

I80486

FLIP router

SPARC
SPARCs

Workstations

Staff

network

Student

network

Fig. 2.8. The FLIP internetwork at the Vrije Universiteit. It contains three dif-

ferent machine architectures with different endianness and two types of net-

works: Ethernet and VME-buses. On average ten people are using the

Amoeba system every day to develop system software, and distributed and

parallel applications.

Transparency
The primary goal of Amoeba is to build a transparent distributed operating sys-

tem (see Section 1.5). To the average user, Amoeba looks like a traditional timesharing
system. The difference is that each command typed by the user makes use of multiple
machines spread around the network. The machines include process servers, file
servers, directory servers, compute servers, and others, but the user is not aware of any
of this. At the terminal, it just looks like an ordinary time sharing system.

To achieve this degree of transparency a two level naming scheme is used: capa-

SEC. 2.5 Using Flip under Amoeba 31

Group communication RPC

FLIP interface

FLIP packet switch

Ethernet Shared Memory

Fig. 2.9. Communication layers in the Amoeba kernel for a pool processor.

bilities and FLIP addresses. Each object (e.g., a file) is named with a capability. Asso-
ciated with each object type is a service (a single process or a group of processes) that
manages the object. When a client wants to perform an operation on an object, it sends
a request message to the service that manages the object. The service is addressed by
the port, which is part of the capability. In short, capabilities are persistent names that
identify objects.

To make capabilities easy to use, users can register them with thedirectory ser-
vice. The directory allows users to register capabilities under an ASCII string. Furth-
ermore, it implements a UNIX-like access protection scheme. Details about the imple-
mentation and functionality of the directory service can be found in Chapter 5.

Within the kernel, ports are mapped onto one or more FLIP addresses, one for
each server. When a client wants to perform an operation on an object, it provides the
kernel with the capability of the object. The kernel extracts the port from the capability
and looks in its port cache for a FLIP address that listens to the port. Using the FLIP
address, the kernel sends messages, relying on the FLIP box to deliver the messages to
the right location. If there is no mapping from port to FLIP address in the cache, the
kernel usesflip3broadcastto locate the port. The FLIP addresses of the responders to
the LOCATE request are stored with the port in the port cache to avoid future locates.
This locate procedure has the important side effect that at the same time the FLIP
boxes build up their routing tables, so a second locate at the FLIP level is avoided. In
the common case that networks do not change rapidly and processes migrate infre-
quently, noLOCATE messages are sent.

At-Most-Once RPC
The RPC layer in the Amoeba kernel provides an interface for at-most-once

RPC, so when the RPC returns the invoker knows whether (1) it was executed exactly
once, or (2) it was not executed at all, or (3) it arrived at one server before contact was
lost due to communication errors or a crash. One of the problems in achieving at-

32 FAST LOCAL INTERNET PROTOCOL CHAP. 2

most-once semantics is deciding whether a new incoming request has been executed or
not. With FLIP, this problem is easily solved. Each time a server is started, the server
chooses a new FLIP address. Thus, all requests sent to a crashed server will fail
automatically, because the old FLIP address is unknown. During one incarnation of the
server, the server can decide, based on sequence numbers in the message, whether the
request was executed or not.

Our implementation of RPC is very similar to Birrell and Nelson’s [Birrell and
Nelson 1984], except for two important differences. First, because FLIP addresses are
64-bit large and location-independent, our implementation has no need for a unique
identifier; the FLIP address is the unique identifier. Second, our implementation does
not use the next request as an acknowledgement for the last reply. Instead, our imple-
mentation sends an explicit acknowledgement when the reply is received. This simpli-
fies the implementation of the RPC layer. Furthermore, sending the acknowledgement
is not in the critical path of an RPC (see the next section).

Group Communication
The group communication is based on the protocols described in the next

chapter. It provides a primitive to send a message to a group of processes reliably.
Furthermore, this primitive guarantees that all broadcast messages within a group are
totally-ordered. The group communication protocols make heavy use offlip3multicast.
This has the advantage that a group ofn processes can be addressed using one FLIP
address, even if they are located on multiple networks.

As explained in Section 2.4.2, we treat the ability of a network to send multicast
messages as an optimization over sendingn separate point-to-point messages. If the
FLIP box discovers that a FLIP address is routed ton locations on the same network, it
asks the network dependent layer to return a multicast address for then locations. It is
then up to the network layer to create such a multicast address and to make sure that the
n locations will listen to it. After the network layer has done so, it returns to the packet
switch a multicast address and a list of locations that listen to the multicast address.
From then on, the packet switch can use the multicast address. The implementation of
the Ethernet layer does this as soon as the FLIP box maps an address onto two locations
on the same Ethernet.

Thus, the FLIP protocol does all the routing of multicast messages, and recog-
nizes when a data-link multicast could be used to reduce the number of messages.
Once it recognizes the possibility of optimization, it leaves it up to a network depen-
dent layer to perform it. The reason that FLIP itself cannot perform the optimization is
that FLIP does not know about the data-link addresses for multicast.

SEC. 2.5 Using Flip under Amoeba 33

Security
Security in Amoeba is implemented using the FLIP support for security.

Although FLIP does not encrypt messages itself, it provides two mechanisms for sup-
porting security. First, messages can be marked sensitive by the sender (using the
Securitybit), so that they will not be routed over untrusted networks. Second, mes-
sages going through FLIP may be marked unsafe (using theUnsafebit), so that the
receiver can tell whether or not there is a safe route to the sender. If, based on this
information, a process thinks there is a safe route to the destination, it can try to send
sensitive messages unencrypted, but with theSecurity bit set. If this message is
bounced with theUnreachablebit set, no trusted path exists after all. This can only
happen due to configuration changes. The process can then encrypt the message, and
retransmit it with theSecuritybit cleared.

Our implementation of secure RPC is in an experimental phase and is not yet in
day to day use; we are still studying how to do secure group communication. Like
many secure systems, Amoeba’s secure RPCs are based on a shared key between the
client and the server and its implementation is roughly similar to Birrell’s [Birrell
1985]. The main difference is that our implementation uses FLIP’s knowledge about
trusted and untrusted networks. The Amoeba processor pools and specialized servers
are located in one single room and together form a trusted network. Thus, all commun-
ication between processes in the processor pool and, for example, the file service does
not have to be encrypted. However, as soon as a FLIP message leaves this network, it
is guaranteed to be encrypted (if it is part of a secure RPC). This encryption is trans-
parent to the user. Our expectation is that we can build a complete secure system with
acceptable performance, because the common case does not require encryption. Furth-
ermore, it is not necessary that all processors be equipped with encryption hardware.

Network Management
Little network management is required in Amoeba. FLIP can deal automatically

with network changes: we add machines, networks, or reconfigure our systems just by
plugging or unplugging cables. When a machine comes up, it does not have to send out
ARP or RARP requests and wait until a server responds; instead it can be used as soon
as it is plugged into the network.

The only network management that is required has to do with trusted and
untrusted networks. FLIP relies on the system administrator to mark a network inter-
face as ‘‘trusted’’ or ‘‘untrusted,’’ because FLIP itself cannot determine if a network
can be considered trusted. In our implementation only the system administrator can
toggle this property.

34 FAST LOCAL INTERNET PROTOCOL CHAP. 2

Wide-Area Communication
Although FLIP has been used successfully in small WANs, it does not scale well

enough to be used as the WAN communication protocol in a large WAN. Addresses
form a flat name space that is not large enough to address all the machines in the world
and still ‘‘guarantee’’ uniqueness. Furthermore, the way FLIP uses broadcast makes it
less suitable for a WAN. We traded scalability for functionality. Moreover, we
believe that WAN communication should not be done at the network layer, but at a
higher layer in the protocol hierarchy.

There are three reasons for doing so. First, most communication is local within
one domain†. Thus, we decided we did not want to give up on flexibility and perfor-
mance, just because a message could go to a remote domain.

A second reason to make a distinction between a local and remote domain is that
protocols on a WAN link differ from protocols used in a distributed system. WAN
links are mostly owned by phone companies that are not interested in fast RPCs. Furth-
ermore, different protocols on WANs are used to cope with the higher error rates and
the lower bandwidth of WAN links. Thus, making a protocol suitable for WAN com-
munication at the network layer could very well turn out to be a bad design decision,
because at the boundary of a domain the messages may have to be converted to the pro-
tocols that are used on the WAN link.

The third reason has to do with administration of domains. WAN communica-
tion typically costs more money than communicating across a LAN. Transparently
paying large amounts of money is unacceptable for most people. Furthermore, even if
there is no boundary at the network layer, there is still a logical boundary. Administra-
tors control domains independently and they like to have control over what traffic is
leaving and entering their domain. An administrator might want to keep ‘‘dangerous
messages’’ out of his domain. If communication is transparent at the network layer,
this is hard to achieve, as recently demonstrated by the worm on the Internet [Spafford
1989].

In the Amoeba system we have implemented WAN communication above the
RPC layer [Van Renesse et al. 1987]. If a client wants to access a service in another
domain, it does an RPC to aserver agentin its domain. The server agent sends the
RPC to the WAN server, which forwards the RPC to the WAN service in the server’s
domain using the appropriate protocol for the WAN link. The WAN service in the
server’s domain creates aclient agentthat executes the same RPC and it will find the
server.

333333333333333
† Measurements taken at our department show that 80% of all IP messages are destined for a host on the
same network, 12% stay within the department, and that 8% are destined for some other IP site.

SEC. 2.5 Using Flip under Amoeba 35

2.6. Performance of FLIP
An important measure of success for any protocol is its performance. We have

compared the performance of Amoeba 5.0 RPC (with FLIP) with Amoeba 4.0 RPC
(pre-FLIP version) and with other RPC implementations on identical hardware. The
delay was measured by performing 10,000 0-byte RPCs. The throughput was meas-
ured by sending maximum-size RPCs. In Amoeba 4.0 this is measured by sending
30,000-byte RPCs; in Amoeba 5.0 this is measured by sending 100,000-byte RPCs
(which is still smaller than the maximum possible size); in SunOS using 8-Kbyte
RPCs; in Sprite using 16-Kbyte RPCs; and in Peregrine using 48,000-byte RPCs. To
make direct comparisons possible we also measured Amoeba 5.0 RPC with the sizes
used for the other systems. All measurements were made on Sun 3/60s connected by
an almost quiet 10-Mbit/s Ethernet.

The first row in the table in Figure 2.10 gives the performance of RPC using the
protocols in Amoeba 4.0. The second row in the table gives the performance for the
new RPC implementation on top of FLIP. The delay in Amoeba 4.0 is lower than in
Amoeba 5.0, because Amoeba 4.0 RPC is implemented over bare Ethernet and requires
all machines in a domain to be on one network, so it does not have to do routing and the
implementation can be tuned for the case of one network interface. In spite of the over-
head for routing, the throughput in Amoeba 5.0 is 30% higher, largely because Amoeba
4.0 uses a stop-and-wait protocol, while Amoeba 5.0 uses a blast protocol [Zwaenepoel
1985] to send large messages. This enables user processes in Amoeba 5.0 RPC to get
87% of the total physical bandwidth of an Ethernet (the FLIP and RPC protocols
including headers use 90% of the total bandwidth).

222
Maximum Amoeba 5.0

RPC implementation Delay (msec)
Bandwidth (Kbyte/s) Bandwidth (Kbyte/s)22

Amoeba 4.0 RPC 1.1 814 993222
Amoeba 5.0 RPC (FLIP) 2.1 1061 1061222
Sprite RPC 2.0 820 884222
Sun RPC 6.7 325 755222
Peregrine RPC 0.6 1139 10012221
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 2.10. Performance numbers for different RPC implementations on Sun

3/60s. The Sprite numbers are measured from kernel to kernel. The others are

measured from user to user. The fourth column gives the bandwidth for

Amoeba 5.0 RPC using the data size for the system measured in each row.

36 FAST LOCAL INTERNET PROTOCOL CHAP. 2

For comparison, the delay of a 0-byte RPC in SunOS is 6.7 msec and the
bandwidth for an 8-Kbyte RPC is 325 Kbyte/s (the maximum RPC size for SunOS is 8
Kbyte). This is due to the fact that SunOS copies each message several times before it
is given to the network driver, due to its implementation on UDP/IP, and due to the
higher cost for context switching. In Sprite, the delay is 2.0 msec and the maximum
throughput is 821 Kbyte/s (these numbers are measured kernel to kernel). Although
Sprite’s kernel-to-kernel RPC does not do routing, the delay of the null RPC is almost
the same as the delay for Amoeba 5.0, while Amoeba’s delay is measured user-to-user.
Sprite also uses a blast protocol for large messages, but its throughput is still less than
the throughput achieved by Amoeba 5.0. This can be explained by the fact that
Amoeba keeps its buffer contiguously in memory and that it has a much better context
switching time [Douglis et al. 1991].

Compared to Peregrine’s RPC [Johnson and Zwaenepoel 1991], Amoeba’s delay
for a 0-byte RPC is high and Amoeba’s maximum throughput is low. Peregrine
achieves on identical hardware a delay of 589µsec and a bandwidth of 1139 Kbyte/s.
Peregrine’s performance for the null RPC is only 289µsec above the minimum possi-
ble hardware latency. Peregrine achieves this performance by directly remapping the
Ethernet receive buffer in the server machine to become the new thread’s stack and by
using preallocated and initialized message headers. Furthermore, Peregrine uses a
two-message RPC protocol, while Amoeba is using a three-message RPC protocol,
although the third message is only partly in the critical path. Peregrine achieves a high
throughput by overlapping the copying of data from a packet with the transmission of
the next packet. The last packet is, like the single-packet case, directly remapped,
avoiding the copying of data. We believe that we can apply many of Peregrine’s
optimizations in Amoeba, which will probably result in a similar performance as
Peregrine’s. For more performance numbers on these and other RPC implementations
see [Tanenbaum et al. 1990]. Thus, in addition to providing more functionality, FLIP
makes it also possible to achieve very good performance.

To determine the overhead in FLIP, we measured the time spent in each layer
during a null RPC (see Fig. 2.11). The overhead due to FLIP is 21% of the total delay
for a null RPC. From the numbers given one can also compute what the costs are if the
server and client were located on different networks. Each additional hop over another
Ethernet increases the delay of a null RPC by 975µsecs.

Detailed performance figures for group communication are given in the next
chapter.

2.7. Discussion and Comparison
Many communication protocols have been introduced in the last decade. Some

of them are accepted as official standards or are used by a large user community, such
as X.25 [Zimmerman 1980] and IP; others are tailored to specific applications, such as
the Express Transfer Protocol (XTP) [Saunders and Weaver 1990]. In a distributed

SEC. 2.7 Discussion and Comparison 37

Stubs
RPC
FLIP
Ethernet

Ethernet
FLIP
RPC
FLIP
Ethernet
RPC
Stubs

Client

Ethernet
FLIP
RPC
stubs
do operation
stubs
RPC
FLIP
Ethernet

Server

Request

Reply

Ack

(a)

2222222222222222222222
Layer Time (µsec)22
User 1002222222222222222222222
RPC 8402222222222222222222222
FLIP 4502222222222222222222222
Ethernet 75022222222222222222222221
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

(b)

Fig. 2.11. (a) The Amoeba RPC protocol and (b) the time spent in the critical

path of each layer for a null RPC. The RPC protocol for a small RPC uses

three messages: 1) a request message from the client to the server; 2) a reply

message that acknowledges the request and unblocks the client; 3) an ack-

nowledgement for the reply, so that the server can clean up its state. The ack-

nowledgement is only for a small part in the critical path. The Ethernet time is

the time spent on the wire plus the time spent in the driver and taking the inter-

rupt.

system like Amoeba many entities are short-lived and send small messages. In such an
environment, setting up connections would be a waste of time and resources. We
therefore decided to make FLIP a connectionless protocol. In this section, we compare
FLIP to other connectionless protocols and discuss the advantages and disadvantages of

38 FAST LOCAL INTERNET PROTOCOL CHAP. 2

FLIP over these other protocols. We will not compare FLIP further to connection-
based protocols.

22
Requirements FLIP support22

d FLIP addresses are location-independent

d A FLIP box performs routing

d Messages can be as large as 232−1 bytes.
Transparency

d Routing tables change automatically.22
Efficient d FLIP is an unreliable message protocol

at-most-once d FLIP can use a blast protocol for large messages

RPC d A process uses a new FLIP address after it crashes22
d A FLIP address may identify a number of processes

Group d Routing tables change dynamically

d FLIP uses data-link multicast, if possible
Communication

d FLIP also works if multicast is not available22
d Addresses are hard to forge

Security
d FLIP takes advantage of trusted networks22

Network d Every machine is a router

Management d Routing tables are dynamically updated22
WAN d Works for small WAN-based projects2211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 2.12. How FLIP meets distributed systems requirements discussed in sec-

tion 2.1.

However, before comparing FLIP to other connectionless protocols, we first
summarize the requirements that distributed computing imposes on the communication
system and the support that FLIP offers to meet these requirements (see Fig. 2.12).

2.7.1. Discussion
The main property of FLIP that gives good support for distributed computing is a

combination of dynamic routing and the fact that FLIP addresses identify logical enti-
ties (processes or groups) rather than machines. Dynamic routing is done in a way
roughly similar to transparent bridges [Backes 1988]. Each FLIP box keeps a cache of
hints that is dynamically updated by FLIP messages. To keep routing tables up-to-date
with the network topology, FLIP headers have a type field and include hop counts. The
combination of dynamic routing tables and communication between entities simplifies
the implementation of higher-level protocols such as RPC and group communication

SEC. 2.7 Discussion and Comparison 39

and gives enhanced support for process migration. Furthermore, little network
management is required.

The only requirement for which FLIP does not have full support is wide-area net-
working. We think, however, that wide-area communication should not be done at the
network layer, but in higher layers.

The costs for the functionality of FLIP can be divided roughly into 3 areas: lim-
ited scalability, costs for broadcast, and memory for routing tables. By using a flat
name space we lose on scalability, but gain the ability to make addresses location-
independent and on the ability to do routing on a per-entity basis. One could envision
adding a domain identifier to the FLIP header, so that FLIP would scale to larger inter-
networks. Using a domain identifier, all the good properties of FLIP would exist in a
single domain, but not between two domains.

A danger in our current implementation of FLIP is that addresses might clash.
Two processes could accidentally register the same FLIP address†. In this case, mes-
sages sent to process A may end up at process B. However, as long as the same pro-
cess is not talking to A and B at the same time and routes to A and B do not intersect,
most of the messages will still be delivered correctly. In the current situation with a
good random generator and seed, clashes of FLIP addresses do not occur. Of course, if
the number of entities increases enormously, the chance of clashes increases.

By using locate messages we have the ability to reconfigure networks dynami-
cally and move processes around. The costs are that FLIP will generate more broad-
casts than a protocol like IP and that there is a startup cost involved in locating a desti-
nation. Furthermore, there is a danger that FLIP could cause a flood of broadcasts. To
avoid this we have introduced a hop count in the header, kept state (1 Kbyte) in each
kernel to break loops, and limited the number of broadcasts per second that a FLIP box
can forward. The net result is that Amoeba in the environment depicted in Figure 2.8
(which contains loops) on average generates only 1.6 broadcasts per second to locate
ports and 0.1 broadcasts per second to locate FLIP addresses (measured over a 60 hour
time period: three working days and two nights). Given the fact that it takes approxi-
mately 500µsec to process a broadcast, we are paying only 0.1% of the CPU cycles of
a machine for dealing with broadcasts. We find this a good tradeoff.

We locate destinations by expanding the scope of each broadcast. This has the
disadvantage that networks close by will receive more broadcasts than networks further
away. Furthermore, it introduces a potentially longer delay for destinations far away or
destinations that do not exist. Because the RPC implementation caches mappings of
ports to FLIP addresses and the FLIP implementation caches the mapping of FLIP
addresses to locations, very little locating takes place, so the number of broadcasts is
low. Most of the broadcasts are due to attempts to locate services that no longer exist.
In a large internetwork the number of broadcasts could be too high and the delay too

333333333333333
† As soon as we started running FLIP on all our machines, we came across this problem, because many
of the pseudo-random generators were at that time fed with the same seed.

40 FAST LOCAL INTERNET PROTOCOL CHAP. 2

long. In such an environment, one could implement a scheme which caches unreach-
able ports and FLIP addresses to reduce the number of broadcasts for not existing ser-
vices. This scheme is, however, not trivial to implement correctly.

By using routing tables in each kernel, we can do routing on a per-process basis.
The cost for doing this is that each kernel must keep such a table. In our current
environment, we are using tables that can store 100 FLIP addresses; this requires only 6
Kbyte of storage.

2.7.2. Comparison
The rest of this section discusses alternative solutions for communication in dis-

tributed systems. One of the most widely used internet protocols is IP [Postel 1981a;
Comer 1992]. In IP, an address identifies a host. Thus, if a process is migrated from
one host to another host, it must change its IP address and tell other processes that it did
so. Because IP uses a hierarchical address space, machines cannot be disconnected
from one network and connected to another network without changing their IP
addresses, although a new extension to IP has been proposed to deal with mobile com-
puters [Ioannidis et al. 1991]. FLIP’s flat address space also has some disadvantages.
Routing tables are larger. Instead of having one entry for a collection of addresses on
one network, FLIP needs a separate entry for every address. With the flat address
space, FLIP also scales less well to wide-area communication. Another fundamental
difference between IP and FLIP is IP’s limit to the size of a message (64 Kbyte).
Higher-level protocols have to break messages in 64 Kbyte fragments and reassemble
them at the other side. As a result, IP does not benefit from communication links that
allow packets larger than 64 Kbyte. A final fundamental difference is that IP provides
only limited support for secure communication. For example, the standard IP specifi-
cation does not provide secure routing.

Besides these fundamental differences, there are also a number of differences
that are dependent on the IP implementation and routing protocol used. The Internet
Control Message Protocol improves end-to-end flow control and routing [Postel
1981b]. However, there are still many problems. For example, many IP implementa-
tions make a distinction between a router and a host. A router does routing, and a host
runs processes and does not do routing. If the network topology changes, it often hap-
pens that machines have to be restarted or reconfigured manually. Furthermore, all
ongoing communication between a machine that is about to be moved and other
machines will have to be aborted. As most departments own a large number of
machines and many networks, these changes need to be done more often than any sys-
tem administrator cares for. FLIP eliminates almost all need for network management;
system administrators can install, move, or remove machines without making changes
to the configuration tables.

Another protocol that has been especially designed for distributed operating sys-
tems is the Versatile Message Transaction Protocol (VMTP) [Cheriton 1986, 1988a].
Like FLIP, VMTP provides a base to build higher-level protocols, and has been used

SEC. 2.7 Discussion and Comparison 41

for the protocols in the V distributed system [Cheriton 1988b]. Unlike FLIP, VMTP is
a transport protocol, which relies on an internet protocol for routing. Therefore VMTP
may be implemented on top of FLIP, providing the VMTP abstraction with the advan-
tages of FLIP.

Three types of addresses exist in VMTP. They differ in the time that they are
usable. T-stable addresses, for example, are guaranteed not to be reused for at least T
seconds after they become invalid. This allows a timer-based implementation of at-
most-once Remote Procedure Call. If one were to run VMTP on FLIP, such timed
addresses would not be needed, because the 56 bits of an address would almost cer-
tainly be unique and an entity can pick a new address at any time. VMTP is a reliable
transport protocol, and uses a single mechanism for fragmentation and flow control on
all network types. To be able to implement this protocol efficiently, the designers also
put an artificial upper bound on the size of a network message. Due to this artificial
upper bound, and the fact that networks differ greatly in their physical properties,
VMTP may perform well on one network and less well on another.

The routing algorithm that FLIP uses forMULTIDATA packets is similar to the
single-spanning-tree multicast routing algorithm discussed by Deering and Cheriton
[Deering and Cheriton 1990]. In the same paper, the authors also discuss more sophis-
ticated multicast routing algorithms. These algorithms could be implemented in FLIP
using theVariable Partof the header.

2.8. Conclusion
In this chapter we have discussed protocol requirements for distributed systems

and proposed a new protocol that meets them. Current internet protocols do not
address various problems, leaving the solution to higher-level protocols. This leads to
more complex protocols, that cannot perform well, because they cannot take advantage
of hardware support. We presented the FLIP protocol that supports many of the
requirements of distributed systems in an integrated way. FLIP addresses management
of internetworks, efficient and secure communication, and transparency of location and
migration.

FLIP is used in the Amoeba 5.0 distributed operating system to implement RPC
and group communication over a collection of different networks. The advantages over
Amoeba 4.0 include better scaling, easier management, and higher bandwidth.
Round-trip delay is currently higher, but this can probably be improved by careful cod-
ing and tuning.

There is more work to be done. For example, we have no experience with large
networks containing thousands of subnets. However, since Amoeba implements wide-
area communication transparently in user space, using X.25 or TCP links between
Amoeba sites, this is at least conceivable. Additionally, locating endpoints with
location-independent addresses can be a problem, and we are currently considering a
location service for a possibly large network of subnets that may or may not support
hardware multicast.

42 FAST LOCAL INTERNET PROTOCOL CHAP. 2

Notes
The research presented in this chapter was done in collaboration with Robbert van
Renesse and Hans van Staveren. Wiebren de Jonge suggested a clean and nice

improvement to the one-way-function used in the host interface.

SEC. 2.8 Conclusion 43

3

EFFICIENT RELIABLE
GROUP COMMUNICATION

Most current distributed systems are based on RPC, but many applications need
something else. RPC is inherently point-to-point communication and what is often
needed is 1-to-n communication. This chapter discusses a protocol for sending mes-
sages from 1 source ton destinations. It makes the following research contributions:

d It identifies and discusses design issues in group communication.

d It introduces an improved algorithm for reliable totally-ordered group
communication.

d It provides enough detail of the algorithm that it can be implemented in
any distributed system.

d It gives detailed performance measurements of an implementation in an
existing distributed system.

The outline of the chapter is as follows. In Section 3.1 we discuss the design
issues in group communication. In Section 3.2 we describe the choices that we have
made for each issue. In Section 3.3 we present the Amoeba kernel primitives for group
communication. In Section 3.4 we give the algorithms for an efficient reliable broad-
cast protocol that provides total ordering. In Section 3.5 we give detailed performance
measurements of the group communication. In Section 3.6 we compare our protocol
with a number of other protocols and other systems that support group communication.
In Section 3.7 we present our conclusions.

44

3.1. Design Issues in Group Communication
A few existing operating systems provide application programs with support for

group communication [Liang et al. 1990]. To understand the differences between these
existing systems, six design criteria are of interest: addressing, reliability, ordering,
delivery semantics, response semantics, and group structure (see Fig. 3.1). We will dis-
cuss each one in turn.

222
Issue Description22
Addressing Addressing method for a group (e.g., list of members)222
Reliability Reliable or unreliable communication?222
Ordering Order among messages (e.g., total ordering)222
Delivery semantics How many processes must receive the message successfully?222
Response semantics How to respond to a broadcast message?222
Group structure Semantics of a group (e.g., dynamic versus static)22211
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 3.1. The main design issues for group communication.

At least four methods ofaddressingmessages to a group exist. The simplest one
is to require the sender to explicitly specify all the destinations to which the message
should be delivered. A second method is to use a single address for the whole group.
This method saves bandwidth and also allows a process to send a message without
knowing which processes are members of the group [Frank et al. 1985]. Two less com-
mon addressing methods aresource addressing[Gueth et al. 1985] andfunctional
addressing[Hughes 1988]. Using source addressing, a process accepts a message if
the source is a member of the group. Using functional addressing a process accepts a
message if a user-defined function on the message evaluates to true. The disadvantage
of the latter two methods is that they are hard to implement with current network inter-
faces.

The second design criterion,reliability, deals with recovering from communica-
tion failures, such as buffer overflows and garbled packets. Because reliability is more
difficult to implement for group communication than for point-to-point communica-
tion, a number of existing operating systems provideunreliablegroup communication
[Cheriton and Zwaenepoel 1985; Rozier et al. 1988], whereas almost all operating sys-
tems providereliable point-to-point communication, for example, in the form of RPC.

Another important design decision in group communication is theordering of
messages sent to a group. Roughly speaking, there are 4 possible orderings: no order-
ing, FIFO ordering, causal ordering, and total ordering. No ordering is easy to under-

SEC. 3.1 Design Issues in Group Communication 45

stand and implement, but unfortunately makes programming often harder. FIFO order-
ing guarantees that all messages from a member are delivered in the order in which
they were sent. Causal ordering guarantees that all messages that are related are
ordered [Birman et al. 1991]. More specifically: messages are in FIFO order and if a
member after receiving messageA sends a messageB, it is guaranteed that all members
will receiveA beforeB. In the total ordering, each member receives all messages in the
same order. The last ordering is stronger than any of the other orderings and makes
programming easier, but it is harder to implement.

To illustrate the difference between causal and total ordering, consider a service
that stores records for client processes. Assume that the service replicates the records
on each server to increase availability and reliability and that it guarantees that all
replicas are consistent. If a client may only update its own records, then it is sufficient
that all messages from the same client will be ordered. Thus, in this case a causal ord-
ering can be used. If a client may update any of the records, then a causal ordering is
not sufficient. A total ordering on the updates, however, is sufficient to ensure con-
sistency among the replicas. To see this, assume that two clients,C1 andC2, send an
update for recordX at the same time. As these two updates will be totally-ordered, all
servers either (1) receive first the update fromC1 and then the update fromC2 or (2)
receive first the update fromC2 and then the update fromC1. In either case, the repli-
cas will stay consistent, because every server applies the updates in the same order. If
in this case causal ordering had been used, it might have happened that the servers
applied the updates in different orders, resulting in inconsistent replicas.

The fourth item in the table,delivery semantics, relates to when a message is
considered successfully delivered to a group. There are three common choices:k-
delivery, quorum delivery, and atomic delivery. Withk-delivery, a broadcast is defined
as being successful whenk processes have received the message for some constantk.
With quorum delivery, a broadcast is said to be successful when a majority of the
current membership has received it. With atomic delivery either all surviving
processes receive it or none do. Atomic delivery is the ideal semantics, but is harder to
implement since processors can fail.

Item five, response semanticsdeals with what the sending process expects from
the receiving processes [Hughes 1989]. There are four broad categories of what the
sender can expect: no responses, a single response, many responses, and all responses.
Operating systems that integrate group communication and RPC completely often sup-
port all four choices [Cheriton and Zwaenepoel 1985; Birman et al. 1990].

The last design decision specific to group communication isgroup structure.
Groups can be either closed or open [Liang et al. 1990]. In aclosed group, only
members can send messages to the group. In anopengroup, nonmembers may also
send messages to the group. In addition, groups can be either static or dynamic. In
static groups processes cannot leave or join a group, but remain a member of the group
for the lifetime of the process. Dynamic groups may have a varying number of
members over time; processes can come and go.

46 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

If processes can be members of multiple groups, the semantics foroverlapping
groupsmust be defined. Suppose that two processes are members of both groupsG1

andG2 and that each group guarantees a total ordering. A design decision has to be
made about the ordering between the messages ofG1 andG2. All choices discussed in
this section (none, FIFO, causal, and total ordering) are possible.

To make these design decisions more concrete, we briefly discuss two systems
that support group communication. Both systems support open dynamic groups, but
differ in their semantics for reliability and ordering. In the V system [Cheriton and
Zwaenepoel 1985], groups are identified with a group identifier. If two processes con-
currently broadcast two messages,A and B, respectively, some of the members may
receiveA first and others may receiveB first. No guarantees about ordering are given.
Group communication in the V system is unreliable. Users can, however, build their
own group communication primitives with the basic primitives. They could, for exam-
ple, implement the protocols described in this chapter as a library package.

In the Isis system [Birman and Joseph 1987], messages are sent to a group iden-
tifier or to a list of addresses. When sending a message, a user specifies how many
replies are expected [Birman et al. 1990]. Messages can be totally-ordered, even for
groups that overlap. If, for example, processesP1 andP2 in Figure 3.2 simultaneously
send a message, processesP3 and P4 will receive both messages in the same order.
Reliability in Isis means that eitherall or no surviving members of a group will receive
a message, even in the face of processor failures. Because these semantics are hard to
implement efficiently, Isis also provides primitives that give weaker semantics, but
better performance. It is up to the programmer to decide which primitive is required.

G1 G2

d P1 d P2d P3 d P4

Fig. 3.2. Total ordering with overlapping groups.P1 belongs to groupG1. P2

belongs to groupG2. P3 andP4 are member of both groups.

3.2. Design Choices
Figure 3.3 lists the design issues and the choices we made. We will discuss each

one in turn.

SEC. 3.2 Design Choices 47

Addressing
Groups are addressed by a single address, called aport. A port is a large random

number. By using a single address per group, a process can send a message to the
group without knowing which and how many processes are members of the group.

Addressing groups with ports fits with Amoeba’s client/server model. Services
in Amoeba are also addressed by ports. When a service is started, it generates a new
port and registers the port with the directory service. A client can look up the port
using the directory service and asks its own kernel to send a message to the given port.
The kernel maps the port onto a network address (a FLIP address). If multiple servers
listen to the same port, only one (arbitrary) server will get the message. Thus, in
Amoeba, processes and groups are addressed in a uniform way.

222
Issue Choice22
Addressing Group identifier (port)222

Reliable communication;
Reliability

fault tolerance if specified222
Ordering Total ordering per group222
Delivery semantics All or none222
Response semantics None (RPC is available)222
Group structure Closed and dynamic2221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 3.3. Important design issues of Fig. 3.1 and the choices made in Amoeba.

Reliability
The group primitives provide by default reliable communication in the presence

of communication failures. On the user’s request, the group primitives can also recover
from processor failures. We decided to make this an option, because providing these
semantics is expensive and many applications do not need to recover from processor
failures. Stronger semantics, like recovery from Byzantine failures (i.e., processors
sending malicious or contradictory messages) and network partitions, are not supported
by the group primitives. Applications requiring these semantics have to implement
them explicitly. For example, the directory service discussed in Chapter 5 implements
recovery from network partitions.

Although FLIP supports unreliable group communication, we decided to make
only reliable group communication available to the programmer. This has the potential
disadvantage that some users pay in performance for semantics that they do not need.
It has the advantage, however, that the kernel only has to support one primitive, which

48 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

simplifies the implementation and makes higher level software more uniform. For the
same reason Amoeba also supports only one primitive for point-to-point communica-
tion: RPC.

Ordering
The group primitives guarantee a total ordering per group. Many distributed

applications are easy to implement with a total ordering and we have a simple and effi-
cient protocol for doing reliable totally-ordered group communication (as we will see
in the coming sections). There are three key ideas that make our approach feasible.
First, to guarantee a total ordering the protocol uses a central machine per group, called
the sequencer. (If the sequencer crashes, the remaining group members elect a new
one.) Second, the protocol is based on anegative acknowledgementscheme. In a
negative acknowledgement scheme, a process does not send an acknowledgement as
soon as it receives a message. Instead, it sends a negative acknowledgement as soon as
it discovers that it has missed a message. Third, acknowledgements are piggybacked
on regular data messages to further reduce the number of protocol messages. These
ideas are well known techniques. Chang and Maxemchuck, for example, discuss a pro-
tocol similar to ours that also combines these three ideas [Chang and Maxemchuk
1984].

Although at first sight it may seem strange to use acentralizedsequencer in a
distributed system, this decision is attractive. First, distributed protocols for total ord-
ering are in general more complex and perform less well. Second, today’s computers
are very reliable and it is therefore unlikely that the sequencer will crash. The major
disadvantage of having a sequencer is that the protocol does not scale to very large
groups. In practice, however, this drawback is minor. The sequencer totally orders
messages for a single group, not for the whole system. Furthermore, the sequencer per-
forms a simple and computationally unintensive task and can therefore process many
hundreds of messages per second.

There are two reasons for using a negative acknowledgement scheme. First, in a
positive acknowledgement scheme, a process sends an acknowledgement back to the
sender as soon as it receives the message. This works fine for point-to-point messages,
but not for broadcast messages. If in a group of 256 processes, a process sends a broad-
cast message to the group, all 255 acknowledgements will be received by the sender at
approximately the same time. As network interfaces can only buffer a fixed number of
messages, a number of the acknowledgements will be lost, leading to unnecessary
timeouts and retransmissions of the original message. Second, today’s networks are
very reliable and network packets are delivered with a very high probability. Thus not
sending acknowledgements at all, but piggybacking them on regular data messages is
feasible. Another alternative would be to use a positive acknowledgement scheme, but
force the receivers to wait some ‘‘random’’ time before sending an acknowledgement
[Danzig 1989]. This approach is attractive in unreliable networks, but it causes far
more acknowledgements to be sent than with a negative acknowledgement scheme.

SEC. 3.2 Design Choices 49

Delivery Semantics and Response Semantics
Per default, the group communication primitives deliver a message to all destina-

tions, even in the face of communication failures. On the user request, the primitives
can also guarantee ‘‘all-or-none’’ delivery in the face of processor failures. The proto-
cols for providing these semantics are more expensive, and hence we decided to make
it an option. User can trade performance for fault tolerance.

When a member receives a broadcast message, there is no group primitive avail-
able to send a reply. For the request/response type of communication RPC is available.

Group Structure
Unlike many other systems, we have chosen to use closed groups. A process that

is not a member and that wishes to communicate with a group can perform an RPC
with one of the members (or it can join the group). One reason for doing so is that a
client need not be aware whether a service consists of multiple servers which perhaps
broadcast messages to communicate with one another, or a single server. Also, a ser-
vice should not have to know whether the client consists of a single process or a group
of processes. This design decision is in the spirit of the client-server paradigm: a client
knows what operations are allowed, but should not know how these operations are
implemented by the service.

A second reason for closed groups is that it makes an efficient implementation of
totally-ordered reliable broadcast possible. To implement the protocol, state is main-
tained for each member. If all processes can send messages to a group, they all have to
keep state information about the groups that they are communicating with. Further-
more, the members also have to keep state for all the processes that are communicating
with the groups. To make it possible to control the amount of state needed to imple-
ment the protocol, we decided on closed groups.

In Isis, this problem is solved in a different way. Isis presents the user with open
groups, but implements it using closed groups. When a process wants to communicate
with a group, the system either performs a join or an RPC with one of the members. In
the latter case, the member broadcasts the message to the whole group. Thus, although
the user has the illusion of open groups, the current implementation of Isis uses only
closed groups.

A third reason for closed groups is that they are as useful as open groups. Just
like in Isis, one can simulate an open group in Amoeba. A process performs an RPC
with one of the members of the group. If a member receives an RPC, it broadcasts the
request to the rest of the group. Compared to real open groups, the cost is that a request
goes twice over the network instead of once.

Figure 3.4 shows a very small Amoeba system, with 12 processes and 3 groups,
and how they interact. The parallel application replicates shared data using group com-
munication to reduce access time. If the application wants to store an object with the
directory service, it uses RPC to communicate with it. One of the directory servers will
get the request. The directory server uses group communication to achieve fault toler-

50 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

ance and high availability. To store results on disk, a directory server communicates
with the disk service, using RPC. The disk service may again use group communica-
tion internally for availability and fault tolerance (currently not done). Each applica-
tion or service may be built out of one process or a group of processes which communi-
cate with other services using RPC.

Parallel application

Directory service Disk service

d d d d d d d

d d d d d

Request Response

Request

Response

Fig. 3.4. An example Amoeba system with processes, groups, and their

interaction. A request/response pair makes up one RPC. The request is sent to

a port identifying a service and one of the servers will take the request; the

corresponding response is sent back to the process doing the RPC.

3.3. Group Primitives in Amoeba
The primitives to manage groups and to communicate within a group are listed in

Figure 3.5. We will discuss each primitive in turn.
A group is created by callingCreateGroup. The creator of the group is automati-

cally member of the group. The first parameter is a port identifying the group. The
second parameter is the number of member-crashes the group must be able to survive
(0 if no fault tolerance is required). This is called theresilience degreeof a group. The
other parameters ofCreateGroupspecify information that simplify the implementation:
the maximum number of members, the number of buffers that the protocol can use, and
the maximum message size. Using this information, the kernel allocates memory for
buffering messages and for member information. (Although these parameters could
easily be replaced by default values, we decided against this for the sake of flexibility.)
If not enough memory is available,CreateGroupfails. Otherwise, it succeeds and
returns a small integer, called a group descriptor,gd, which is used to identify the
group in subsequent group calls.

Once a group with portp has been created, other processes can become members

SEC. 3.3 Group Primitives in Amoeba 51

of it by calling JoinGroupwith the portp. (The port is part of the Amoeba headerhdr.)
Only processes that know portp can join the group. When a message is sent to a
group, only the group members receive the message. LikeCreateGroup, JoinGroup
returns a group descriptor for use in subsequent group calls. In addition to adding a
process to a group,JoinGroupdelivers a small message,hdr, to all other members. In
this way, the other members are told that a new member has joined the group.

22
Function(parameters) → result Description22
CreateGroup(port, resilience, max3group,

nr3buf, max3msg)→ gd

Create a group. A process speci-

fies how many member failures

must be tolerated without loss of

any message.22
JoinGroup(hdr)→ gd Join a specified group.22
LeaveGroup(gd, hdr) Leave a group. The last member

leaving causes the group to vanish.22
SendToGroup(gd, hdr, buf, bufsize) Atomically send a message to all

the members of the group. All

messages are totally-ordered.22
ReceiveFromGroup(gd, &hdr, &buf, bufsize, &more)

→ size

Block until a message arrives.

More tells if the system has buf-

fered any other messages.22
ResetGroup(gd, hdr, nr3members)→ group3size Recover from processor failure. If

the newly reset group has at least

nr3membermembers, it succeeds.22
GetInfoGroup(gd, &state) Return state information about the

group, such as the number of

group members and the caller’s

member id.22
ForwardRequest(gd, member3id) Forward a request for the group to

another group member.221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 3.5. Primitives to manage a group and to communicate within a group. A

message consists of a header (a small message) and a buffer (a linear array of

bytes). The header contains the port of a group. An output parameter is

marked with ‘‘&’’.

52 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

Once a process is a member of a group, it can leave the group by callingLeave-
Group. Once a member has left the group, it does not receive subsequent broadcasts.
In addition to causing the process to leave the group,LeaveGroupdelivershdr to all
other members. In this way, the other members are told that a member has left. The
member receives its own message, so that it can check whether it has processed all
messages up to its leave message. The last member callingLeaveGroupautomatically
causes the group to vanish.

To broadcast a message, a process callsSendToGroup. This primitive guarantees
that hdr andbuf will be delivered to all members, even in the face of unreliable com-
munication and finite buffers. Furthermore, when theresilience degreeof the group is
r, the protocol guarantees that even in the event of a simultaneous crash of up tor
members, it will either deliver the message to all remaining members or to none. (This
property does not contradict the result by Fischer, Lynch, and Paterson [Fischer et al.
1985], as our algorithms are based on timeouts.) Choosing a large value forr provides
a high degree of fault tolerance, but this is paid for in performance.SendToGroup
blocks untilr +1 members have received the message. The tradeoff chosen is up to the
user.

In addition to reliability, the protocol guarantees that messages are delivered in
the same order to all members. Thus, if two members (on two different machines),
simultaneously broadcast two messages,A andB, the protocol guarantees that either

1. All members receiveA first and thenB, or

2. All members receiveB first and thenA.

Random mixtures, where some members getA first and others getB first are
guaranteed not to occur.

To receive a broadcast, a member callsReceiveFromGroup; it blocks until the
next message in the total order arrives. If a broadcast arrives and no such primitive is
outstanding, the message is buffered. When the member finally does aReceiveFrom-
Group, it will get the next one in sequence. How this is implemented will be described
below. Themoreflag is used to indicate to the caller that one or more broadcasts have
been buffered and can be fetched usingReceiveFromGroup. If a member never calls
ReceiveFromGroup, the group may block (no more messages can be sent to the group),
because it may run out of buffers. Messages are never discarded until received by all
members.

ResetGroupallows recovery from member crashes. If one of the members (or its
kernel) is unreachable, it is deemed to have crashed and the protocol enters a recovery
mode. In this mode, it only accepts messages needed to run the recovery protocol and
all outstandingReceiveFromGroupcalls return an error value that indicates a member
crash. Any member can now callResetGroupto transform the group into a new group
that contains as many surviving members as possible. The second parameter is the

SEC. 3.3 Group Primitives in Amoeba 53

number of members that the new group must contain as a minimum. WhenReset-
Group succeeds, it returns the group size of the new group. In addition to recovering
from crashes,ResetGroupdelivershdr to all new members. It may happen that multi-
ple members initiate a recovery at the same moment. The new group is built only once,
however, and consists of all the members that can communicate with each other. The
hdr is also delivered only once.

The way recovery is done is based on the design principle that policy and
mechanism should be separated. In many systems that deal with fault tolerance,
recovery from processor crashes is completely invisible to the user application. We
decided not to do this. A parallel application that multiplies two matrices, for example,
may want to continue even if only one processor is left. A banking system may
require, however, that at least half the group is alive. In our system, the user is able to
decide on the policy. The group primitives provide only the mechanism.

GetInfoGroupallows a group member to obtain information about the group
from its kernel. The call returns information such as the number of members in the
group and the caller’s member id. Each group member has a unique number.

The final primitive,ForwardRequest, integrates RPC with group communication.
When a client does an RPC to a service, the client has no idea which server will get the
request; it goes to one of the servers, effectively at random. If the server that gets the
request is not able to serve the request (e.g., because it does not have the data
requested), it can forward the request to another server in the group (member3id speci-
fies the server). The forwarding occurs transparently to the client. The client cannot
even tell that the service is provided by multiple servers.

To summarize, the group primitives provide an abstraction that enables program-
mers to design applications consisting of one or more processes running on different
machines. It is a simple, but powerful, abstraction. All members of a single group see
all events concerning this group in the same order. Even the events of a new member
joining the group, a member leaving the group, and recovery from a crashed member
are totally-ordered. If, for example, one process callsJoinGroupand a member calls
SendToGroup, either all members first receive the join and then the broadcast or all
members first receive the broadcast and then the join. In the first case the process that
called JoinGroupwill also receive the broadcast message. In the second case, it will
not receive the broadcast message. A mixture of these two orderings is guaranteed not
to happen. This property makes reasoning about a distributed application much easier.
Furthermore, the group interface gives support for building fault-tolerant applications
by choosing an appropriate resilience degree.

3.4. The Broadcast Protocol
The protocol to be described runs inside the kernel and is accessible through the primi-
tives described in the previous section. It assumes thatunreliable message passing
between entities is possible; fragmentation, reassembly, and routing of messages are
done at lower layers in the kernel (see Chapter 2). The protocol performs best on a net-

54 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

work that supports hardware multicast. Lower layers, however, treat multicast as an
optimization of sending point-to-point messages; if multicast is not available, then
point-to-point communication will be used. Even if only point-to-point communication
is available, the protocol is in most cases still more efficient than performingn RPCs.
(In a mesh interconnection network, for example, the routing protocol will ensure that
the delay of sendingn messages is only in the order of log2 n.)

Each kernel running a group member maintains information about the group (or
groups) to which the member belongs. It stores, for example, the size of the group and
information about the other members in the group. Any group member can, at any
instant, decide to broadcast a message to its group. It is the job of the kernel and the
protocol to achieve reliable broadcasting, even in the face of unreliable communication,
lost packets, finite buffers, and node failures.

Application

Kernel Sequencer

disabled

ddd

ddd

Application

Kernel Sequencer

disabled

Application

Kernel Sequencer

enabled

Broadcast network

Fig. 3.6. System structure. Each node runs a kernel and a user application.

Each kernel is capable of being sequencer, but, at any instant, only one of them

functions as sequencer. If the sequencer crashes, the remaining nodes can

elect a new one.

Without loss of generality, we assume for the rest of this section that the system
contains one group, with each member running on a separate processor (see Fig. 3.6).
When the application starts up, the machine on which the group is created is made the
sequencer. If the sequencer machine subsequently crashes, the remaining members
elect a new one (this procedure is described in Section 3.4.3). The sequencer machine
is in no way special—it has the same hardware and runs the same kernel as all the other
machines. The only difference is that it is currently performing the sequencer function
in addition to its normal tasks.

SEC. 3.4 The Broadcast Protocol 55

3.4.1. Basic Protocol
A brief description of the protocol is as follows (a complete description is given

in the next section). When a group member callsSendToGroupto send a message,M,
it hands the message to its kernel and blocks. The kernel encapsulatesM in an ordinary
point-to-point message and sends it to the sequencer. When the sequencer receivesM ,
it allocates the next sequence number,s, and broadcasts a message containingM ands.
Thus all broadcasts are issued from the same node, the sequencer. Assuming that no
messages are lost, it is easy to see that if two members concurrently want to broadcast,
one of them will reach the sequencer first and its message will be broadcast first. Only
when that broadcast has been completed will the other broadcast be started. Thus, the
sequencer provides a total time ordering. In this way, we can easily guarantee the indi-
visibility of broadcasting per group.

When the kernel that sentM , receives the message from the network, it knows
that its broadcast has been successful. It unblocks the member that calledSendTo-
Group.

Although most modern networks are highly reliable, they are not perfect, so the
protocol must deal with errors. Suppose some node misses a broadcast packet, either
due to a communication failure or lack of buffer space when the packet arrived. When
the following broadcast message eventually arrives, the kernel will immediately notice
a gap in the sequence numbers. If it was expectings next, and it receivess + 1 instead,
it knows it has missed one.

The kernel then sends a special point-to-point message to the sequencer asking it
for a copy of the missing message (or messages, if several have been missed). To be
able to reply to such requests, the sequencer stores broadcast messages in thehistory
buffer. The sequencer sends the missing messages to the process requesting them as
point-to-point messages. The other kernels also keep a history buffer, to be able to
recover from sequencer failures and to buffer messages when there is no outstanding
ReceiveFromGroupcall.

As a practical matter, a kernel has only a finite amount of space in its history
buffer, so it cannot store broadcast messages indefinitely. However, if it could
somehow discover that all members have received broadcasts up to and includingm, it
could then purge the broadcast messages up tom from the history buffer.

The protocol has several ways of letting a kernel discover this information. For
one thing, each point-to-point message to the sequencer (e.g., a broadcast request), con-
tains, in a header field, the sequence number of the last broadcast received by the
sender of the message (i.e., a piggybacked acknowledgement). This information is also
included in the message from the sequencer to the other kernels. In this way, a kernel
can maintain a table, indexed by member number, showing that memberi has received
all broadcast messages up toTi (and perhaps more). At any instant, a kernel can com-
pute the lowest value in this table, and safely discard all broadcast messages up to and
including that value. For example, if the values of this table are 8, 7, 9, 8, 6, and 8, the

56 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

kernel knows that everyone has received broadcasts 0 through 6, so they can be safely
deleted from the history buffer.

If a node does not do any broadcasting for a while, the sequencer will not have an
up-to-date idea of which broadcasts it has received. To provide this information, nodes
that have been quiet for a certain interval send the sequencer a special message ack-
nowledging all received broadcasts. The sequencer can also request this information
when it runs out of space in its history buffer.

PB Method and BB Method
There is a subtle design point in the protocol; there are actually two ways to do a

broadcast. In the method we have just described, the sender sends a point-to-point
message to the sequencer, which then broadcasts it. We call this thePB method
(Point-to-point followed by a Broadcast). In theBB method, the sender broadcasts the
message. When the sequencer sees the broadcast, it broadcasts a specialacceptmes-
sage containing the newly assigned sequence number. A broadcast message is only
‘‘official’’ when the acceptmessage has been sent.

These methods are logically equivalent, but they have different performance
characteristics. In the PB method, each message appears on the network twice: once to
the sequencer and once from the sequencer. Thus a message of lengthn bytes con-
sumes 2n bytes of network bandwidth. However, only the second message is broad-
cast, so each user machine is interrupted only once (for the second message).

In the BB method, the full message appears only once on the network, plus a
very shortacceptmessage from the sequencer. Thus, only aboutn bytes of bandwidth
are consumed. On the other hand, every machine is interrupted twice, once for the
message and once for theaccept. Thus the PB method wastes bandwidth to reduce the
number of interrupts and the BB method minimizes bandwidth usage at the cost of
more interrupts. The protocol switches dynamically between the PB method and BB
method depending on the message size.

Processor Failures
The protocol described so far recovers from communication failures, but does not

guarantee that all surviving members receive all messages that have been sent before a
member crashed. For example, suppose a process sends a message to the sequencer,
which broadcasts it. The sender receives the broadcast and delivers it to the applica-
tion, which interacts with the external world. Now assume all other processes miss the
broadcast, and the sender and sequencer both crash. Now, the effects of the message
are visible but none of the other members will receive it. This is a dangerous situation
that can lead to all kinds of disasters, because the ‘‘all-or-none’’ semantics have been
violated.

To avoid this situation,CreateGrouphas a parameterr, theresilience degreethat
specifies the resiliency. This means that theSendToGroupprimitive does not return

SEC. 3.4 The Broadcast Protocol 57

control to the application until the kernel knows that at leastr other kernels have
received the message. To achieve this, a kernel sends the message to the sequencer
point-to-point (PB method) or broadcasts the message to the group (BB method). The
sequencer allocates the next sequence number, but does not officially accept the mes-
sage yet. Instead, it buffers the message and broadcasts the message and sequence
number as a request for broadcasting to the group. On receiving such a request with a
sequence number, kernels buffer the message in their history and ther lowest-
numbered send acknowledgement messages to the sequencer. (Anyr members besides
the sending kernel would be fine, but to simplify the implementation we pick ther
lowest-numbered.) After receiving these acknowledgements, the sequencer broadcasts
the acceptmessage. Only after receiving theacceptmessage can members other than
the sequencer deliver the message to the application. That way, no matter whichr
machines crash, there will be at least one left containing the full history, so everyone
else can be brought up-to-date during the recovery. Thus, an increase in fault tolerance
is paid for by a decrease in performance. The tradeoff chosen is up to the user.

A S

B

C
M

(a)

A S

B

C
(M, s)

(b)

A S

B

C
ack s

(c)

A S

B

C
accept s

(d)

Fig. 3.7. PB protocol forr = 2.

The PB and BB method forr = 2 are illustrated in Figure 3.7 and in Figure 3.8.
In Figure 3.7(a), machine A sends a message,M, to the sequencer, where it is assigned
sequence numbers. The message (containing the sequence numbers) is now broadcast
to all members and buffered (Fig. 3.7(b)). Ther lowest-numbered kernels (say,
machinesB andC in Figure 3.7(c)) send an acknowledgement back to the sequencer to
confirm that they have received and buffered the message with sequence numbers.
After receiving ther acknowledgements, the message with sequence numbers is offi-
cially accepted and the sequencer broadcasts a short accept message with sequence
numbers (Fig. 3.7(d)). When a machine receives the accept message, it can deliver the
message to the application.

The BB method forr = 2 is very similar to the PB method (see Fig. 3.8); only the
events in (a) and (b) differ. Instead of sending a point-to-point message to the
sequencer, machineA broadcasts the message to the whole group (Fig. 3.8(a)). When
the sequencer receives this message, it allocates the next sequence number and broad-
casts it (Fig. 3.8(b)). From then on the BB method is identical to the PB method. Thus,
the important difference between the PB and BB method is that in the PB method the
messageM goes over the network twice, while in the BB method it goes only over the
network once.

58 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

A S

B

C
M

(a)

A S

B

C
s

(b)

A S

B

C
ack s

(c)

A S

B

C
accept s

(d)

Fig. 3.8. BB method forr = 2.

At first sight, it may seem that a more efficient protocol can be used forr > 0.
Namely, a kernel broadcasts the message to the group. On receiving a broadcast,r
lowest-numbered kernels immediately buffer the message in their history and send ack-
nowledgement messages to the sequencer, instead of waiting until the sequencer
announces a sequence number for the broadcast request. After receiving the ack-
nowledgements, the sequencer broadcasts theacceptmessage. This protocol would
save one broadcast message (the message from the sequencer announcing the sequence
number for the broadcast request).

This protocol is, however, incorrect. Assume thatr kernels have buffered a
number of messages and have sent an acknowledgement for each of them and that all
acceptmessages from the sequencer are lost. The following could now happen. The
sequencer delivers the message to its application, and then the sequencer (and applica-
tion) crashes. During recovery, the remaining members would have no way of decid-
ing how the buffered messages should be ordered, violating the rule that all messages
should be delivered in the same order. Even if they decide among themselves on some
order, they could potentially deliver the messages in a different order than the
sequencer did and still violate the rule. To avoid this situation, the sequencer
announces the sequence number for a message beforer kernels send an acknowledge-
ment.

It is interesting to see how Isis deals with this situation. In Isis it may happen
that after a processor failure, messages on the remaining processors are delivered in a
different order than was done on the failed processor. If an application requires
stronger semantics, it is up to the programmer to call a primitive that blocks the appli-
cation until it is known that all other kernels will deliver the message in the same order
[Birman et al. 1990].

In summary, there are two methods of sending a reliable totally-ordered broad-
cast, PB and BB. The PB method and the BB method are logically equivalent but have
different performance characteristics. (In Section 3.5 we will give a detailed com-
parison between the PB method and the BB method.) Forr > 0, additional messages
are needed to guarantee that broadcasts are delivered in the same order, even in the face
of processor failures.

SEC. 3.4 The Broadcast Protocol 59

3.4.2. Protocol during Normal Operation
In this section, we will describe in detail how the sender, sequencer, and

receivers behave during normal operation (no member failures).

Data Structures
Figure 3.9 shows the data structures used by the protocol. Each kernel keeps

state information for each of its members. The information stored for each member
consists of general information, membership information, and history information. The
general information includes the port of the group to which the member belongs, the
network address for the group, on what message size to switch from the PB method to
the BB method, the current state of the protocol (e.g., receiving, sending, etc.),r, and
the current incarnation number of the group. The parameterr, g3resilience, specifies
how many concurrent failures the group must tolerate without losing any messages. It
is specified when the group is created. The incarnation number of a group,
g3incarnation, is incremented after recovery from a member failure. Each message
sent is stamped with the current incarnation number and is only processed if it is equal
to g3incarnation; otherwise it is discarded. If no member failures happen, then
g3incarnationstays at 0.

The membership information consists of the list of members, the total number of
members, the current sequencer, and the current coordinator (only used during recovery
from member failures). Furthermore, the kernel stores the member identifier,g3index,
for this member and its rank,g3memrank. The member id does not change during the
time the application is member of a group. The rank is used to decide if a kernel
should send an acknowledgement back when a broadcast request arrives and theresili-
ence degreeis higher than 0. The rank of a member can change during its lifetime. If,
for example, a group consists of three members, numbered 0, 1, and 2 respectively, the
ranks for these members are initially equal to the member ids. If now, for example,
member 1 leaves, then the rank of member 2 changes to 1. In this way, it is easy for
each member to decide whether it belongs to ther lowest members. Since every
member is guaranteed to receive all join and leave events in the same order, this infor-
mation will always be consistent.

Each kernel keeps in the structurestruct memberfor each memberm the
sequence number expected bym, m3expect, the last message number used bym,
m3messid, andm’s network address. The sequencer uses them3expect fields to deter-
mine which messages can be safely removed from the history buffer. The message
number,m3messid, gives the last message number received from a member and is used
to detect duplicates generated by timeouts. Theretry counter, m3retrial, is used to
determine when a member has failed. If a kernel is waiting for a reply from another
kernel and it does not receive the message within a certain time frame, the counter is
decremented. If it reaches zero, the kernel is considered to be down. The other fields
are used only during recovery (see Section 3.4.3).

The history information consists of a circular buffer with a number of indices tel-

60 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

/* On each machine, a struct for each group is maintained. */
struct group { /* general info */

port g3port; /* a port identifies a group */
adr3t g3addr; /* group network address */
int g3large; /* threshold between PB and BB */
long g3flags; /* protocol state: FL3RECOVER, … */
int g3resilience; /* resilience degree */
short g3incarnation; /* incarnation number */

/* Member information */
int g3total; /* group size */
struct member *g3member; /* list of members */
struct member *g3me; /* pointer to my member struct */
struct member *g3seq; /* pointer to sequencer struct */
struct member *g3coord; /* pointer to coordinator struct */
int g3index; /* my index */
int g3memrank; /* member rank */

/* History information in circular buffer */
hist3p g3history; /* history of bcast messages */
int g3nhist; /* size of history */
int g3nextseqno; /* next sequence number */
int g3minhistory; /* lowest entry used */
int g3nexthistory; /* next entry to store message */

};

/* On each machine, a struct for each member is maintained. */
struct member {

adr3t m3member; /* member network address */
int m3expect; /* seqno expected by member */
int m3messid; /* next message id to use */
int m3retrial; /* retry counter */
int m3vote; /* vote for this member (recovery) */
int m3replied; /* has the member replied? */

};

/* Broadcast protocol header */
struct bc3hdr {

short b3type; /* type: BC3BCASTREQ, … */
short b3incarnation; /* incarnation number */
int b3seqno; /* global sequence number */
int b3messnr; /* message identifier */
int b3expect; /* seq number expected by application */
int b3cpu; /* member identifier */

};

Fig. 3.9. Declarations.

ling how big the buffer is and which part of the buffer is filled. Each buffer in the his-
tory contains a complete message including the user-supplied data (the upper bound on
the size of a message is passed as an argument when the group is created). The history
buffer consists of three parts (see Fig. 3.10). The circular part betweeng3nexthistory

SEC. 3.4 The Broadcast Protocol 61

andg3minhistoryconsists of free buffers. The circular part betweeng3minhistoryand
g3nextseqnocontains messages that have been sequenced, but are buffered to be
delivered to the user application or so that the kernel can respond to retransmission
requests. The circular part betweeng3nextseqnoand g3nexthistory is used by the
sequencer to buffer messages for which it does not know yet if all members have room
to store them in their history buffers. After synchronizing with the other history
buffers, the sequencer will take the buffered requests and process them (broadcast an
official accept). The ordinary kernels use the third part to buffer messages that are
received out-of-sequence until the missing messages are received. Buffering messages
in the third part of the history buffer avoids unnecessary retransmission of those mes-
sages later on.

171 172 173 174 175 176 177

g3minhistory g3nexthistoryg3nextseqno

Fig. 3.10. The history buffer has three parts: 1) free buffers; 2) messages that

have been sequenced but are buffered until they can be delivered to the user or

are buffered for retransmissions; 3) messages that are buffered because the

sequencer does not know if the other kernels have room in their history to store

the message. Ordinary members use the third part to buffer messages that

arrive out-of-sequence.

Each message sent by the protocol contains a fixed size protocol header, consist-
ing of six fields. Theb3type field indicates the kind of a message (see Fig. 3.11). The
b3incarnation gives the incarnation of the member that is sending the message. The
b3seqnofield is used by the sequencer to sequence broadcasts. Theb3messnrand
b3cpu together uniquely identify a message. They are used to detect duplicates. The
b3expect field is used to piggyback the acknowledgement for the last broadcast
delivered so far. When receiving a message, a kernel updatesm3expectwith b3expect.
If the sequencer knows thatm3expectfor each member is larger thang3minhistory, it
can increaseg3minhistoryand thereby free history buffers.

Receiving a Message
Let us now look at the protocols for receiving and sending messages reliably.

When a member wants to receive a broadcast, it invokes its local kernel by calling
ReceiveFromGroupand passes it pointers to a header and a buffer (see Fig. 3.12). The
kernel performs parameter checks to see if the call is legal. If not, it returns an error.
If it is a legal call, the kernel checks the history to see if there are any messages buf-
fered that can be delivered. If there are none, the thread callingReceiveFromGroupis
blocked until a message can be delivered. If a deliverable message is present, it is

62 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

222
Type From To Description22
BC3JOINREQ Member Sequencer Request to join the group222
BC3JOIN Sequencer Group Accept join message222
BC3LEAVEREQ Member Sequencer Request to leave the group222
BC3LEAVE Sequencer Group Accept leave message222
BC3BCASTREQ Member Sequencer or group Request to broadcast222
BC3BCAST Sequencer Group Accept broadcast message222
BC3ACK Member Sequencer Message is received (if r > 0)222
BC3RETRANS Member Sequencer Request asking for missed message222
BC3SYNC Sequencer Group Synchronize histories222
BC3STATE Member Sequencer Tell next expected sequence number222
BC3ALIVEREQ Member Member Check if destination is alive222
BC3ALIVE Member Member Acknowledgement of BC3ALIVEREQ222
BC3REFORMREQ Coordinator Group Request for entering recovery mode222
BC3VOTE Member Coordinator Vote for new sequencer222
BC3RESULT Coordinator Group Result of the voting phase222
BC3RESULTACK Member Coordinator Ack for receiving the final vote.22211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 3.11. Possible values forb3typeand their function.

copied from the history buffer into the buffer supplied by the application. The number
of bytes received is returned to the application process.

Each time a broadcast comes in from the sequencer, the kernel checks to see if
there is a thread waiting to receive a message. If so, it unblocks the thread and gives it
the message.

Sending a Message
When a member wants to do a broadcast, it invokes its local kernel by calling

SendToGroupand passes a header and data. The kernel then executes the algorithm
given in Figure 3.13. It performs a number of parameter checks to see if the process
making the call is a member of the group and if the message can be sent. If all checks
succeed, it builds a message consisting of the protocol header, and the user-supplied

SEC. 3.4 The Broadcast Protocol 63

long ReceiveFromGroup(gd, hdr, buf, cnt, more)
int gd; /* group descriptor */
struct header *hdr; /* pointer to Amoeba header buffer */
char *buf; /* pointer to empty data buffer */
long cnt; /* size of data buffer */
int *more; /* pointer to more flag */

{
struct group *g; /* pointer to group structure */
struct hist *h; /* pointer into the history */
long rs; /* size of the message to be received */

if (gd < 0 || gd >= grp3maxgrp) return(BC3ILLARG);/* legal call? */
g = groupindex[gd]; /* set group pointer */
if (!legal3port(&g–>g3port, &hdr–>h3port)) /* legal port? */

return(BC3BADPORT);
g–>g3flags |= FL3RECEIVING; /* start receiving */
while(!HST3IN(g, g–>g3me–>m3expect)) { /* is there a buffered message? */

if (g–>g3flags & FL3RESET) { /* don’t block during recovery */
g–>g3flags &= ~FL3RECEIVING; /* switch flag off */
return(BC3ABORT); /* return failure */

}
block(g); /* no, wait until one comes in */

}
g–>g3flags &= ~FL3RECEIVING; /* switch flag off */
h = &g–>g3history[HST3MOD(g, g–>g3me–>m3expect)];/* get it */
bcopy(h–>h3data, hdr, sizeof(struct header)); /* copy to user space */
rs = MIN(cnt, h–>h3size− sizeof(struct header)); /* MIN(a,b) = (a < b ? a : b) */
bcopy(h–>h3data + sizeof(struct header), buf, rs); /* copy to buf */
g–>g3me–>m3expect++; /* message is now delivered */
more = g–>g3nextseqno− g–>g3me–>m3expect; / number of buffered messages */
return(rs); /* return number of bytes received */

}

Fig. 3.12. Algorithm used by kernel to receive a reliable broadcast.

header and data. The kernel setsb3type to BC3BCASTREQ, b3cpu to the member’s id,
b3incarno to the current incarnation, andb3expect to the value of the member’s
m3expect. Depending on the size of the data andg3large, the kernel sends the message
point-to-point to the sequencer (PB method) or broadcasts the message to the group
(BB method). The default value forg3large is equal to the maximum size of a network
packet. Thus, small messages that fit in one network packet are sent using the PB
method and larger messages are sent using the BB method. The programmer may
override the default value. Once the message is sent, the kernel blocks the member
until the message comes back from the sequencer or until it receives a timeout. If, after
n retries, no message is received from the sequencer, the member assumes that the
sequencer has crashed and enters recovery mode (see Section 3.4.3). During recovery
it is determined if the send failed or succeeded.

64 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

int SendToGroup(gd, hdr, data, size)
int gd; /* group descriptor */
struct header *hdr; /* pointer to header to be sent */
char *data; /* pointer to data to be sent */
long size; /* size of data */

{
struct group *g; /* pointer to group structure */
long messid; /* messid for the message to be sent */
struct pkt *msg; /* the message to be sent */

if (gd < 0 || gd >= grp3maxgrp) return(BC3ILLARG);/* legal call? */
g = groupindex[gd]; /* set pointer */
if (!legal3port(&g–>g3port, &hdr–>h3port)) /* legal port? */

return(BC3BADPORT);
if (g–>g3flags & FL3RESET) return(BC3ABORT);/* don’t send during recovery */

/* Checks done, start send. */
g–>g3seq–>m3retrial = g–>g3maxretrial; /* set maximum number of retries */
messid = g–>g3me–>m3messid+1; /* set message identifier */
g–>g3flags |= FL3SENDING; /* start sending message */
do {

setmsg(&msg, BC3BCASTREQ, −1, messid, g–>g3index, g–>g3me–>m3expect,
g–>g3incarnation, hdr, (long) data, size); /* build message */

set3timer(g, msg, settimer); /* set timer */
if (g–>g3seq == g–>g3me) sendlocal(g, msg); /* am I the sequencer? */
else if (size >= g–>g3large) multicast(&g–>g3addr, msg);/* use BB method? */
else unicast(&g–>g3seq–>m3addr, msg); /* use PB method */
/* Block until broadcast succeeds, fails, or times out. */
block(g); /* suspend calling thread */
if (g–>g3flags & FL3SENDING) { /* timeout? */

g–>g3seq–>m3retrial−−; /* decrease retry counter */
if (g–>g3seq–>m3retrial <= 0) recover(g);/* did the sequencer crash? */

}
} while(g–>g3flags & FL3SENDING); /* done? */
return(g–>g3me–>messid≥ messid ? BC3OK : BC3FAIL);/* return success or failure */

}

Fig. 3.13. Algorithm used by sending kernel to achieve reliable broadcast.

Protocol
Having looked at what the sender does to transmit a message to the sequencer for

broadcast, let us now consider what a kernel does when theBC3BCASTREQ message
comes in (see Fig. 3.14). If the message is sent using the BB method, then all members
will receive the broadcast request (absent a network failure). Ifb3seqno= 0, the
broadcast request is sent using the BB method and the ordinary members will buffer the
request until the sequencer broadcasts an accept message. Ifb3seqno >0, the
sequencer has sequenced the message, but did not accept the message yet, because it is
waiting for r acknowledgements. In this case, the members store the message in the
third part of the history and send an acknowledgement (BC3ACK) if their rank is less

SEC. 3.4 The Broadcast Protocol 65

than or equal tor. This informs the sequencer that the message sent byb3cpu with
message numberb3messnrhas been received. Once the sequencer has receivedr of
these acknowledgements, it will accept the message officially and broadcast a short
accept message (BC3BCAST without data).

When the sequencer receives the broadcast request, it updates its table with
member information and it tries to free some buffers in its history using the pig-
gybacked acknowledgements. Then, it checks if the message is a duplicate by examin-
ing b3cpuandb3messnr. If so, it informs the sender that the message already has been
sent.

If the message is new andr = 0, the sequencer stores the message in its history
and officially accepts the message (i.e., the sequencer changes the type of the message
from BC3BCASTREQ to BC3BCAST). If r > 0, the sequencer stores the message in its
history buffer, but it does not accept the message officially. Instead, it forwards the
request with sequence number to the group and waits forr acknowledgements.

The history is processed each time a broadcast request is received,r ack-
nowledgements for a buffered broadcast message have been received, or when the
sequencer learns from a piggybacked acknowledgement that it can free buffers to
accept a buffered request (a message stored in the third part of the history).Processhist
accepts broadcast messages buffered in the history as long as the history does not fill
up (see Fig. 3.15). It takes the next unprocessed message from the history buffer,
broadcasts the message (PB method) or broadcasts an accept message (BB method) and
increasesg3nextseqno. At this point the message has officially been accepted.

If the message just accepted was sent by a member running on the sequencer ker-
nel, the member can be unblocked and theSendToGroupreturns successfully.

The protocol requires three algorithms to be executed. First, the sender must
build a message and transmit it to the sequencer (PB) or broadcast it (BB). Second, the
sequencer and members must process incomingBC3BCASTREQ messages. The
sequencer broadcasts the messages with sequence number (PB) or broadcasts a short
accept message (BB); the members buffer them until an official accept from the
sequencer arrives (BB). Third and last, the members must handle arrivingBC3BCAST

messages from the sequencer. We have already described the first two steps; now let
us look at the last one.

When aBC3BCAST arrives, the receiving kernel executes the procedurebroad-
castreceive(see Fig. 3.16). The kernel checks if the incoming message has user-
supplied header and data. ABC3BCAST message with user-supplied header and data is
a message sent following the PB method; otherwise the message is a short accept
broadcast and the user-supplied header and data (received on a previous message) are
buffered. If the sequence number is the one it expected, the message is stored in the
history and processed byprocessrec. If the sequence number is not the expected one,
the member has missed one or more broadcasts and asks the sequencer for retransmis-
sions (BC3RETRANS). Out-of-sequence broadcasts are buffered in the history, but the

66 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

void bcastreq(g, bc, data, n)
group3p g; /* pointer to group structure */
struct bc3hdr *bc; /* pointer to protocol header */
char *data; /* pointer do data in message */
int n; /* number of bytes in data */

{
struct hist *hist; /* pointer in history */
struct member *src = g–>g3member + bc–>b3cpu; /* pointer to the sender */
struct pkt *msg; /* reply message */

if (g–>g3me != g–>g3seq) { /* am I the sequencer? If no: */
if(bc–>b3seqno == 0) {

/* A request without seqno has been received. This must be the BB method. */
mem3buffer(g, src, bc, data, n); /* buffer it */

} else {
/* A request with seqno; this must be for resilience > 0. Store the message
* in the right place in the history and send an ack if my rank <= resilience. */
store3in3history3and3send3ack(g, bc, data, n);

}
return; /* done */

}

/* Yes, the sequencer. This must be the PB protocol. */
if (src–>m3expect < bc–>b3expect) /* update member info? */

src–>m3expect = bc–>b3expect;
if (hst3free(g)) g–>g3flags &= ~FL3SYNC; /* is synchronization needed? */
if (bc–>b3messnr <= src–>m3messid) { /* old request? */

/* Send sequence number back as an ack to the sender. */
retrial(g, bc–>b3cpu);

} else if (HST3FULL(g)) { /* history full? */
g–>g3flags |= FL3SYNC; /* synchronize */
synchronize(g); /* multicast a BC3SYNC messages */

} else { /* append message to history */
src–>m3messid = bc–>b3messnr; /* remember messid */
bc–>b3seqno = g–>g3nexthistory; /* assign sequence number */
if (g–>g3resilience == 0) bc–>b3type = BC3BCAST;/* accept request */
/* Append to history and increase g3nexthistory. */
hist = hst3append(g, bc, data, n);
if (g–>g3resilience > 0) { /* resilience degree > 0? */

forward3msg3to3members(g, hist); /* forward request with seqno */
} else hist–>h3accept = 1; /* message is accepted */
processhist(g); /* accept the new broadcast */

}
}

Fig. 3.14. Algorithm executed by all kernels (including sequencer) when a

BC3BCASTREQ message arrives.

message is not processed, because the kernel is required to pass messages to the appli-
cation in the correct order.

Processrecinspects the history buffer to see if the next expected message has

SEC. 3.4 The Broadcast Protocol 67

void processhist(g)
struct group *g; /* pointer to group structure */

{
struct hist *hist; /* pointer into the history */
struct member *src; /* pointer to the sender */
struct *msg; /* reply message */

for(hist = &g–>g3history[HST3MOD(g, g–>g3nextseqno)];/* get first msg */
g–>g3nextseqno < g–>g3nexthistory && hist->h3accept;/* process msg? */
hist = &g–>g3history[HST3MOD(g, g–>g3nextseqno)]) {/* get next msg */

if (!HST3SYNCHRONIZE(g)) { /* synchronize first? */
src = &g–>g3member[hist–>h3bc.b3cpu]; /* set the sender */
g–>g3nextseqno++; /* accept broadcast officially */
if (src != g–>g3seq && hist–>h3size >= g–>g3large) {/* BB method? */

/* Build accept message and multicast. */
buildmsg(&msg, 0, &hist–>h3bc, 0, 0);
multicast(msg, &g–>g3addr);

} else { /* PB method */
/* Build complete message and multicast it. */
buildmsg(&msg, 0, &hist–>h3bc, hist–>h3data, hist–>h3size);
multicast(msg, &g–>g3addr);

}
if ((g–>g3flags & FL3SENDING) && hist–>h3bc.b3cpu == g–>g3index) {

/* Message was sent by a member running on the sequencer kernel. */
g–>g3flags &= ~FL3SENDING; /* switch flag off */
unblock(g); /* unblock application */

}
} else {

g–>g3flags |= FL3SYNC; /* synchronize */
synchronize(g); /* multicast BC3SYNC message */
break; /* stop processing */

}
}

}

Fig. 3.15. Algorithm executed by the sequencer to process the history.

been stored (see Fig. 3.17). If so, it increasesg3nextseqnoand updates its member
information of the sender. If the sender of the message is a member at the receiving
kernel, then the sending member is unblocked and theSendToGroupreturns success-
fully.

The sequencer frees history buffers using the piggybacked acknowledgements
contained in the messages from the members. The assumption is that a member will
always send a message before the history fills up. This assumption need not be true,
depending on the communication patterns of the applications. For example, a member
may send a message that triggers another member to send messages. If this member
misses the message, the system may very well become deadlocked. To prevent this
from happening, each member kernel sends aBC3STATE message after receiving a cer-
tain number of messages without sending any. This is effectively a logical timer; a real
timer could also be used, but this would be less efficient. Theb3expectfield in the

68 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

void broadcastreceive(g, bc, data, n)
struct group *g; /* pointer to group state */
struct bc3hdr *bc; /* pointer to protocol header */
char *data; /* pointer to data */
long n; /* number of bytes in data */

{
int received = 1; /* is data received? */
struct member *src; /* pointer to original sender */
struct hist *hist; /* pointer into the history */

src = g–>g3member + bc–>b3cpu; /* set source */
/* If the PB method is used, the message contains the original data; otherwise
* the message is only a short accept msg and the data should have been received
* and is buffered. */
if (n == 0) { /* short accept msg? */

/* Yes, the BB method or resilience degree > 0. */
hist = &g–>g3history[HST3MOD(g, bc–>b3seqno)];
if (g–>g3resilience > 0 && hist–>h3bc.m3messid == bc–>b3messnr) {

/* The message is stored as BC3BCASTREQ in the history. */
hist–>h3accept = 1; /* accept */
return; /* done */

}
if (messbuffered(src, bc–>b3messnr)) /* is message buffered? */

data = getmsg(src); /* yes, get it */
else received = 0; /* not received the data yet */

}
if (g–>g3nextseqno == bc–>b3seqno && received) { /* accept it? */

hist = hst3store(g, bc, data, n); /* store new msg in history */
hist->h3accept = 1; /* accept it */
processrec(g); /* process history */

} else if (g–>g3nextseqno < bc–>b3seqno ||
(g–>g3nextseqno == bc–>b3seqno && !received)) {/* out of order? */

if (received) hst3store(g, bc, data, n); /* yes, buffer it */
ask3for3retransmission(g, g–>g3nextseqno); /* ask for the missing msgs */

} /* old message; discard */
}

Fig. 3.16. Algorithm for processing an incoming broadcast.

BC3STATE message informs the sequencer which messages have been delivered by the
sender of the message.

If the sequencer runs out of history buffers and has not received enough
BC3STATE messages to make the decision to free history buffers, it can explicitly ask
members which messages they have received. It does so by sending aBC3SYNC mes-
sage. Members respond to this message with aBC3STATE message.

SEC. 3.4 The Broadcast Protocol 69

void processrec(g)
struct group *g; /* pointer to group state */

{
struct member *src; /* pointer to original sender */
struct hist *hist; /* pointer into the history */

for(hist = &g–>g3history[HST3MOD(g, g–>g3nextseqno)];/* set pointer into history */
hist–>h3accept; /* is the message accepted? */
hist = &g–>g3history[HST3MOD(g, g–>g3nextseqno)]) {/* set pointer to next entry */

src = g–>g3member + hist–>h3bc.b3cpu; /* set source */
g–>g3nextseqno++; /* accept it */
g–>g3nexthistory++; /* increase next history */
src–>m3messid = hist–>h3bc.b3messnr; /* remember last used message id */
if (src != g–>g3me) /* did I send the message? */

src–>m3expect = MAX(src–>m3expect, hist–>h3bc.b3expect);
if ((g–>g3flags & FL3SENDING) && hist–>h3bc.b3cpu == g–>g3index) {

/* I sent this message; unblock sending thread. */
g–>g3flags &= ~FL3SENDING; /* switch flag off */
unblock(g); /* unblock sending thread */

}
if (IAMSILENT(g)) sendstate(g); /* silent for a long time? */

}
}

Fig. 3.17. Functionprocessrecused in Fig. 3.16.

3.4.3. Protocol for Recovery
In the previous section, we assumed that none of the members ever failed. Now

we will discuss the algorithms that are executed when a member or the sequencer fails.
Failures are detected by sending aBC3ALIVEREQ message to a kernel that has not

been heard from in some time, and waiting for a reply. If, after a number of retries no
BC3ALIVE message comes back, the enquiring kernel assumes that the destination has
failed and initiates recovery. Picking the right number of retries is tricky. If the
number is too low, a kernel may decide that another member has failed while in reality
the other group member was just busy doing other things. If the number is too high, it
can take a long time before a failure is detected.

Once a kernel has decided that another kernel has failed, it enters a recovery
mode that causes subsequent calls toReceiveFromGroupfrom local members to return
an error status. Any surviving member may callResetGroupto recover from a
member failure.ResetGrouptries to re-form the group into a group that contains all
the surviving members that can communicate with each other. If needed, it also elects
a new sequencer. The second parameter ofResetGroupis the minimum number of
members of the old group that are required for the new group to be valid. IfReset-
Group succeeds, it returns the actual number of members in the new group.Reset-
Group fails if it cannot form a group with enough members.

The protocol to recover from member crashes is based on the invitation protocol
described by Garcia-Molina [Garcia-Molina 1982]. It runs in two phases. In the first

70 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

phase, the protocol establishes which members are alive and chooses one member as
coordinator to handle the second phase. Every member that callsResetGroupbecomes
a coordinator and invites other members to join the new group by sending a
BC3REFORMREQmessage. If a member is alive and it is not a coordinator, it responds
with aBC3VOTE message containing the highest sequence number that it has seen (each
member already keeps this number for running the protocol for communication failures
as described above). If one coordinator invites another coordinator, the one with the
highest sequence number becomes coordinator of both (if their sequence numbers are
equal, the one with the lowest member id is chosen). When all members of the old
group have been invited, there is one coordinator left. It knows which members are
alive and which member has the highest sequence number.

In the second phase of the recovery, the group is restarted. If the coordinator has
missed some messages, it asks the member with the highest sequence number for
retransmissions (this is unlikely to happen, because the initiator of the recovery with
the highest sequence number becomes coordinator). Once the coordinator is up-to-
date, it checks to see if the complete history is replicated on all remaining members. If
one of the members does not have the complete history, the coordinator sends it the
missing messages. Once the new group is up-to-date, it builds aBC3RESULT message
containing information about the new group: the size of the new group, the members in
the new group, the new sequencer (itself), a new network address (FLIP address) for
the group, and the newincarnation number of the group. The network address and
incarnation number are included to make sure that messages directed to the old group
will not be accepted by the new group. It stores theBC3RESULT message in its history
and broadcasts it to all members. When a member receives theBC3RESULT message, it
updates the group information, sends an acknowledgement (BC3RESULTACK) to the
coordinator, and enters normal operation. The coordinator enters normal operation
after it has received aBC3RESULTACK message from all members.

When back in normal operation, members never accept messages from a previ-
ous incarnation of the group. Thus, members that have been quiet for a long time, for
example, due to a network partition, and did not take part in the recovery will still use
an old incarnation number when sending a message to the new group. These messages
will be ignored by the new group, treating the ex-member effectively as a dead
member. The incarnation numbers make sure that no conflicts will arise when a
member suddenly comes back to life after being quiet for a period of time.

If the coordinator (or one of the members) crashes during the recovery, the proto-
col starts again with phase 1. This continues until the recovery is successful or until
there are not enough living members left to recover successfully.

In Figure 3.18 the recovery protocol is illustrated. In Figure 3.18(a) a possible
start of phase 1 is depicted. Members 0, 1, and 2 simultaneously start the recovery and
are coordinators. Member 3 has received more messages (it has seen the highest
sequence number), but it did not callResetGroup. Member 4, the sequencer, has
crashed. In Figure 3.18(b), the end of phase 1 has been reached. Member 0 is the

SEC. 3.4 The Broadcast Protocol 71

coordinator and the other members are waiting for theresult message (they check
periodically if member 0 is still alive). In Figure 3.18(c), the end of phase 2 has been
reached. Member 0 is the new sequencer. It has collected message 34 from member 3
and has stored theresult message (number 35) in its history. The other members are
also back in normal operation. They have collected missing messages from member 0
and have also received theBC3RESULT message.

33

C

0

30

C

1

33

C

2

34

3

dead

S

4
(a)

33

C

0

30

1

33

2

34

3

dead

S

4
(b)

35

S

0

35

1

35

2

35

3
(c)

Fig. 3.18. A possible recovery for a group of size 5 after a crash of member 4.

S is a sequencer. C is a coordinator. The number in the box is the sequence

number of the last message received. The number below the box is the

member id. (a) Shows a possible start of phase 1. (b) Shows the start of phase

2. In (c) the recovery has been completed.

3.5. Performance
The measurements were taken on a collection of 30 MC68030s (20 Mhz) con-

nected by a 10 Mbits/s Ethernet. All processors were on the same Ethernet and were
connected to the network by Lance chip interfaces (manufactured by Advanced Micro
Devices). The machines used in the experiments were able to buffer 32 Ethernet
packets before the Lance overflowed and dropped packets. Each measurement was
done 10,000 times on an almost quiet network. The size of the history buffer was 128
messages. The experiments measured failure-free performance.

Most experiments have been executed with messages of size 0 byte, 1 Kbyte, 4
Kbyte, and 8,000 byte. The last size was chosen to reflect a fundamental problem in
the implementation. In principle, the group communication protocols can handle mes-
sages of size 8 Kbyte or larger, but lower layers in the kernel prohibit measuring the
communication costs for these sizes. Messages larger than a network packet size have
to be fragmented in multiple packets. To prohibit a sender overrunning a receiver
flow-control has to be performed on messages consisting of multiple packets. For
point-to-point communication many flow-control algorithms exists [Tanenbaum 1989],

72 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

but it is not immediately clear how these should be extended to multicast communica-
tion. We are also not aware of new algorithms designed for multicast flow-control.
The measurements in this section therefore do not include the time for flow-control and
we have used a reasonable but arbitrary upper bound to the message size.

The first experiment measures the delay for the PB method withr = 0. In this
experiment one process continuously broadcasts messages of size 0 byte, 1 Kbyte, 4
Kbyte, and 8,000 byte to a group of processes (the size of the message excludes the
116† bytes of protocol headers). All members continuously callReceiveFromGroup.
This experiment measures the delay seen from the sending process, between calling
and returning fromSendToGroup. The sending process runs on a different processor
than the sequencer. Note that this is not the best possible case for our protocol, since
only one processor sends messages to the sequencer (i.e., no acknowledgements can be
piggybacked by other processors).

Delay

(msec)

Number of members in the group

0

5

10

15

20

25

0 5 10 15 20 25 30

d 0 bytes

d 1024 bytes

d d
d 2048 bytes

d d d d d d d d d d d d
d d d

d d d d d
d

d
d

d d d d d d 4096 bytes

d d
d d

d d
d d d d 8000 bytes

Fig. 3.19. Delay for 1 sender using PB method.

The results of the first experiment are depicted in Figure 3.19. For a group of
two processes, the measured delay for a 0-byte message is 2.7 msec. Compared to the
Amoeba RPC on the same architecture, the group communication is only 0.1 msec
slower than the RPC. (The RPC numbers reported in Chapter 2 were measured on Sun
3/60s, which are faster for communication than the MC68030s used in the group exper-
iments. Unfortunately, we did not have 30 Sun 3/60s available.) For a group of 30
333333333333333
† 116 is the number of header bytes: 14 bytes for the Ethernet header, 2 bytes flow control, 40 bytes for
the FLIP header, 28 bytes for the group header, and 32 bytes for the Amoeba user header. The Amoeba
user header is only sent once.

SEC. 3.5 Performance 73

processes, the measured delay for a 0-byte message is 2.8 msec. From these numbers,
one can estimate that each node adds 4µsec to the delay for a broadcast to a group of 2
nodes. Extrapolating, the delay for a broadcast to a group of 100 nodes should be 3.2
msec. Sending an 8,000-byte message instead of a 0-byte message adds roughly 20
msec. Because the PB method is used in this experiment, this large increase can be
attributed to the fact that the complete message goes over the network twice.

Figure 3.20 breaks down the cost for a single 0-byteSendToGroupto a group of
size 2, using the PB method. Both members call ReceiveFromGroup to receive mes-
sages. To reflect the typical usage of the group primitives, ReceiveFromGroup is
called by another thread thanSendToGroup. Most of the time spent in user space is the
context switch between the receiving and sending thread. The cost for the group proto-
col itself is 740µsec.

The results of the same experiment but now using the BB method are depicted in
Figure 3.21. The result for sending a 0-byte message is, as can be expected, similar.
For larger messages the results are dramatically better, since in the BB method the
complete message only goes over the network once. At first sight, it may look as if the
BB method is always as good as or better than the PB protocol. However, this is not
true. From the point of view of a single sender there is no difference in performance,
but for the receivers other than the sequencer there is. In the PB protocol they are
interrupted once, while in the BB protocol they are interrupted twice.

The next experiment measures the throughput of the group communication. In
this experiment all members of a given group continuously callSendToGroup. We
measure both for the PB method and the BB method how many messages per second
the group can deal with. The results are depicted in Figure 3.22 and Figure 3.23. The
maximum throughput is 815 0-byte messages per second. The number is limited by the
time that the sequencer needs to process a message. This time is equal to the time
spent taking the interrupt plus the time spent in the driver, FLIP protocol, and broadcast
protocol. On the 20-MHz 68030, this is almost 800µsec, which gives an upper bound
of 1250 messages per second. This number is not achieved, because the member run-
ning on the sequencer must also be scheduled and allowed to process the messages.

The throughput decreases as the message size grows, because more data have to
be copied. A receiver must copy each message twice: once from the Lance interface to
the history buffer and once from the history buffer to user space. In the PB method, the
sequencer must copy the message three times: one additional copy from the history
buffer to the Lance interface to broadcast the message. (If our Lance interface could
have sent directly from main memory, this last copy could have been avoided.) If
Amoeba had support for sophisticated memory management primitives like Mach
[Young et al. 1987] the second copy from the history buffer to user space could also
have been avoided; in this case one could map the page containing the history buffer
into the user’s address space.

For messages of size 4 Kbyte and larger, the throughput drops more. (For some
configurations we are not able to make meaningful measurements at all.) This comes

74 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

User

Group

FLIP

Ethernet

Ethernet

FLIP

Group

User

Group

User

Group

Member

Ethernet

FLIP

Group

FLIP

Ethernet

Group

User

Group

Sequencer

BC3BCASTREQ

BC3BCAST

(a)

2222222222222222222222
Layer Time (µsec)22
User 5142222222222222222222222
Group 7402222222222222222222222
FLIP 5702222222222222222222222
Ethernet 91622222222222222222222221
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

(b)

Fig. 3.20. (a) A break down of the cost inµsec of a singleSendToGroup-

ReceiveFromGrouppair. The group size is 2 and the PB method is used.

(b) The time spent in the critical path of each layer. The Ethernet time is the

time spend on the wire plus the time spent in the driver and taking the inter-

rupt.

SEC. 3.5 Performance 75

Delay

(msec)

Number of members in the group

0

5

10

15

20

0 5 10 15 20 25 30

d 0 bytes

d 1024 bytes

d d d d d d
d

d 2048 bytes

d 4096 bytes

d d d d d d d d d d d d d
d d

d d d d d
d

d
d d d d d d 8000 bytes

Fig. 3.21. Delay for 1 sender using the BB method.

Throughput

(#msg)

Number of senders in the group

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

d

d d d
d d

d

d d
d

d d d d
d 0 bytes

d

d
d d d d d d d d d d d

d d 1024 bytes

d

d
d d d d d d d d d d d d

d 2048 bytesd d d d d d d d d d d d d

d 4096 bytes
d d d d d d d d d d d

d d
d 8000 bytes

Fig. 3.22. Throughput for the PB Method. The group size is equal to the

number of senders.

76 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

Throughput

(#msg)

Number of senders in the group

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16

d
d

d d
d

d d
d

d d

d d d
d

d

0 bytes

d
d

d d
d d d d d d

d
d d d

d 1024 bytes

d
d d d d d d d d d d d

d
d 2048 bytes

d d d d d d d d d

d
d d d 4096 bytes

d d d d d d d d d d d d d 8000 bytes

Fig. 3.23. Throughput for the BB Method. The group size is equal to the

number of senders.

from the fact that our Lance configuration can buffer only 32 Ethernet packets, each
with a maximum size of 1514 bytes. This means that the sequencer starts dropping
packets when receiving 11 complete 4 Kbyte messages simultaneously. (If our system
had been able to buffer more packets, the same problem would have appeared at some
later point. The sequencer will need more time to process all the buffered packets,
which will at some point result in timeouts at the sending kernel and in retransmis-
sions.) The protocol continues working, but the performance drops, because the proto-
col waits until timers expire to send retransmissions. The same phenomenon also
appears with groups larger than 16 members and 2-Kbyte messages.

Another interesting question is how many disjoint groups can run in parallel on
the same Ethernet without influencing each other. To answer this question we ran an
experiment in which a number of groups of the same size operated in parallel and each
member of each group continuously calledSendToGroup. We ran this experiment for
group sizes of 2, 4, and 8 and measured the total number of 0-byte broadcasts per
second (using the PB method). The experiment measures, for example, for two groups
with 2 members the total number of messages per second that 4 members together suc-
ceeded in sending, with each member being member of one group and running on a
separate processor. The results are depicted in Figure 3.24. The maximum throughput
is 3175 broadcasts per second when 5 groups of size 2 are broadcasting at maximum
0-byte message throughput (this corresponds to at least 736,600 bytes per second;

SEC. 3.5 Performance 77

Throughput

(#msg)

Number of groups

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7

∆

∆

∆

∆

∆

∆
∆

5

5

5

5 5
5

5

+
+

+

8 members+ + +

4 members5 5 5

2 members∆ ∆ ∆

Fig. 3.24. Throughput for groups of 2, 4, and 8 members running in parallel

and using the PB method. We did not have enough machines available to

measure the throughput with more groups with 8 members.

3175* 2 * 116= 736,600). When another group is added the throughput starts drop-
ping due to the number of collisions on the Ethernet. This is also the case for the poor
performance of groups of size 8.

The final experiment measures the delay of sending a message withr > 0. Fig-
ure 3.25 and Figure 3.26 depict the delay for sending a message withresilience degrees
from one to 15. As can be expected, sending a message with a higherr scales less well
than sending with a degree of 0. In this case, the number of FLIP messages per reliable
broadcast sent is equal to 3+ r (assuming no packet loss). Also, when using large mes-
sages and a high resilience degree, our hardware starts to miss packets. For these set-
tings we are not able to make meaningful measurements.

The delay for sending a 0-byte message to a group of size two with a resilience
degree of one is 4.2 msec. For a group of size 16 with a resilience degree of 15, the
measured delay is 12.9 msec. This difference is due to the 14 additional acknowledge-
ments that have to be sent. Each acknowledgement adds approximatelty 600µsec.

3.6. Comparison with Related Work
In this section, we will compare our reliable broadcast protocol with other proto-

cols and our system with other systems that provide broadcast communication. Fig-
ure 3.27 summarizes the results. In comparing protocols, several points are of interest.
The first is the performance of the protocol. This has two aspects: the time before a

78 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

Delay

(msec)

Resilience degree (r)

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d
d d d d d d

d d
d

d d

d d
d 0 bytes

d d d d
d d d

d d d
d

d d
d d 1024 bytes

d d d
d d

d
d d

d d
d d

d
d 2048 bytes

d d
d

d d
d

d
d

d
d

d

d 4096 bytes
d d d

d d d
d

d
d

d

d 8000 bytes

Fig. 3.25. Delay for 1 sender with differentrs using PB method. Group size is

equal tor + 1.

message can be delivered to the application and the number of protocol messages
needed to broadcast the message. The second is the semantics of sending a broadcast
message. There are three aspects: reliability, ordering, and fault tolerance. Although
fault tolerance is an aspect of reliability, we list it as an separate aspect. The third is
the hardware cost. The key aspect here is whether the protocol requires members to be
equipped with additional hardware (e.g., a disk). Although more research has been
done in broadcast communication than is listed in the table, this other research focuses
on different aspects (e.g., multicast routing in a network consisting of point-to-point
communication links) or requires synchronized clocks. For a bibliography of these
papers we refer the reader to [Chanson et al. 1989].

Let us look at each protocol in turn. The protocols described by [Birman and
Joseph 1987] are implemented in the Isis system. The Isis system is primarily intended
for doing fault-tolerant computing. Thus, Isis tries to make broadcast as fast as possi-
ble in the context of possible processor failures. Our system is intended to do reliable
ordered broadcast as fast as possible. If processor failures occur, some messages may
be lost, in ther = 0 case. If, however, an application requires fault tolerance, our sys-
tem can trade performance against fault tolerance. As reliable ordered broadcast in the
event of processor failures is quite expensive, Isis includes primitives that provide a
weaker ordering (e.g., a causal ordering).

Recently the protocols for Isis have been redesigned [Birman et al. 1991]. The

SEC. 3.6 Comparison with Related Work 79

Delay

(msec)

Resilience degree (r)

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d d d d
d

d
d d

d d
d

d d

d d
0 bytes

d d d d d
d

d d
d

d d d d
d d 1024 bytes

d d d d d

d d d
d

d d d d 2048 bytes

d d

d
d d

d
d

d
d d d 4096 bytes

d
d

d d
d

d
d d

d
d d 8000 bytes

Fig. 3.26. Delay for 1 sender with differentrs using BB method. Group size is

equal tor + 1.

system is now completely based on a broadcast primitive that provides causal ordering.
The implementation of this primitive uses reliable point-to-point communication. The
protocol for totally-ordered broadcast is based on causal broadcast. As in our protocol,
a sequencer (a token holder in Isis terminology) is used to totally order the causal mes-
sages. Unlike our protocol, the token holder can migrate. Depending if the sender
holds the token, this scheme requires either one message or two messages, but each
message possibly contains a sequence number for each member, while in our protocol
the number of bytes for the protocol header is independent of the number of members.
Thus in Isis, for a group of 1024 members, 4K bytes of data are possibly added to each
message. Depending on the communication patterns, this data can be compressed, but
in the worst case 4K is still needed. As an aside, the new version of Isis no longer sup-
ports a total ordering for overlapping groups.

Chang and Maxemchuk describe a family of protocols [Chang and Maxemchuk
1984]. These protocols differ mainly in the degree of fault tolerance that they provide.
Our protocol forr = 0 resembles their protocol that is not fault-tolerant (i.e., it may lose
messages if processors fail), but ours is optimized for the common case of no commun-
ication failures. Like our protocol, the CM protocol also depends on a central node, the
token site, for ordering messages. However, on each acknowledgement another node
takes over the role of token site. Depending on the system utilization, the transfer of
the token site on each acknowledgement can take one extra control message. Thus

80 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

their protocol requires 2 to 3 messages per broadcast, whereas ours requires only 2 in
the best case and only a fraction bigger than 2 in the normal case.

22
Performance Semantics

22 Additional

Fault- Hardware
Protocol

11
1
1
1
1
1

Delay
1
1
1
1

#Pkts Reliable Ordering
tolerance22

BJ 2 Rounds 2n Yes Yes n−1 No22
BSS 2 2n Yes Yes n−1 No22
CM 2…2+n−1 2+ε Yes Yes 0…n−1 No22
CZ 2 2…n No…Yes No No No22
EZ 2 2 Yes Yes n−1 No22
LG 3 Phases 1…4n Yes Yes Yes Yes22
MMA ≥1 1 Yes Yes n/2 No22
M 2 2+ε Yes Yes Yes Yes22
NCN 2 n+1 Yes No…Yes 0…n−1 No22
PBS ≥1 1 Yes Yes 0…n−1 No…Yes22
TY 2 3 Yes Yes No…Yes Yes22
VRB 2 Rounds 2n Yes Yes n−1 Yes22
Ours 2 2…3+n−1 Yes Yes 0…n−1 No2211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 3.27. Comparison of different broadcast protocols. A protocol is identi-

fied by the first letters of the names of the authors. The group size isn. In a

round each member sends a message. Aphaseis the time necessary to com-

plete a state transition (sending messages, receiving messages, and local com-

putation). For each protocol, we list the best performance. In some cases, the

performance may be worse, for example, for higher degrees of fault tolerance.

Fault tolerance is achieved in the CM protocol by transferring the token. If a
message is delivered after the token has been transferred L times, then L processor
failures can be tolerated. This scheme introduces a very long delay before a message
can be delivered, but uses fewer messages than ours. Finally, in the CM protocol all
messages are broadcast, whereas our protocol uses point-to-point messages whenever
possible, reducing interrupts and context switches at each node. This is important,
because the efficiency of the protocol is not only determined by the transmission time,

SEC. 3.6 Comparison with Related Work 81

but also (and mainly) by the processing time at the nodes. In their scheme, each broad-
cast causes at least 2(n − 1) interrupts; in ours onlyn. The actual implementation of
their protocol uses physical broadcast for all messages and is restricted to a single
LAN.

The group communication for the V system, described in [Cheriton and
Zwaenepoel 1985], integrates RPC communication with broadcast communication in a
flexible way. If a client sends a request message to a process group, V tries to deliver
the message at all members in the group. If any one of the members of the group sends
a reply back, the RPC returns successfully. Additional replies from other members can
be collected by the client by callingGetReply. Thus, the V system does not provide
reliable, ordered broadcasting. However, this can be implemented by a client and a
server (e.g., the protocol described by Navaratnam, Chanson, and Neufeld runs on top
of V). In this case, a client needs to know how the service is implemented. We do not
think this is a good approach. If an unreplicated file service, for example, is re-
implemented as a replicated file service to improve performance and to increase availa-
bility, it would mean that all client programs have to be changed. With our primitives,
no change is needed in the client code.

Elnozahy and Zwaenepoel describe a broadcast protocol (EZ in Fig. 3.27) espe-
cially designed for replicated process groups [Elnozahy and Zwaenepoel 1992b]. Like
the CM protocols and like ours, it is based on a centralized site and negative ack-
nowledgements. Unlike ours, it especially designed to provide a low delay in delivery
of messages, while at the same time providing a high resilience degree. This goal is
achieved by keeping anantecedence graphand adding to each message the incremental
changes to this graph. By maintaining the antecedence graph this protocol does not
need to send acknowledgements to confirm that the message is stored atr members.
On the other hand, the application must potentially be rolled back when a processor
fails.

The protocol described in [Luan and Gligor 1990] is one of the protocols that
require additional hardware. In the LG protocol each member must be equipped with a
disk. Using these disks the protocol can provide fault-tolerant ordered broadcasting,
even if the network partitions. It uses a majority-consensus decision to agree on a
unique ordering of broadcast messages that have been received and stored on disk.
Under normal operation, the protocol requires 4n messages. However, under heavy
load the number of messages goes down to 1. The delay before a message can be
delivered is constant: the protocol needs three protocol phases before it can be
delivered. In a system like Amoeba that consists of a large number of processors,
equipping each machine with a disk would be far too expensive. Furthermore, the per-
formance of the protocol is also much too low to be considered as a general protocol
for reliable broadcasting.

A totally different approach to reliable broadcasting is described in [Melliar-
Smith et al. 1990]. They describe a protocol that achieves reliable broadcast with a
certain probability. If processor failures occur, it may happen that the protocol cannot

82 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

decide on the order in which messages must be delivered. They claim that the proba-
bility is high enough to assume that all messages are ordered totally, but nevertheless
there is a certain chance that messages are not totally-ordered. The MMA protocol
uses only one message, but a message cannot be delivered at an application until
several other broadcast messages have been received. For a group of 10 nodes, a mes-
sage can be delivered on average after receiving another 7.5 messages. With large
groups, the delay is unacceptably large.

Montgomery [Montgomery 1978] coined the termatomic broadcastin an unpub-
lished dissertation. The thesis describes the problem of reliable, totally-ordered multi-
cast and proposes two solutions: one based on point-to-point communication and one
based on broadcast. Both solutions are based on a centralized component that orders
messages. To provide for fault tolerance the messages are always stored on stable
storage. Another important difference between these two protocols and ours is that
acknowledgements are not piggybacked. Instead, each node broadcasts once in a while
a message saying which messages it has received, so that the central site can purge
messages from its stable storage. No indication is given that the protocol was ever
implemented, and no measurements are presented.

Navaratnam, Chanson, and Neufeld provide two primitives for reliable broad-
casting [Navaratnam et al. 1988]. One orders messages; the other does not. Their pro-
tocol also uses a centralized scheme, but instead of transferring the token site on each
acknowledgement, their central site waits until it has received acknowledgements from
eachnode that runs a member before sending the next broadcast. In an implementation
of the NCN protocol on the V-system, a reliable broadcast message costs 24.8 msec for
a group of 4 nodes on comparable hardware. Our current implementation does this in
less than 4.8 msec (r = 3).

In [Peterson et al. 1989] a communication mechanism is described calledPsync.
In Psync a group consists of a fixed number of processes and is closed. Messages are
causally ordered. A library routine provides a primitive for a total ordering. This
primitive is implemented using a single causal message, but members cannot deliver a
message immediately when it arrives. Instead, a number of messages from other
members (i.e., at most one from each member) must be received before the total order
can be established.

Another protocol that requires hardware support for reliable broadcasting is
described in [Tseung and Yu 1990]. The TY protocol requires that at least three com-
ponents be added to the network: a Retransmission Computer, a Designated Recorder
Computer, and one or more Playback Recorder Computers. The Playback Recorder
Computers should be equipped with a disk (typically one Playback Recorder Computer
is used per group). If fault tolerance is required, hot backup systems can be provided
for the Retransmission Computer and the Designated Recorder Computer. The proto-
col works as follows. A user computer sends a point-to-point message to the
Retransmission Computer. The Retransmission Computer plays a similar role as our
sequencer. It adds some information to the message, such as a sequence number, and

SEC. 3.6 Comparison with Related Work 83

broadcasts it. In the TY protocol, the Retransmission Computer is ready to broadcast
the next message after the Designated Recorder Computer has sent an acknowledge-
ment. The Designated Recorder stores messages for a short period, in case one of the
Playback Recorder Computers has missed a message. The Playback Computers store
the messages on disk for a long period of time to be able to send retransmissions to user
computers if they have missed a message. This protocol requires more messages than
our protocol (the acknowledgement from the Designated Recorder to the Retransmis-
sion Recorder is not needed in our protocol) and requires additional hardware. Further-
more, one computer (the Retransmission Computer) serves as the sequencer for all
groups. If the sequencer becomes a bottleneck in one group, all other groups will
suffer from this. Also, if the Retransmission Computer or the Designated Recorder
crashes no group communication can take place in the whole system. For these reasons
and the fact that groups are mostly unrelated, we order messages on a per group basis
by having a separate sequencer for each group.

The last protocol that we consider which provides reliable broadcasting is
described in [Verissimo et al. 1989]. The VRB protocol runs directly on top of the
Medium Access Layer (MAC). Thus, the protocol is restricted to a single LAN, but on
the other hand it allows for an efficient implementation. The protocol itself is based on
the two phase commit protocol [Eswaran et al. 1976]. In the first phase, the message is
broadcast. All receivers are required to send an acknowledgement indicating if they
will accept the message. After the sender has received all acknowledgements, it broad-
casts a message telling if the message can be delivered to the user application or not.
The protocol assumes that the network orders packets and that there is a bounded
transmission delay.

A somewhat related approach is Cooper’s replicated RPC [Cooper 1985].
Although replicated RPC provides communication facilities for 1-to-n communication,
it does not use group communication. Instead, it performsn − 1 RPCs. As it is not
based on group communication, nor does it use multicast, we did not include it in the
table. Replicated RPC, however, can be implemented using group communication
[Wood 1992].

Another related approach is MultiRPC [Satyanarayanan and Siegel 1990]. From
the programming point of view, MultiRPC behaves exactly the same as an ordinary
RPC. However, instead of invoking one server stub, MultiRPC invokes multiple server
stubs on different machines in parallel. Compared to performingn − 1 regular RPCs,
MultiRPC is more efficient as the server stubs are executed in parallel. The authors
also discuss preliminary results for sending the request message in a multicast packet to
avoid the overhead of sending the requestsn times in point-to-point packets. The
replies on an RPC are sent using point-to-point communication and are processed
sequentially by the client machine. There is no ordering between two MultiRPCs and
MultiRPC does not provide reliable communication in case one of the servers crashes.

If messages are sent regularly and if messages may be lost when processor
failures occur, our protocol is more efficient than any of the protocols listed in the

84 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

table. In our protocol, the number of messages used is determined by the size of the
history buffer and the communication pattern of the application. In the normal case,
two messages are used: a point-to-point message to the sequencer and a broadcast mes-
sage. In the worst case, when one of the nodes is continuously broadcasting,
(n /HISTORY3SIZE) + 2 messages are needed. For example, if the number of buffers
in the history is equal to the number of processors, three messages per reliable broad-
cast are needed. In practice, with say 1 Mbyte of history buffers and 1 Kbyte-
messages, there is room for 1024 messages. This means that the history buffer will
rarely fill up and the protocol will actually average two messages per reliable broad-
cast. The delay for sending a message is equal to the time to send and receive a mes-
sage from the sequencer. The delay before a message can be delivered to the applica-
tion is optimal; as soon as a broadcast arrives, it can be delivered. Also, our protocol
causes a low number of interrupts. Each node gets one interrupt for each reliable
broadcast message (PB method).

If messages must be delivered in order and without error despite member
crashes, the cost of the protocol increases. For resilience degreer > 0, each reliable
broadcast takes 3+ r messages: one message for the point-to-point message to the
sequencer, one broadcast message from the sequencer to all kernels announcing the
sequence number,r short acknowledgements that are sent point-to-point to the
sequencer, and one short accept message from the sequencer to all members. The delay
increases. A message can only be accepted by the sequencer after receiving the mes-
sage, broadcasting the message, and receivingr acknowledgements. However, ther
acknowledgements will be received almost simultaneously. Thus, an increase in fault
tolerance costs the application a decrease in performance. It is up to the application
programmer to make the tradeoff.

Like some of the other protocols, our protocol uses a centralized node (the
sequencer) to determine the order of the messages. Although in our protocol this cen-
tralized node does not do anything computationally intensive (it receives a message,
adds the sequence number, and broadcasts it), it could conceivably become a bottleneck
in a very large group. Ifr > 0, it is likely that the sequencer will become a bottleneck
sooner due to ther acknowledgements that it has to process. Under heavy load, one
could try to piggyback these acknowledgements onto other messages, to make the pro-
tocol scale better.

3.7. Conclusion
We have identified 6 criteria that are important design issues for group commun-

ication: addressing, reliability, ordering, delivery semantics, response semantics, and
group structure. We have discussed each of these criteria and the choices that have
been made for the Amoeba distributed system. The Amoeba interface for group com-
munication is simple, powerful, and easy to understand. Its main properties are:

d Reliable communication.

SEC. 3.7 Conclusion 85

d Messages are totally-ordered per group.

d Programmers can trade performance against fault tolerance.

Based on our experience with distributed programming we believe that these properties
are essential in building efficient distributed applications. We will discuss this in the
coming chapters.

We have described in detail the group communication interface and its imple-
mentation. In addition, we have provided extensive performance measurements on 30
processors. The delay for a null broadcast to a group of 30 processes running on 20-
MHz MC68030s connected by 10 Mbit/s Ethernet is 2.8 msec. The maximum
throughput per group is 815 broadcasts per group. With multiple groups, the maximum
number of broadcasts per second has been measured at 3175.

Notes
Some of the research presented here contains material from the paper by Kaashoek
and Tanenbaum published in the proceedings of theEleventh International Confer-
ence on Distributed Computing Systems[Kaashoek and Tanenbaum 1991]. An early
version of the PB protocol was published by Kaashoek, Tanenbaum, Flynn Hummel,
and Bal inOperating Systems Review[Kaashoek et al. 1989]. A short description of
the PB protocol and the BB protocol also appeared in [Tanenbaum et al. 1992]. The
protocols presented were considerably improved due to discussions with Wiebren de

Jonge.

86 EFFICIENT RELIABLE GROUP COMMUNICATION CHAP. 3

4

PARALLEL PROGRAMMING
USING BROADCASTING
AND SHARED OBJECTS

As computers continue to get cheaper, there is increasing interest in harnessing
multiple processors together to build large, powerful parallel systems. The goal of this
work is to achieve high performance at low cost. This chapter first surveys the two
major design approaches taken so far, multiprocessors and multicomputers, and points
out their strengths and weaknesses. Then it introduces and discusses a hybrid form,
called theshared data-object model. In the shared data-object model, processes can
share variables of some abstract data type, while not requiring the presence of physical
shared memory. The key issue is how to implement this model efficiently. Two imple-
mentations of the shared-data object model are described: one based on only group
communication and one based on group communication and RPC. Both implementa-
tions use compile-time information at run-time to achieve high performance. To
demonstrate the effectiveness of our approach, we describe some applications we have
written for the shared data-object model, and give measurements of their performance.

A parallel system is one in which a user is attempting to utilize multiple proces-
sors in order to speed up the execution of a single program. The processors may be in a
single rack and connected by a high-speed backplane bus, they may be distributed
around a building and connected by a fast LAN, or some other topology may be used.
What is important is that a large number of processors are cooperating to solve a single
problem. In this chapter we will concentrate on parallel systems, using as a metric how
much speedup can be achieved on a single problem by usingn identical processors as
compared to using only one processor.

A brief outline of the rest of this chapter follows. In Section 4.1, we will discuss
the two major kinds of parallel computers in use, so we can contrast our design with

87

them later. In Section 4.2, we will examine so-called NUMA architectures, which are
an attempt at combining the two types of parallel machines. In Section 4.3, we will
present our model, the shared data-object model. The shared data-object model con-
sists of three software layers. The top layer consists of parallel programs written in a
new language calledOrca [Bal 1990; Bal et al. 1992a]. Orca is a parallel programming
language based on the shared data-object model. As Orca is one of the main topics in
Bal’s thesis [Bal 1990], we will discuss the top layer here only briefly in Section 4.4.
The focus in this chapter is on the middle layer, the run-time systems for Orca. The
first run-time system (RTS) is discussed in Section 4.5. The bottom layer provides the
reliable group communication, discussed in the previous chapter. In Section 4.6, we
discuss the design of the second RTS, an optimized version. The optimized version
uses more compile-time information to achieve better performance at run-time. In Sec-
tion 4.7, we discuss the compiler techniques and the new RTS mechanisms that are
needed to achieve the optimization discussed in Section 4.6. In Section 4.8, we discuss
a number of example programs and their performance on the unoptimized and optim-
ized run-time system. In Section 4.9, we present a comparison with related work. In
Section 4.10, we draw our conclusions.

4.1. Architectures for Parallel Programming
Parallel computers can be divided into two categories: those that contain physical
shared memory, calledmultiprocessorsand those that do not, calledmulticomputers.
A simple taxonomy is given in Fig. 4.1. A more elaborate discussion of parallel archi-
tectures is, for example, given by Almasi and Gottlieb [Almasi and Gottlieb 1989].

4.1.1. Multiprocessors
In multiprocessors, there is a single, global, shared address space visible to all

processors. Any processor can read or write any word in the address space by simply
moving data from or to a memory address. The key property of this class of systems is
memory coherence. Memory coherence is defined by Censier and Feautrier as follows:
When any processor writes a valuev to memory addressm, any other processor that
subsequently reads the word at memory addressm, no matter how quickly after the
write, will get the valuev just written [Censier and Feautrier 1978].

In the context of multiprocessors, this definition is difficult to apply, as can be
seen from the following example. At a certain moment, processA wants to write a
word, and processB wants to read it. Although the two operations may take place a
microsecond apart, the value read byB depends on who went first. The behavior is
determined by the ordering of the read and write operations. Lamport, therefore, intro-
duced another definition for the correct execution of multiprocessor programs, called
sequential consistency[Lamport 1979]. In a multiprocessor, sequential consistency
determines the allowable order of read and write operations:

A multiprocessor is sequentially consistent if the result of any execution is

88 PARALLEL PROGRAMMING USING BROADCASTING AND SHARED OBJECTS CHAP. 4

Parallel

computers

Multiprocessors

(shared memory)

Multicomputers

(no shared memory)

Bus Switched Bus Switched

Fig. 4.1. A taxonomy of parallel computers.

the same as if the operations of all the processors were executed in some
sequential order, and the operations of each individual processor appear in
this sequence in the order specified by its program [Lamport 1979].

Multiprocessor Hardware
There are two basic ways to build a multiprocessor, both of them expensive. The

first way is to put all the processors on a single bus, along with a memory module. To
read or write a word of data, a processor makes a normal memory request over the bus.
Since there is only one memory module and there are no copies of memory words any-
where else, the memory is always coherent.

The problem with this scheme is that with as few as 4 to 8 processors, the bus
can become completely saturated. To get around this problem, each processor is nor-
mally given a cache memory, as shown in Fig. 4.2. The caches introduce a new prob-
lem, however. If processors 1 and 2 both read the contents of memory addressm into
their caches, and one of them modifies it, when the other one next reads that address it
will get a stalevalue. Memory is then no longer coherent.

The stale data problem can be solved in many ways, such as having all writes go
through the cache to update the external memory, or having each cache constantly
snoopon the bus (i.e., monitor it), taking some appropriate action whenever another
processor tries to read or write a word that it has a local copy of, such as invalidating or
updating its cache entry. Nevertheless, caching only delays the problem of bus satura-
tion. Instead of saturating at 4 to 8 processors, a well-designed single-bus system
might saturate at 32 to 64 processors. Building a single bus system with appreciably
more than 64 processors is not feasible with current bus technology.

The second general approach to building a multiprocessor is using some kind of

SEC. 4.1 Architectures for Parallel Programming 89

CPU CPU CPU Memory

Bus

Cache Cache Cache

Fig. 4.2. A single-bus multiprocessor.

switching network, such as thecrossbar switch, shown in Fig. 4.3(a). In this organiza-
tion, each of then processors can be connected to any one of then memory banks via a
matrix of little electronic switches. When switchij is closed (by hardware), processori
is connected to memory bankj and can read or write data there. Since several switches
may be closed simultaneously, multiple reads and writes can occur at the same time
between disjoint processor-memory combinations.

M M M M

C

C

C

C

C

C

C

C

M

M

M

M

(a)
(b)

Fig. 4.3. (a) Crossbar switch. (b) Omega network. C is for CPU; M is for

Memory.

The problem with the crossbar switch is that to connectn processors ton
memory banks requiresn2 switches. Asn becomes large, say 1024 processors and
1024 memories, the switch becomes prohibitively expensive and unmanageable.

An alternative switching scheme is to build a multiprocessor using the omega
network shown in Fig. 4.3(b). In this figure, the CPUs are on the left and the memories
are on the right. The omega network is a sophisticated packet switching network that
connects them. To read a word of memory, a CPU sends a request packet to the
appropriate memory via the switching network, which sends the reply back the other
way.

Many variations of this basic design have been proposed, but they all have the
problem that for a system withn processors andn memories, the number of switching

90 PARALLEL PROGRAMMING USING BROADCASTING AND SHARED OBJECTS CHAP. 4

stages needed is on the order of log2n, and the number of switching elements is in the
order ofnlog2n. As an example of what this means, consider a system of 1024 RISC
processors running at 50 MHz. Withn = 1024, 10 switches must be traversed from the
CPU to the memory and 10 more on the way back. If this is to occur in 1 cycle (20
nsec), each switching step must take no longer than 1 nsec, and 10,240 switches are
required. A machine with such a large number of very high speed packet switches is
clearly going to be expensive and difficult to build and maintain.

Multiprocessor Software
In contrast to the multiprocessor hardware, which for large systems is compli-

cated, difficult to build, and expensive, software for multiprocessors is relatively
straightforward. Since all processes run within a single shared address space, they can
easily share data structures and variables. When one process updates a variable and
another one reads it immediately afterwards, the reader always gets the value just
stored (memory coherence property).

To avoid chaos, co-operating processes must synchronize their activities. For
example, while one process is updating a linked list, it is essential that no other process
even attempt to read the list, let alone modify it. Many techniques for providing the
necessary synchronization are well known. These include spin locks, semaphores, and
monitors, and are discussed in any standard textbook on operating systems. The advan-
tage of this organization is that sharing is easy and cheap and uses a methodology that
has been around for years and is well understood.

4.1.2. Multicomputers
In contrast to the multiprocessors, which, by definition, share primary memory,

multicomputersdo not. Each CPU in a multicomputer has its own, private memory,
which it alone can read and write. This difference leads to a significantly different
architecture, both in hardware and in software.

Multicomputer Hardware
Just as there are bus and switched multiprocessors, there are bus and switched

multicomputers. Fig. 4.4 shows a simple bus-based multicomputer. Note that each
CPU has its own local memory, which is not accessible by remote CPUs. Since there
is no shared memory in this system, communication occurs via message passing
between CPUs. The ‘‘bus’’ in this example can either be a LAN or a high-speed back-
plane; conceptually, these two are the same, differing only in their performance. Since
each CPU-memory pair is essentially independent of all the others, it is straightforward
to build very large multicomputer systems.

Switched multicomputers do not have a single bus over which all traffic goes.
Instead, they have a collection of point-to-point connections. In Fig. 4.5, we see two of
the many designs that have been proposed and built: a grid and a hypercube. A grid is
easy to understand and easy to lay out on a printed circuit board or chip. This architec-

SEC. 4.1 Architectures for Parallel Programming 91

CPU CPU CPU

Local Memory Local Memory Local Memory

Network

Fig. 4.4. A single-bus multicomputer.

ture is best suited to problems that are two dimensional in nature (graph theory, vision,
etc.).

(a)
(b)

Fig. 4.5. Multicomputers. (a) Grid. (b) Hypercube.

Another design is ahypercube, which is ann-dimensional cube. One can imagine a 4-
dimensional hypercube as a pair of ordinary cubes with the corresponding vertices con-
nected, as shown in Fig. 4.5(b). Similarly, a 5-dimensional hypercube can be
represented as two copies of Fig. 4.5(b), with the corresponding vertices connected, and
so on. In general, ann-dimensional hypercube has 2n vertices, each holding one CPU.
Each CPU has a fan-out ofn, so the interconnection complexity grows logarithmically
with the number of CPUs.

Multicomputer Software
Since multicomputers do not contain shared memory (by definition), they must

communicate by message passing. Various software paradigms have been devised to
express message passing. The simplest one is to have two operating system primitives,
SEND and RECEIVE. The SEND primitive typically has three parameters: the desti-
nation address, a pointer to the data buffer, and the number of bytes to be sent. In the
simplest form, the RECEIVE primitive might just provide a buffer, accepting messages
from any sender.

Many variations on this theme exist. To start with, the primitives can beblock-
ing (synchronous), ornonblocking(asynchronous). With a blocking SEND, the send-
ing process is suspended after the SEND until the message is actually accepted. With a

92 PARALLEL PROGRAMMING USING BROADCASTING AND SHARED OBJECTS CHAP. 4

nonblocking SEND, the sender may continue immediately. The problem with allowing
the sender to continue is that it may be in a loop, sending messages much faster than
the underlying communication hardware can deliver them. Permitting this may result
in lost messages.

A way to alleviate this problem somewhat is to have senders address messages
not to processes, but tomailboxes. A mailbox is a special kind of buffer that can hold
multiple messages. However, overflow is still a possibility.

A more fundamental problem with message passing is that, conceptually, it is
really input/output. Many people believe that input/output should not be the central
abstraction of a modern programming language. To hide the bare input/output Birrell
and Nelson proposed RPC (see Section 1.3). Although this scheme hides the message
passing to some extent, since the client and server each think of the other as an ordinary
local procedure, it is difficult to make it entirely transparent. For example, passing
pointers as parameters is difficult, and passing arrays is costly. Thus the programmer
must usually be aware that the semantics of local procedure calls and remote ones are
different.

In summary, although multiprocessors are easy to program, they are hard to
build. Conversely, multicomputers are easy to build, but hard to program. What peo-
ple would like is a system that is easy to program (i.e., shared memory) and that is also
easy to build (i.e., no shared memory). How these two apparently contradictory
demands can be reconciled is the subject of the rest of this chapter.

4.2. NUMA Machines
Various researchers have proposed intermediate designs that try to capture the

desirable properties of both architectures. Most of these designs attempt to simulate
shared memory on multicomputers. All of them have the property that a process exe-
cuting on any machine can access data from its own memory without any delay,
whereas access to data located on another machine entails considerable delay and over-
head, as a request message must be sent there and a reply received.

Computers in which references to some memory addresses are cheap (i.e., local)
and others are expensive (i.e., remote) have become known asNUMA (NonUniform
Memory Access) machines. Our definition of NUMA machines is somewhat broader
than what some other writers have used. We regard any machine which presents the
programmer with the illusion of shared memory, but implements it by sending mes-
sages across a network to fetch chunks of data as NUMA. In this section we will
describe three of the more interesting types of NUMA machines. They differ primarily
in the granularity of access and the mechanism by which remote references are han-
dled.

SEC. 4.2 NUMA Machines 93

Word-Oriented NUMA Machines
One of the earliest machines was Cm*, built at Carnegie-Mellon University and

consisting of a collection of LSI-11 minicomputers [Swan et al. 1977]. Each LSI-11
had a microprogrammed memory management unit (MMU) and a local memory. The
MMU microcode could be downloaded when execution began, allowing part of the
operating system to be run there. The LSI-11s were grouped together into clusters, the
machines in each cluster being connected by an intracluster bus. The clusters were
connected by intercluster buses.

When an LSI-11 referenced its own local memory, the MMU just read or wrote
the required word directly. However, when an LSI-11 referenced a word in a remote
memory, the microcode in the MMU built a request packet specifying which memory
was being addressed, which word was needed, the opcode (READ or WRITE), and for
WRITEs the value to be written. The packet was then sent out over the buses to the
destination MMU via a store-and-forward network. At the destination, it was accepted,
processed, and a reply generated, containing the requested word (for READ) or an ack-
nowledgement (for WRITE).

The more remote the memory, the longer the operation, with the worst case being
about 10 times the best case. It was possible for a program to run entirely out of
remote memory, with a performance penalty of about a factor of 10. There was no
caching and no automatic data movement. It was up to the programmer to place code
and data appropriately for optimal performance. Nevertheless, to the programmer, this
system had a single shared address space accessible to all processors, even though it
was actually implemented by an underlying packet-switching network.

A more modern machine, which falls in the same class as Cm* is the BBN But-
terfly [Dinning 1989]. The main difference between the Butterfly and Cm* is that the
Butterfly has a more sophisticated interconnection network. The switching network
implements among other things a collection of primitives for parallel processing.

Page-Oriented NUMA Machines
Cm* represents one end of the spectrum—sending requests for individual words

from MMU to MMU in ‘‘hardware’’ (actually MMU microcode) over a set of tightly
coupled backplane buses. At the other extreme are systems that implement virtual
shared memory in software on a collection of workstations on a LAN. As in Cm*, the
users are presented with a single shared virtual address space, but the implementation is
quite different.

In its simplest form, the virtual memory is divided up into fixed size pages, with
each page residing on exactly one processor. When a processor references a local page,
the reference is done by the hardware in the usual way. However, when a remote page
is referenced, a page fault occurs, and a trap to the operating system occurs. The
operating system fetches the page, just as in a traditional virtual memory system, only
now the page is fetched from another processor (which loses the page), instead of from
the disk.

94 PARALLEL PROGRAMMING USING BROADCASTING AND SHARED OBJECTS CHAP. 4

As in Cm*, pages are fetched by request and reply messages, only here they are
generated and processed by the operating system, instead of by the MMU microcode.
Since the overhead of the software approach is much higher, an entire page is
transferred each time, in the hope that subsequent references will be to the same page.
If two processors are actively writing the same page at the same time, the page will
thrash back and forth wildly, degrading performance.

A significant improvement to the basic algorithm has been proposed, imple-
mented, and analyzed by Li and Hudak [Li and Hudak 1989]. In their design, thrashing
is reduced by permitting read-only pages to be replicated on all the machines that need
them. When a read-only page is referenced, instead of sending the page, a copy is
made, so the original owner may continue using it.

Li and Hudak present several algorithms for locating pages. The simplest is to
have a centralized manager that keeps track of the location of all pages. All page
requests are sent to it, and then forwarded to the processor holding the page. A varia-
tion of this scheme is to have multiple managers, with the leftmostn bits of the page
number telling which manager is responsible for the page. This approach spreads the
load over multiple managers. Even more decentralized page location schemes are pos-
sible, including the use of hashing or broadcasting.

It is worth pointing out that the basic page-oriented strategy could (almost) have
been used with Cm*. For example, if the MMUs noticed that a particular page was
being heavily referenced by a single remote processor and not at all being referenced
by its own processor, the MMUs could have decided to ship the whole page to the place
it was being used instead of constantly making expensive remote references. This
approach was not taken because the message routing algorithm used the page number
to locate the page. Modern machines, however, like Alewife [Chaiken et al. 1991],
Dash [Lenoski et al. 1992], Encore GigaMax [Wilson 1987], KSR [Burkhardt et al.
1992], and Paradigm [Cheriton et al. 1991], basically follow this strategy, although
some of them cache lines of words instead of pages.

NUMA systems have been designed where a page may be transported a max-
imum of only k times, to reduce thrashing [Ramachandran et al. 1989; Bolosky et al.
1989]. After that, it is wired down and all remote references to it are done as in Cm*.
Alternatively, one can have a rule saying that once moved, a page may not be moved
again for a certain time interval [Cox and Fowler 1989; Fleisch and Popek 1989;
LaRowe Jr. et al. 1991].

Object-Based NUMA Machines
An inherent problem with page-oriented NUMA systems is the amount of data

transferred on each fault is fixed at exactly one page. Usually this is too much. Some-
times it is too little. It is hardly ever exactly right. The next step in the evolution of
NUMA machines is an object-based system, in which the shared memory contains
well-defined objects, each one with certain operations defined on it [Cheriton 1985;
Ahuja et al. 1986; Bisiani and Forin 1987; Black et al. 1987; Chase et al. 1989; Schwan

SEC. 4.2 NUMA Machines 95

et al. 1989]. When a process invokes an operation on a local object, it is executed
directly, but when it invokes an operation on a remote object, the object is shipped to
the invoker. Alternatively, the operation name and parameters can be sent to the
object, with the operation being carried out on the remote processor, and the result
being sent back. Both of these schemes have the property that, in general, less
unnecessary data are moved (unlike the page-oriented NUMA machines that move 1
Kbyte or 4 Kbyte or even 8 Kbyte, just to fetch a single byte).

Weak Ordering
A completely different approach to implement distributed shared memory is to

weaken the ordering of read and write events, giving up the demand of coherence or
sequential consistency [Dubois et al. 1988; Adve and Hill 1990]. For example, suppose
three processes,A, B, andC all simultaneously update a word, followed by processD
reading it. If coherence is required, then to carry out the three writes and the read, the
word will probably have to be sent first toA, then toB, then toC, and finally toD .

However, fromD ’s point of view, it has no way of knowing which of the three
writers went last (and thus whose value did not get overwritten). Bennett, Carter, and
Zwaenepoel proposed for the Munin system that returning any one of the values written
should be legal [Bennett et al. 1990; Carter et al. 1991]. The next step is to delay
remote writes until a read is done that might observe the values written. It is even pos-
sible to perform an optimization and avoid some of the writes altogether. This strategy
has been implemented in the Munin system, which uses hints from the programmer as
to the access patterns of shared objects to make it easier to perform these and other
optimizations.

A number of systems use a weak ordering in the implementation, but guarantee a
sequentially-consistent memory model if programmers have synchronization points at
the right places in their applications. Most of these systems are based onrelease con-
sistencyor on variants thereof [Gharachorloo et al. 1990; Carter et al. 1991; Bershad
and Zekauskas 1991; Keleher et al. 1992; Lenoski et al. 1992]. By weakening the ord-
ering of events in the implementation, these systems can achieve high performance by
reducing the number of messages needed to implement the illusion of shared memory.
The builders of these systems claim that adding the right synchronization points to the
application programs is an easy task. Any carefully programmed parallel application
already has them, as the cooperating tasks have to synchronize their activities anyway.

Other systems go even further in weakening the ordering [Ahamad et al. 1991;
Delp et al. 1991]. Mether [Minnich and Farber 1990], for example, maintains a pri-
mary copy of each page and possibly one or more secondary copies. The primary copy
is writable; the secondary copies are read-only. If a write is done to the primary copy,
the secondary copies become obsolete and reads to them return stale data. Applications
simply have to accept this.

Mether provides three ways for getting resynchronized: the owner of a secondary
copy can ask for an up-to-date copy, the owner of the primary copy can issue an up-to-

96 PARALLEL PROGRAMMING USING BROADCASTING AND SHARED OBJECTS CHAP. 4

date copy to the readers, or the owner of a secondary copy can just discard it, getting a
fresh copy on the next read.

4.3. The Shared Data-Object Model
Weakening the semantics of the shared memory may improve the performance,

but it has the potential disadvantage of breaking the ease of programming that the
shared memory model was designed to provide. Mether, for example, offers only the
syntax of shared variables, while forcing the programmer to deal with semantics even
less convenient than message passing. On the other hand, approaches based on release
consistency, which provide the programmer with a sequentially-consistent memory
model on synchronization points, look like an attractive solution to the distributed
shared memory problem.

In our research, we have devised an alternative model that preserves the conveni-
ence of (object-based) shared memory, yet has been implemented efficiently on multi-
computers. The model, which we callshared data-object model, consists of four
layers, as shown in Fig. 4.6.

Orca program

Object management (language run-time system)

Group Communication and RPC

Hardware (including network)

4

3

2

1

User mode

Kernel mode

Fig. 4.6. Layers in the shared data-object model.

Layer 1 is the bare processor and networking hardware. Our scheme is most effi-
cient on networks that support broadcasting (sending a message to all machines) or
multicasting (sending a message to a selected group of machines) in hardware, but nei-
ther is required. Sending messages is assumed to beunreliable, that is, it is possible for
messages to be lost.

Layer 2 is the software necessary to turn theunreliable communication offered
by layer 1 intoreliable communication. It implements two communication models:
RPC for point-to-point communication and reliable group communication for 1-to-n
communication. This is done using the protocols described in the previous two
chapters. When layer 3 hands a message to layer 2 and asks for it to be reliably sent,
layer 3 does not have to worry about how this is implemented or what happens if the
hardware loses a packet. All of this is taken care of by layer 2.

Layer 3 is the language run-time system, which is usually a set of library pro-
cedures linked with the application program. Conceptually, programmers can have
objects that are eitherPRIVATE or SHARED. ThePRIVATE ones are not visible on other
machines, so they can be accessed by direct memory reads and writes. In the simplest

SEC. 4.3 The Shared Data-Object Model 97

RTS, theSHARED objects are replicated on all machines. Reads to them are local, the
same as reads toPRIVATE objects. Writes are done by reliable broadcasting. An
optimized version of the RTS uses both group communication and RPC. In the optim-
ized RTS,SHARED objects are either replicated on all machines or stored on exactly
one processor. Objects are entirely passive; they contain only data, not processes.

Layer 4 provides language support. Although it is possible for programmers to
use the distributed shared memory by making calls directly on layer 3, it is much more
convenient to have language support. At the Vrije Universiteit, we have designed a
language, calledOrca, which is especially designed to support parallel programming
on distributed systems. In Orca, programmers can declare shared objects, each one
containing a data structure for the object and a set of procedures that operate on it.
Operations applied on single shared objects are indivisible, and are executed sequen-
tially consistent. The next section discusses Orca in more detail.

4.4. Orca Programs
The goal of this section is to give just enough detail to make the rest of the

chapter understandable. We start by describing the language. Then, we describe the
interface between the compiler and the RTS.

4.4.1. The Language
Orca is a procedural language based on shared data-objects. Processes in Orca

communicate through these objects, which are instances of abstract data types.
Processes can share objects even if they run on different machines. The objects are
accessed solely through the operations defined by the abstract data type.

An object type (or abstract data type) definition in Orca consists of a specifica-
tion part and an implementation part. As a simple example, an object typeIntObject
encapsulating a single integer may be specified as follows:

object specification IntObject;
operation Value(): integer; # return value
operation Assign(v: integer); # assign new value
operation AwaitValue(v: integer); # wait until object has value v

end;

The specification part gives the operations that can be applied to objects of this type.
An Operation is a set of guarded commands [Dijkstra 1975], which may block initially.
The implementation part contains the data used to represent instances (variables) of the
type, the code for implementing operations, and code for initializing variables of the
type. The implementation part of typeIntObjectmight be as shown in Fig. 4.7.

Objects are created by declaring variables of an object type. It is also possible to
declare a dynamic array of objects, so the number of objects can vary at run time:

98 PARALLEL PROGRAMMING USING BROADCASTING AND SHARED OBJECTS CHAP. 4

object implementation IntObject;
x: integer; # internal data

operation Value(): integer;
begin

return x; # return current value
end;

operation Assign(v: integer);
begin

x := v; # assign new value
end;

operation AwaitValue(v: integer);
begin

guard x = v do od; # wait
end

begin
x := 0; # initialize object to zero

end;

Fig. 4.7. Implementation module forIntObject.

X: IntObject; # create (declare) an object
V: array[integer 1 .. N]of IntObject; # array of N objects

An operation is applied to an object using the following notation:

X$assign(3); # apply operation ‘‘assign’’ to object X
tmp := V[3]$value(); # apply operation ‘‘value’’ to object V[3]

An Orca program also defines one or more process types, which are similar to
procedure declarations:

process p(n: integer; X:shared IntObject);
begin

...
end;

Processes of typep take two parameters: a value parametern and ashared(similar to
call-by-reference) parameterX. Only objects may be passed as shared parameters.

Processes are created dynamically, through afork statement, which specifies the
process type and actual parameters. Optionally, it can also specify the processor on
which the new process is to be run. Processors are numbered sequentially, starting at 0.
This notation is mainly used for assigning different processors to processes that must
run in parallel. If no processor is specified, the new process runs on the same processor
as its parent. The statement

SEC. 4.4 Orca Programs 99

fork p(23, X)on(3);

creates a new process on processor 3, passing 23 as value parameter and objectX as a
shared parameter.

Initially, an Orca program consists of one process, calledOrcaMain, which runs
on processor 0. This process may create objects, fork off child processes, and pass the
objects as shared parameters to the children. Each child can pass these objects to its
children, and so on. In this way, a hierarchy of processes is created, which communi-
cate through shared objects.

The semantics of the model are straightforward:

1. All operations are applied to single objects.

2. All operations are executed sequentially consistent and indivisibly.

The indivisibility property simplifies programming, since users do not have to worry
about what happens if two operations are applied simultaneously to the same object. In
other words, mutual exclusion synchronization is done automatically.

The first property is a restriction, since it rules out atomic operations on collec-
tions of objects. This restriction, however, makes the model efficient to implement,
because no two-phase update protocols [Eswaran et al. 1976] are needed. As it turns
out, parallel applications seldom need atomic operations on multiple objects. If
needed, however, they can be constructed in Orca, by building them as sequences of
simple operations. In this case, the programmer must explicitly deal with synchroniza-
tion (e.g., by defining a lock object).

Orca excludes any features that make a distributed implementation difficult, that
make compile-time optimizations hard, or that potentially violate type security [Hoare
1981; Strom and Yemini 1986]. For example, it does not support global variables,
pointers, and goto statements. Instead of pointers, it has a new type constructor, called
a graph[Bal 1990].

4.4.2. The Interface between the Compiler and the Run-Time System
The application programs in layer 4 are translated by the Orca compiler into exe-

cutable code for the target system†. The code produced by the compiler contains calls
to RTS routines that manage processes, shared data-objects, and complex data struc-
tures (e.g., dynamic arrays, sets, and graphs). In this chapter, we will only discuss how
operation invocations are compiled for a multicomputer environment.

As described above, it is very important to distinguish betweenread and write
operations on objects. The compiler therefore analyses the implementation code of
each operation and checks whether the operation modifies the object to which it is

333333333333333
† We assume the target system does not contain multiple types of processors. Although a heterogeneous
implementation of Orca is conceivable, we do not address this issue here.

100 PARALLEL PROGRAMMING USING BROADCASTING AND SHARED OBJECTS CHAP. 4

applied†. In most languages, this optimization would be difficult to implement. Con-
sider, for example, a Pascal statement containing an indirect assignment through a
pointer variable:

pˆ.f := 0;

It is hard to determine which data structure is affected by this statement. Orca does not
have this problem, since the name of the data structure is given by the programmer.
The Orca equivalent of the Pascal code given above would look like:

G[p].f := 0;

which explicitly specifies the name of the data structure that will be modified. So, in
Orca the compiler can determine which operations modify which object’s data struc-
tures and which do not.

The compiler stores information about operations in anoperation descriptor.
This descriptor specifies the type of the operation (read or write), the sizes and modes
(input or output) of the parameters of the operation. If an Orca program applies an
operation on a given object, the compiler generates a call to the RTS primitive
INVOKE. This routine is called as follows:

INVOKE(object, operation-descriptor, parameters ...);

The first argument identifies the object to which the operation is to be applied. (It is a
network-wide name for the object.) The second argument is the operation descriptor.
The remaining arguments ofINVOKE are the parameters of the operation. The imple-
mentation of this primitive is discussed below.

4.5. Object Management
Layer 3 implements the Orca RTS. As mentioned above, its primary job is to

manage shared data-objects. In particular, it implements theINVOKE primitive. For
efficiency, the RTS replicates objects so it can apply operations to local copies of
objects whenever possible.

There are many different design choices to be made related to replication, such
as where to replicate objects, how to synchronize write operations to replicated objects,
and whether to update or invalidate copies after a write operation. We have looked at
many alternative strategies [Bal et al. 1992b]. The RTS described in this section uses
full replication of objects, updates replicas by applying write operations to all replicas,
and implements mutual exclusion synchronization through a distributed update proto-
col.

The full replication scheme was chosen for its simplicity and good performance
for many applications. This implementation is tailored to applications with a medium

333333333333333
† The actual implementation is somewhat more complicated, since an operation may have multiple
guards (alternatives), some of which may be read-only.

SEC. 4.5 Object Management 101

grain of parallelism and a high ratio of read operations versus write operations. In the
next section, we discuss a scheme that does either full replication or no replication on a
per object basis, depending how an object is used by the Orca program. This imple-
mentation is more complicated, but performs well on a wider range of applications.
Another alternative is to let the RTS decide dynamically where to store replicas. This
strategy is employed in another implementation of Orca [Bal et al. 1992b].

We have chosen to use an update scheme rather than an invalidation scheme for
two reasons. First, in many applications, objects contain large amounts of data (e.g., a
100K bit vector). Invalidating a copy of such an object is wasteful, since the next time
the object is replicated its entire value must be transmitted. Second, in many cases,
updating a copy will take no more CPU time and network bandwidth than sending
invalidation messages.

The semantics of shared data-objects in our model define that simultaneous
operations on the same object must conceptually be executed in some sequential order.
The exact order in which they are to be executed is not defined, however. If, for exam-
ple, a read operation and a write operation are applied to the same object simultane-
ously, the read operation may observe either the value before or after the write, but not
an intermediate value. However, all processes having access to the object must see the
events happen in the same order. The RTS described here solves the inconsistency
problem by using a distributed update protocol that guarantees that all processes
observe changes to shared objectsin the same order. One way to achieve this would be
to lock all copies of an object prior to changing the object. Unfortunately, distributed
locking is quite expensive [Eswaran et al. 1976]. Our update protocol does not use
locking. To avoid locking, the reliable and totally-ordered broadcast primitive,Send-
ToGroup, described in the previous chapter, is used.

The RTS uses anobject managerfor each processor. The object manager is a
lightweight process (thread) that takes care of updating the local copies of all objects
stored on its processor. The object managers form a group when they start up. Objects
(and replicas) are stored in an address space shared by the object manager and user
processes. User processes canread local copies directly, without intervention by the
object managers. Write operations on shared objects, on the other hand, are marshaled
and then broadcast to all the object managers in the system. A user process that broad-
casts a write operation suspends until the message has been completely handled by its
local object manager. This is illustrated in Figure 4.8.

Each object manager maintains a queue of messages that have arrived but that
have not yet been handled. As all processors receive all messages in the same order,
the queues of all managers are the same, except that some managers may be ahead of
others in handling the messages at the head of the queue.

The object manager of each processor handles the messages in its queue in strict
FIFO order. A message may be handled as soon as it appears at the head of the queue.
A messageGlobalOperation(obj, op, parameters)is handled by removing it from the
queue, unmarshaling it, locking the local copy of the object, applying the operation, and

102 PARALLEL PROGRAMMING USING BROADCASTING AND SHARED OBJECTS CHAP. 4

INVOKE(obj, op, parameters)
if op.ReadOnlythen # check if it’s a read operation

set read-lock on local copy of obj;
call op.code(obj, parameters); # do operation locally
unlock local copy of obj

else
SendToGroup GlobalOperation(obj, op, parameters);
block current process;

fi;

Fig. 4.8. The simplified code for theINVOKE run-time system primitive.

This routine is called by user processes.

finally unlocking the copy. If the message was sent by a process on the same proces-
sor, the manager unblocks that process (see Fig. 4.9).

receive GlobalOperation(obj, op, parameters)from W →
set write-lock on local copy of obj;
call op.code(obj, parameters); # apply operation to local copy
unlock local copy of obj
if W is a local processthen

unblock(W);
fi;

Fig. 4.9. The simplified code to be executed by the object managers for han-

dling GlobalOperationmessages.

The full replication scheme does not provide memory coherence, because if
machineA initiates a reliable broadcast to update a shared object, and machineB reads
the (local copy of the) same object a microsecond later,B will get the old value. On
the other hand, it does provide for indivisible update and sequential consistency, which
is almost as good, as can easily be seen in the following example. Consider a multipro-
cessor with a coherent shared memory. At a certain moment, processA wants to write
a word, and processB wants to read it. Although the two operations may take place a
microsecond apart, the value read byB depends on who went first. Thus although the
memory is coherent, the value read byB is determined by the detailed timing. The
shared object model has a similar property. In both cases, programs whose correct
functioning depends on who wins the race to memory are living dangerously, at best.
Thus, although our memory model does not exhibit coherence, it does provide sequen-
tial consistency and this is sufficient.

4.6. Optimized Object Management
The Orca implementation described above is tailored to programs that exhibit a

high read/write ratio or that transfer data from one process to all the other processes.
Good examples are programs solving the Traveling Salesman Problem and the All-

SEC. 4.6 Optimized Object Management 103

Pairs Shortest Paths problem, which both obtain high speedups using this method (see
Section 4.8).

Unfortunately, there are also cases where the approach is less efficient. As an
example, consider an application like Successive Overrelaxation (SOR) [Stoer and
Bulirsch 1983], which primarily requires point-to-point message passing. This form of
communication is expressed in Orca by defining a message buffer object type with the
following specification:

object specification Buffer;
operation send(m: msg); # asynchronous send
operation receive(): msg; # blocking receive

end;

If two processes (P1 and P2) need to communicate through message passing, they are
both passed the same sharedBuffer object to which they can send and receive mes-
sages.

With the unoptimized run-time system, these objects will be updated through
broadcast messages. If process P1 wants to send a message to P2, it applies thesend
operation to the shared buffer. This operation will be sent using group communication,
so not only P2’s machine receives this message, but so do all other processors. In other
words, point-to-point communication does not really exist in the replicating system.
All communication ultimately takes place through group communication. For applica-
tions like SOR, this uniform approach has a performance penalty.

As another example, consider a master/slave program in which the master gen-
erates work and stores it in ajob queue. The slaves repeatedly take a job from the
queue and execute it. The job queue can be implemented in Orca as a shared object
with put and get operation, similar to the message buffer described above. Unlike a
buffer, the job queue will be shared among many (or all) processes. Still, replicating
the job queue is not really desirable, because all operations on the queue are write
operations. Both theput and the get operations modify the queue’s data, so the
read/write ratio of this object will be zero. It would be more efficient not to replicate
the object at all.

The conclusion is that the full replication scheme is efficient, except in some
(important) cases. The goal for the optimized implementation is to let the compiler and
RTS recognize these inefficient cases and disable replication for them. For each
object, the system decides:

d Whether or not to replicate the object.

d For nonreplicated objects:whereto store the object.

So, objects are either replicated everywhere or are stored on exactly one processor. As
we will see, the two decisions may change dynamically, when new processes are
created.

104 PARALLEL PROGRAMMING USING BROADCASTING AND SHARED OBJECTS CHAP. 4

An important design issue is where to make these decisions, in the compiler or in
the RTS. Although in many cases the compiler is able to make the right decision
without any help from the RTS, there are two disadvantages of such an approach. First,
the compiler will have to do complicated analysis, in particular when dynamic arrays of
objects are used. Second, and more fundamental, the optimal replication strategy will
in general depend on the underlying hardware architecture and communication proto-
cols. The compiler would then become architecture dependent, which we want to
avoid.

With the approach described here, the compiler still does the bulk of the work,
but the RTS makes the actual decisions. For each type of process, the compiler
analyzes how processes of this type access shared objects. If a process creates an
object itself, the compiler generates a call to the run-time routineScore, which tells the
RTS how the process is going to use the new object. In addition, the compiler gen-
erates aprocess descriptorfor every process type, showing how processes of this type
will access parameters that are shared objects.

As a trivial example, consider the declaration of a process typeAddOnethat
takes two shared objectsX andY as parameters:

process AddOne(X, Y:shared IntObject);
begin

Y$Assign(X$Value() + 1); # X is read once, Y is written once
end;

The compiler will determine that processes of typeAddOnewill read their first parame-
ter once and write their second parameter once. The compiler stores this information in
the process descriptor forAddOne. After a fork statement of the form ‘‘fork
AddOne(A, B);’’ the RTS uses this descriptor to determine that the new process will
readA once and writeB once.

Equipped with this information about new processes and objects, the RTS
chooses a suitable replication strategy for each object. The implementation of the
optimized RTS is described in Section 4.7.2. Since the RTS is distributed among mul-
tiple processors, some interprocess communication will be needed during the decision
making. As we will see, however, the number of messages needed is small and the
communication overhead is negligible.

Let us now describe in more detail the information that the optimizing compiler
passes to the RTS and the method used to compute this information. For the optimiza-
tion described in this chapter it would be sufficient just to estimate theratio of read
operations and write operations executed by each process. For more advanced optimi-
zations, however, it is useful to have the access patterns themselves available. For
some optimizations it makes a difference whether a process alternates read operations
with write operations or first doesn reads and thenn writes. In both cases the
read/write ratio will be 1, but the access patterns are different.

The optimizing compiler therefore computes, for each process, the actual access

SEC. 4.6 Optimized Object Management 105

pattern. It first generates a description of how the process reads and writes its shared
objects, taking into account the control flow of that process. In the current implemen-
tation, the compiler computes based on this information two values for each object the
process can access:

Nreads An estimate of the number of read operations.

Nwrites An estimate of the number of write operations.

In the future, we may want to pass the actual access patterns to the RTS, to be able to
make better decisions at run-time.

4.7. The Optimizing Compiler and Run-Time System
In this section we describe the implementation of the optimizing compiler and

the optimizing RTS.

4.7.1. The Optimizing Compiler
We will first describe the read-write patterns used by the new compiler, and then dis-
cuss how the patterns are generated and analyzed. The patterns give a static description
of how each Orca process accesses its shared objects. The pattern does not contain
information about nonshared objects and normal (local) variables. As an example, con-
sider the Orca code fragment of Fig. 4.10.

function foo(X: shared IntObject);
i: integer;

begin
for i in 1 .. 100do

X$Assign(i);
od;

end;

process bar(A, P:shared IntObject);
tmp: integer;

begin
P$Assign(10);
if f(tmp) then tmp := A$Value();
else foo(A);
fi;

end;

Fig. 4.10. An Orca code fragment.

The read-write pattern for processbar is:

process bar: #2$W ; [#1$R | {#1$W}]

which specifies that the process will first write its second parameter (‘‘#2’’) and then
either read its first parameter once or it will repeatedly write its first parameter. (Selec-
tion is indicated by square brackets and the vertical bar; for repetition, curly brackets
are used.) The originalValueandAssignoperations defined by the programmer have

106 PARALLEL PROGRAMMING USING BROADCASTING AND SHARED OBJECTS CHAP. 4

been replaced by anR (for Read) and aW (for Write) respectively. The functionfoo is
absent in the pattern, although its effects (repeatedly writingA) are included. The pat-
terns are essentially regular expressions. The advantage of regular expressions is their
simplicity, making their analysis easy. A disadvantage is the loss of information that
sometimes occurs. For example, the pattern for a for-statement does not show how
many times the loop will be executed, even though this information can sometimes be
determined statically.

The compiler computes the read-write patterns in two phases. It first performs a
local analysis of each process and function, and then computes the final patterns by
simulating inline substitution. Computing the patterns is straightforward, since features
that make control flow and data flow analysis difficult, such as ‘‘goto’’ statements, glo-
bal variables, and pointers have been intentionally omitted from Orca. Also, process
types are part of the language syntax, so techniques such as separating control flow
graphs are not needed [Jeremiassen and Eggers 1992]. The only difficulty is handling
recursive functions. The current compiler stops simulating inline substitutions after a
certain depth. A more advanced implementation should at least handle tail-recursion
similarly to iteration.

The second major component of the optimizer is the pattern analyzer. It analyzes
the pattern generated for each process type and determines theNreadsand Nwrites
values for the shared objects the process can access. It considers each process type in
turn. A process of this type can access any shared objects declared by itself or passed
to it as a shared parameter. For each such object the analyzer determines how the
object is used by the process. It computes an indication of how many times the process
will read and write the object. It uses the heuristic that operations inside a loop will be
executed more frequently than operations outside a loop. Also, operations inside a
selection (if statement) are less likely to be executed than operations outside a selec-
tion.

4.7.2. The Optimizing Run-Time System
Using the information passed in a process descriptor, the RTS decides whether or

not to replicate objects and where to store those objects that are not replicated. If a pro-
cess invokes an operation on a nonreplicated shared object stored on a remote proces-
sor, the optimized RTS sends the operation and its parameters to this machine, asking it
to execute the operation and return the results. For a nonreplicated shared object stored
locally, the RTS simply executes the operation itself, without telling other processors
about this event.

Which strategy is better depends on the underlying architecture and communica-
tion protocols. If the group communication primitives are using the Ethernet hardware
multicast, updates are relatively cheap, making replication relatively attractive. For
architectures that do not support physical multicast, the balance is likely to be different.

The RTS on each processor maintains state information for each shared object.
The state of an object X includes the following information foreveryprocessor P:

SEC. 4.7 The Optimizing Compiler and Run-Time System 107

1. The total number of reads for all processes on P.

2. The total number of writes for all processes on P.

Both numbers are estimates, based on theNreadsandNwritesvalues generated by the
compiler. Each processor keeps track of how every processor uses each object. This
information is updated on everyfork statement. Although afork statement creates a
process on only one processor,fork statements are always broadcast, using the same
indivisible broadcast protocol as for operations. Hence, the state information on all
processors is always consistent and all processors will make the same decisions.

As an example, assume processor 0 executes a statement

fork AddOne(A, B)on(2); # AddOne was defined in Section 4.6.

The RTS on processor 0 broadcasts a message ‘‘[FORK, AddOne, A, B, 2]’’ to all pro-
cessors. Each RTS receives this message and updates the state information for objects
A and B. On each processor theNreadsvalue for object A is incremented by one,
since A is read once byAddOne. Also, theNwritesvalue of B is incremented by one,
since B is written once. Based on this updated information, all processors now recon-
sider their decisions for A and B, using heuristics explained below. If A was not repli-
cated before, the improved read/write ratio may now reverse this decision. Likewise, if
B was replicated, the lower ratio may now cause it to drop the replicas. In the latter
case, all processors also decide where to store the single copy of B. If A or B were
stored on only one processor, the system may also decide to migrate these copies.

In any case, due to the globally-ordered reliable broadcast, all processors come to
the same decisions. If, for example, they decide to no longer replicate B but store it
only on processor 5, all processors except for processor 5 will delete their copies of B.
The processor on which the new process is forked (processor 2 in our example) will
also install copies of A and B (if required) and create a new process.

The heuristic for choosing the replication strategy is quite simple. LetRi andWi

be theNreadsandNwritesvalues for processori for a given object X. First, if X is not
replicated we store it on the processor that most frequently accesses it, which is the
processor with the highest value forRi + Wi . This processor is called theownerof X.

To decide whether or not to replicate object X, we compare the number of mes-
sages that will be generated with and without replication. With replication, one broad-
cast message will be generated for each write operation by any process. We compute
the number of write operations by summingWi for all i. Without replication, one
Remote Procedure Call will be needed for every access by any processor except for the
owner. We determine the processor that would become the owner (i.e., has the highest
value forRi + Wi) and sumRi + Wi for all i except this owner. Finally, we compute the
total communication costs for both cases, using the average costs for RPC and broad-
cast messages. For the platform we use (see Section 5), an RPC costs about 2.5 msec
and a broadcast 2.7 msec. We compare these costs and choose the strategy that has the
least communication overhead.

108 PARALLEL PROGRAMMING USING BROADCASTING AND SHARED OBJECTS CHAP. 4

The overhead of this decision-making process is quite small. The number of
objects in Orca programs is usually small, so the state information requires little
memory. The state is only updated afterfork statements†. As Orca programs use
course-grained parallelism, such statements occur infrequently. With replicated work-
ers parallelism [Andrews 1991], for example, there is about onefork statement for
every processor. The only disadvantage of the current implementation is that allfork
statements must be broadcast.

Since the replication strategy may change dynamically, new mechanisms had to
be implemented in the RTS. The optimized RTS must be able to drop the replicas of a
replicated object, to replicate an unreplicated object, and to migrate an object from one
processor to another. The latter case occurs if the RTS decides to change the owner of
a nonreplicated object. The protocols implementing these mechanisms are relatively
straightforward, as Orca has only passive objects and since simple communication
primitives with clean semantics (RPC and indivisible broadcast) are used. In Emerald,
for example, object migration is more complex, because objects may contain processes
[Jul et al. 1988].

4.8. Example Applications and Their Performance
We will now look at the performance of Orca programs for three typical example

applications. We will give performance figures for both the unoptimized and optim-
ized RTS. The applications differ widely in their need for shared data. The first one,
the Traveling Salesman Problem, greatly benefits from the support for shared data.
The second application, the All-Pairs Shortest Paths Problem, benefits from the use of
broadcast communication, even though it is hidden in the implementation of Orca.
Finally, Successive Overrelaxation merely requires point-to-point communication, but
still can be implemented in Orca by simulating message passing. The Orca code for
the applications can be found in [Bal 1990; Bal et al. 1990].

For each program, we will first describe the access patterns produced by the pat-
tern generator, as well as the decisions made by the RTS. Next, we give the speedups
and absolute running times for the program, with and without the optimization. The
measurements are taken on a collection of 20-Mhz MC68030s connected by a 10
Mbit/s Ethernet. The performance is measured by taking the time before the first state-
ment of the program is executed and by taking the time after the last statement of the
program is executed and subtracting. Thus, the running times include the time to fork
processes. I/O, however, is not measured. Then, we will analyze the performance of
the Orca program by looking at the communication overhead for the program executed
on 16 processors and by comparing it with the equivalent C program.

As an aside, a RTS based on only RPC also has been implemented [Bal et al.
1992b]. For all the applications discussed in this chapter, the optimized RTS performs
333333333333333
† Strictly speaking, the state should also be updated after a process exits, but we did not implement this
yet. For all applications mentioned in this paper, however, all processes continue to exist until the whole
program terminates, so for these applications there would be no difference in performance.

SEC. 4.8 Example Applications and Their Performance 109

as good or better. This comes from the fact that when a truly shared object has to be
updated, the group RTSs only have to send a single multicast message, while the RPC
RTS has to perform multiple RPCs. Although these RPCs are executed in parallel, the
performance impact increases with the number of processors. We will not mention the
RPC-based RTS further.

4.8.1. The Traveling Salesman Problem
The Traveling Salesman Problem (TSP) requires to find the shortest route for a

salesman to visit each city in a given set exactly once. The problem is solved in Orca
using a master/slave type of program based on a branch-and-bound algorithm. The
master generates partial routes and stores them in a job queue. Each slave repeatedly
takes a job (route) from the queue and generates all possible full paths starting with the
initial route and using the ‘‘closest-city-next’’ heuristic. All slaves keep track of the
current shortest full route. As soon as a slave finds a better route, it gives the length of
the route to all other processes. This value is used to prune part of the search tree. The
Orca program uses three shared objects:

q The job queue, containing all the jobs that have been generated by
the master but that have not yet been handled by a slave.

min The length of the best route found so far.

nworkers The number of active worker processes. The master does not print
the final result until this count drops to zero.

The patterns generated for the master (OrcaMain) and slaves are as follows.

process OrcaMain: # OrcaMain is the master
min$W; # initialize global minimum
nworkers$W; # initialize workers count
{q$W}; # generate the jobs
nworkers$R; # wait until count drops to zero
min$R; # get final value of minimum

process slave:
{

#1$W; # get job & delete it from q
[#2$R; [#2$W | [{[#2$R; [#2$W|]|]}|]|]|] # execute job

}
#3$W; # decrement workers count

The second pattern for a slave process is somewhat complicated, because the slave pro-
cess uses a recursive function. The pattern generator estimates the effect of this func-
tion by expanding it up to a certain depth. (Here we have used depth 2; in practice, a
higher depth is used.) Also note that the notation ‘‘[pattern |]’’ represents anif-

110 PARALLEL PROGRAMMING USING BROADCASTING AND SHARED OBJECTS CHAP. 4

statement (selection); thethen-part is represented by the given pattern and theelse-part
does not contain any operation invocations.

First consider the job queue. Both the master and the slaves apply only write
operations to this object, since adding and deleting jobs both change the queue’s data
structures. Therefore, objectq of the master and the first parameter of the slaves will
be assigned positive values forNwrites. The Nreadsvalue for these objects will be
zero. The RTS will therefore decide not to replicate this object. The master process
runs on the same processor as one of the slave processes (since the master is not com-
putationally expensive). The RTS will store the queue object on this processor, since it
contains two processes that write the object.

Now consider the second object,min, which contains the global minimum. The
master reads and writes the minimum exactly once. The pattern for the slaves is com-
plicated, but it is still easy to see that the average read/write ratio for this object
(parameter #2) is higher than 1. (Within the outermost selection, the pattern contains a
read operation, followed by a nested selection; the write operation in this nested selec-
tion can only be executed if the read operation has been executed first). In the slave
processes, theNreadsvalue will therefore be higher than theNwrites value. Conse-
quently, the RTS will decide to fully replicate this object.

Finally, the third object,nworkers, will not be replicated, because it clearly is
written more frequently than it is read. Although this is the right decision, it does not
really improve performance, because the object is infrequently used.

The net effect of the compiler and run-time optimizations is that the job queue is
no longer replicated but stored on the processor where the master (OrcaMain) runs.
This decision reduces the communication overhead of the program, becauseOrcaMain
can generate jobs locally (without any interprocess communication) and because a
slave can now get a job without troubling other processors. In other words, theget
operation on the job queue will be sent point-to-point instead of being broadcast. The
global minimum is replicated, which is important since, in practice, it is read much
more frequently than it is written [Bal et al. 1990].

The impact of this optimization on the speedup for a problem with 14 cities is
shown in Figure 4.11. (For this problem, the master generates 1716 jobs, each contain-
ing a partial route with 4 cities.) The performance improvement is significant, espe-
cially for a large number of processors. The optimized RTS even achieves superlinear
speedup for this specific set of input data. This is due to the fact that one processor
finds quickly a close to optimal shortest path, which other processors use to prune parts
of their search tree.

Most TSP problems we generated give superlinear speedup, which indicates that
our single-processor algorithm (based on the “closest-city-next” heuristic) is not
optimal. We certainly do not claim that the superlinear speedup is due solely to our
optimizations. The point we do wish to make, however, is that the optimized system
performs significantly better than the nonoptimized one.

SEC. 4.8 Example Applications and Their Performance 111

Number of processors

(a)

0

4

8

12

16

20

24

0 4 8 12 16 20 24

Speedup unoptimized RTS

Speedup optimized RTS

..
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
.

. Perfect speedup

Number of processors

(b)

0

500

1000

1500

2000

2500

3000

3500

4000

0 4 8 12 16 20 24

Time unoptimized RTS

Time optimized RTS

Fig. 4.11. Performance for the Traveling Salesman Problem using a 14-city

problem. (a) Speedups for each implementation of the RTS. (b) Absolute run-

ning times in seconds for each implementation of the RTS.

To analyze the communication overhead for the TSP program, the RTS keeps
statistics about the number of messages that are sent and their sizes. Figure 4.12 (a)
shows the number of messages sent by the unoptimized RTS on processor 0, running
bothOrcaMain and a slave process and (b) shows the number of messages sent by the
unoptimized RTS running only a slave process. Figures (c) and (d) show the numbers
for the same processors, using the optimized RTS. The communication overhead is
depicted per primitive: 2 rows for group communication (sending and receiving) and 4
rows for RPC (at the server side a request and a reply and at the client side a request
and a reply). Rows containing only zeros are omitted from the table.

From the number of messages one can clearly see that the optimized RTS
reduces the communication overhead. Consider the processor that is running
OrcaMain. The unoptimized RTS sends 1809 group messages to implement the job
queue, while the optimized RTS sends 1618 point-to-point RPCs. The slave processes
in both RTSs send approximately the same number of messages (both RTSs have to
send one message to get a job), but the optimized RTS receives fewer messages. Like
the master process, the slave processes in the optimized RTS also incur less communi-
cation overhead.

Another interesting question is how the performance of this parallel Orca pro-
gram compares with the performance of a program solving the same problem pro-
grammed in a standard sequential programming language. Figure 4.13 gives the per-
formance figure for TSP written in C. To make a fair comparison, we ran the C pro-

112 PARALLEL PROGRAMMING USING BROADCASTING AND SHARED OBJECTS CHAP. 4

22
Message size (byte)22Primitive

0 8-15 16-31 64-127 128-255 512-1023 1024-204722
Send group 1 2 0 93 1716 1 1522
Receive group 16 17 9 1718 1716 1 152211
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1

11
1
1
1
1

11
1
1
1
1

11
1
1
1
1

11
1
1
1
1

11
1
1
1
1

11
1
1
1
1
1
1

(a)
22

Message size (byte)22Primitive
0 8-15 16-31 64-127 128-255 512-1023 1024-204722

Send group 0 1 0 152 0 0 022
Receive group 10 17 9 1718 1716 1 152211
1
1
1
1
1
1

11
1
1
1
1
1
1

11
1
1
1
1

11
1
1
1
1

11
1
1
1
1

11
1
1
1
1

11
1
1
1
1

11
1
1
1
1

11
1
1
1
1
1
1

(b)
22

Message size (byte)222
128 - 512 - 1024 -Primitive

0 8-15 16-31 32-63 64-127
255 1023 204722

Receive request 0 0 0 0 15 1603 0 022
Send reply 0 0 0 15 1603 0 0 022
Send group 1 1 0 0 1 0 1 1522
Receive group 16 16 9 0 1 0 1 152211
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1

(c)
22

Message size (byte)22
128 - 512 - 1024 -Primitive

0 8-15 16-31 32-63 64-127
255 1023 204722

Send request 0 0 0 0 1 123 0 022
Receive reply 0 0 0 1 123 0 0 022
Send group 0 1 0 0 0 0 0 022
Receive group 10 16 9 0 1 0 1 152211
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1

(d)

Fig. 4.12. Communication overhead TSP in terms of number of messages and

their sizes. (a) The number of messages and their sizes for the processor run-

ning bothOrcaMain and a slave process. (b) The number of messages and

their sizes for a processor running only a slave process. Figures (c) and (d)

show the equivalent numbers for the optimized RTS.

SEC. 4.8 Example Applications and Their Performance 113

gram on the same hardware with the same operating system (Amoeba) as the parallel
Orca program. The C compiler used is the ACK C compiler. (The Orca compiler is
also made using the ACK compiler kit.) Furthermore, we measured the performance of
the same C program on a state-of-the-art processor (SPARCstation1+), running a stan-
dard operating system (SunOS4.1.1), and compiled with a state-of-the-art C compiler
(GNU Ccompiler 2.1).

From the numbers one can conclude that the Orca program running on a single
processor is 6.6 times as slow as the same program on Amoeba written in C. There are
two reasons for this difference in performance. First, the Orca program is written as a
parallel program and uses shared objects, which have a considerable overhead. For
example, to read the objectmin, a number of checks and procedure calls are performed,
while in the C program the minimum can be read using one single instruction. Second,
the Orca compiler is a prototype. Many of the optimizations that the compiler could do
are not implemented yet. For example, the implementation of objects, arrays, and
graphs incur considerable overhead. We are currently working on a redesign of the
interface between the compiler and RTS, and the implementation of a new compiler.
We expect that much of the additional overhead for the Orca language constructs will
disappear.

22
Compiler Operating System Processor Time (sec)22
Orca Amoeba MC68030 357722
ACK cc Amoeba MC68030 54622
GNU cc SunOS4.1.1 SPARC 73221
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

Fig. 4.13. Performance of TSP on a single processor.

4.8.2. The All-Pairs Shortest Paths Problem
The second application we consider is the All-pairs Shortest Paths problem

(ASP). In this problem, it is desired to find the length of the shortest path from any
nodei to any other nodej in a given graph withN nodes. The parallel algorithm we use
is similar to the one given in [Jenq and Sahni 1987], which itself is a parallel version of
Floyd’s algorithm.

The distances between the nodes are represented in a matrix. Each processor
contains aworker process that computes part of the result matrix. The parallel algo-
rithm performsN iterations. Before each iteration, one of the workers sends apivot
row of the matrix to all the other workers. Since the pivot row containsN integers and
is sent to all processors, this requires a nontrivial amount of communication.

114 PARALLEL PROGRAMMING USING BROADCASTING AND SHARED OBJECTS CHAP. 4

The pattern for the worker processes is shown below (OrcaMain does not access
any of the important shared objects):

process worker:
{[#1$W | #1$R]} # parameter 1 is the objectRowk

OrcaMain forks a number of workers, passing an object calledRowk as a shared
parameter (parameter #1). This object is used for transferring the pivot rows. The pro-
cess containing the pivot row stores this row into the sharedRowkobject, where it can
be read by all other processes.

The pattern for the workers clearly reflects this style of communication. A
worker executes zero or more iterations, and during each iteration it either reads or
writes theRowkobject. A worker writes the object if it contains the pivot row for the
current iteration, else it waits until another worker has put the row in the object and
then reads the row.

As far as the pattern analyzer can see, the expected read/write ratio of worker
processes for theRowkobject is exactly 1, because it does not know which of the two
alternatives will be executed most frequently. Using more aggressive optimization
techniques (or perhaps even execution profiles), it might be possible to make a more
accurate estimate. ForRowk, the compiler will therefore pass to the RTS a value for
Nread that is equal toNwrite. When in doubt, the RTS always adheres to the original
replication strategy, which is to replicate objects everywhere. For ASP, replicating the
object is essential, because it means that the pivot rows will be broadcast instead of
being sent point-to-point. The performance of ASP will therefore be the same with the
optimized and unoptimized compilers, as shown in Figure 4.14.

Figure 4.15 shows the communication overhead for ASP running on 16 proces-
sors. We only show the overhead for the unoptimized RTS, because both RTSs send
and receive the same number of messages. We only show the overhead for one of the
worker processes, because all processors execute the same worker process and
OrcaMain sends a negligible number of messages. Almost all communication over-
head can be attributed to adding pivot rows to the shared objectRowk. In each iteration
one worker process adds a pivot row, which is used by all processes during that itera-
tion. As the matrix is of size 500x500, each process sends 31 group messages of 2000
bytes. The other messages are due to forking of worker processes and due to synchron-
ization before the end of the program.

Figure 4.16 shows the performance for ASP written in C. The Orca program on
one processor is 3.5 times as slow as the C program on Amoeba. The main contributor
is the difference between arrays in Orca and C. In Orca, arrays are dynamic and type
secure, while in C they are not. Type security means that an illegal array access in
Orca will result in a run-time error, while in C it might lead to an unexpected program
crash. To retrieve an array element, the Orca program calls a RTS procedure to do the
job. (The next Orca compiler will use in-line array-bound checking and will determine

SEC. 4.8 Example Applications and Their Performance 115

Number of processors

(a)

0

4

8

12

16

20

24

0 4 8 12 16 20 24

Speedup unoptimized RTS

Speedup optimized RTS

..
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
.

. Perfect speedup

Number of processors

(b)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 4 8 12 16 20 24

Time unoptimized RTS
Time optimized RTS

Fig. 4.14. Performance for the All-Pairs Shortest Paths Problem using a graph

with 500 nodes. (a) Speedups for each implementation of the RTS. (b) Abso-

lute running times in seconds for each implementation of the RTS.

22
Message size (byte)22222222222222222222222222222222Primitive

0 16-31 64-127 1024-204722
Send group 0 1 0 3122
Receive group 9 17 1 516221
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

11
1
1
1
1
1

11
1
1
1
1
1

11
1
1
1
1
1

1
1
1
1
1
1
1
1
1

Fig. 4.15. Communication overhead ASP for a processor running a worker

process. Both the unoptimized and optimized RTS send and receive the same

messages.

at compile time if array-bound checking is needed.) This procedure checks if the index
is within the array bounds and if so, returns the value; otherwise it will generate a run-
time error. The equivalent operation in C has the cost of only dereferencing a pointer.

Although type security incurs some run-time overhead, we think that it is a pro-
perty worthwhile to have, especially in the arena of parallel programming. Consider a
parallel program consisting of 100 processes. If this program is written in C (with
library calls for synchronization and communication), one of the 100 processes may
suddenly dump core without any explanation. In Orca, this cannot happen. The Orca

116 PARALLEL PROGRAMMING USING BROADCASTING AND SHARED OBJECTS CHAP. 4

22
Compiler Operating System Processor Time (sec)22
Orca Amoeba MC68030 496822
ACK cc Amoeba MC68030 142522
GNU cc SunOS4.1.1 SPARC 95221
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

Fig. 4.16. Performance of ASP on a single processor.

programmer will get an exact error message telling which operation failed and on
which line of the program the failure occurred.

4.8.3. Successive Overrelaxation
Successive overrelaxation (SOR) is an iterative method for solving discrete

Laplace equations on a grid. During each iteration, the algorithm considers all non-
boundary points of the grid. For each point, SOR first computes the average value of
its four neighbors and then updates the point using this value. To avoid overwriting the
old value of the matrix before it is used, the new matrix is computed on each iteration
in two phases. The program treats the matrix as a checkerboard and alternately updates
all black points and all red points. As each point has neighbors of the opposite color, a
scratch matrix is not needed and each update phase can easily be parallelized. The
implementation of SOR is based on descriptions published in a number of recent
research papers [Butler et al. 1986; Chase et al. 1989; Carter et al. 1991].

SOR can be parallelized by partitioning the grid among a number of worker
processes, one per processor. Each worker contains a vertical slice of the grid. The
processes are organized in a row. At the beginning of an iteration, each worker needs
to exchange edge values with its left and right neighbor. This can easily be imple-
mented through shared buffer objects. We use two buffer objects for each pair of
neighbors, for communication in each direction. Since each worker (except the first
and last) has two neighbors, each worker accesses four shared objects.

In addition to these buffer objects, the program uses a single shared object (fin-
ish), which is used for terminating the program. After each iteration, all workers deter-
mine if they want to continue the SOR process or not. If all workers want to stop, the
entire program terminates, else all workers continue with the next iteration. This is
expressed using the object typePollSequence, which basically implements a barrier
synchronization [Bal et al. 1990].

The specification of a worker process is as follows:

SEC. 4.8 Example Applications and Their Performance 117

process worker(
ToLeft, ToRight, FromLeft, FromRight:shared Buffer;
finish: shared PollSequence;
lb, ub: integer);

The main process (i.e.,OrcaMain) creates all these shared objects and forks the worker
processes, passing several objects to each process. A worker is assigned a portion of
the columns of the grid; the index of the first and last column are passed as parameters.
The code for the main process is shown below.

process OrcaMain();
i, lb, ub: integer;
Lbufs, Rbufs:array[integer 0 .. NCPUS]of Buffer;
finish: PollSequence;

begin
finish$init(NCPUS); # Initialize PollSequence object
for i in 0 .. NCPUS−1 do # fork worker processes

determine lower bound (lb) and upper bound (ub) for next worker
fork worker(

Lbufs[i], Rbufs[i+1],
Rbufs[i], Lbufs[i+1],
finish, lb, ub) on(i);

od;
end;

Here,NCPUSis the number of processors being used. The main process creates two
arrays of buffer objects. ObjectLbufs[i] is used for sending messages from workeri to
worker i−1 (i.e., its left neighbor). Worker i sends messages to its right
neighbor(workeri+1) through objectRbufs[i+1].

The patterns for the main process and the workers are shown below:

process OrcaMain:
finish$W; # Initialize PollSequence object

process worker:
{

{[#1$W|]; [#2$W|]; [#3$W|]; [#4$W|]};# Communicate with neighbors
#5$W; # Bring out vote
#5$R; # Await decision

}

OrcaMainmerely initializes thefinish object and does not use the shared objects other-
wise. Each worker performs a number of iterations. At each iteration, it first commun-
icates through its four buffer objects. (The first and last worker have only one neigh-

118 PARALLEL PROGRAMMING USING BROADCASTING AND SHARED OBJECTS CHAP. 4

bor, which explains why the four write operations are conditional, and thus are sur-
rounded by square brackets.) Next, the worker computes and then determines if it
wants to continue or not. It writes this decision into thefinish (parameter #5) object,
waits until all workers have made up their mind, and then reads the overall decision
from the finish object. (Waiting and reading the result are done in one operation, so
they show as a single read operation in the pattern).

Let us first consider thefinish object. Each worker has a read/write ratio of 1 for
this object, so the analyzer will generate a value forNread that is equal toNwrite for
this object in all worker processes. For the main processNwrite is larger thanNread.
Given the heuristics described in Section 4.7.2., the run-time system will decide to
replicate this object everywhere.

Let us now discuss how the system handles the arrays of shared buffer objects.
Each buffer object is passed as a shared parameter to exactly two worker processes.
One of them sends messages to the buffer and the other accepts messages from it. The
compiler will have assigned a positiveNwrites value to each parameter and a zero
Nreadsvalue, since the worker will apply only write operations to the objects.

The run-time system will therefore discover that each object is used on two pro-
cessors and that it is written (and not read) by both of them. So, the run-time system
will decide not to replicate these objects, and store each object on one of the processors
that accesses it, the latter choice being arbitrary but consistent, so the objects get evenly
distributed among the processors.

By performing these optimizations, each buffer object is now stored on only one
processor, rather than being replicated everywhere. Communication between two
neighboring processes is now implemented with point-to-point messages instead of
broadcasting. This optimization improves the speedup of the program substantially, as
is shown in Figure 4.17. With more than 20 processors, the performance of the unop-
timized program decreases enormously, due to the large number of broadcast messages
received by each processor. The optimized program does not have this problem.

Figure 4.18 shows the communication overhead of the 16-processor Orca pro-
gram for both the optimized and unoptimized RTS. We only show the communication
overhead for one of the 16 worker processes, as all workers (except the first and last)
send and receive the same number of messages and asOrcaMain sends a negligible
number of messages. The first and last worker send fewer messages, as these have
only one neighbor.

The program makes 100 iterations. At each iteration, the boundary rows are
exchanged with both neighbors and all worker processes synchronize to determine if
another iteration is needed. Consider the unoptimized RTS. For each worker with two
neighbors, exchanging the boundary rows results in 4* 2 * 100= 800 broadcasts (4
operations per phase per iteration). 400 of the 800 are broadcasts with 640 bytes of
data (80 double floating point numbers). The other 400 are broadcasts with no user
data; they correspond to theget operation. The synchronization results in 100 broad-
casts per worker. The 188 broadcasts are due to operations of which the guards first

SEC. 4.8 Example Applications and Their Performance 119

Number of processors

(a)

0

4

8

12

16

20

24

0 4 8 12 16 20 24

Speedup unoptimized RTS

Speedup optimized RTS

..
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
.

. Perfect speedup

Number of processors

(b)

0

200

400

600

800

1000

1200

1400

0 4 8 12 16 20 24

Time unoptimized RTS

Time optimized RTS

Fig. 4.17. Performance for Successive Overrelaxation for an 80 by 482 grid.

(a) Speedups for each implementation of the RTS. (b) Absolute running times

in seconds for each implementation of the RTS.

failed and then later, after a retrial, succeeded. The remaining broadcasts are due to
forking worker processes and due to synchronization before the end of the program.

Except for synchronizing at the end of each iteration, the optimized RTS sends
almost no broadcasts. All the communication with the neighbors is performed using
RPC. Per iteration, each worker process performs 8 operations to exchange rows (4
operations per phase). Of the 8 operations 4 can be performed locally without com-
municating, as a worker process owns one of the buffers used to exchange rows. The
net result is that the communication overhead for the optimized RTS is much less than
for the unoptimized RTS.

Figure 4.19 shows the performance for SOR written in C. The Orca program on
one processor is only 2.2 times as slow as the program written in C. Again, the over-
head is largely due to array accesses.

4.9. Comparison with Related Work
In this section, we compare our approach with several related languages and sys-

tems. In particular, we look at broadcasting for parallel computing, compiler optimiza-
tions for parallel programming, objects (as used in parallel object-based languages),
Linda’s Tuple Space, and Shared Virtual Memory.

120 PARALLEL PROGRAMMING USING BROADCASTING AND SHARED OBJECTS CHAP. 4

222
Message size (byte)222

512 - 1024 - 2048 -Primitive
0 8-15 16-31 32-63 64-127

1023 2047 409522
Send group 0 1 100 588 0 400 0 0222
Receive group 9 16 1600 8820 1 6000 1 1522211
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1

(a)

22
Message size (byte)222Primitive

0 8-15 16-31 32-63 64-127 512-1023 1024-204722
Receive request 0 0 0 200 0 200 022
Send reply 200 0 0 0 0 200 022
Send request 0 0 0 200 0 200 022
Receive reply 200 0 0 0 0 200 022
Send group 0 1 100 0 0 0 022
Receive group 9 16 1600 0 1 0 12211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

(b)

Fig. 4.18. Communication overhead for one of the processors running a

worker process. (a) Overhead for the unoptimized RTS. (b) Overhead for the

optimized RTS.

22
Compiler Operating System Processor Time (sec)22
Orca Amoeba MC68030 134422
ACK cc Amoeba MC68030 61922
GNU cc SunOS4.1.1 SPARC 28221
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

Fig. 4.19. Performance of SOR on a single processor.

Broadcasting for Parallel Computing
Essential to our model is the use of group communication. It is one of the main

SEC. 4.9 Comparison with Related Work 121

keys to an efficient implementation of a large class of applications. Few systems have
used broadcasting for parallel programming. The language SR provides a broadcast
primitive, co send[Andrews et al. 1988], but it only implements unordered broadcast
and (at present) does not use physical broadcast at the hardware level. This limits its
usability to a smaller set of applications.

One of the implementations of Linda is also based on broadcasting [Carriero and
Gelernter 1986; Ahuja et al. 1988]. This implementation relies on the hardware to pro-
vide reliable delivery. Using our reliable broadcast primitive one should be able to
implement the tuple space in a similar way.

Stumm and Zhou describe a number of algorithms to implement distributed
shared memory [Stumm and Zhou 1990]. They have developed a simulation model to
compare these different algorithms. One of the algorithms, the full-replication algo-
rithm, is also based on reliable, totally-ordered broadcast. Our results agree with their
study. For applications with a high read/write ratio, the full replication algorithm out
performs the other algorithms. However, for a low read/write ratio, it is better to use
partial replication, in which objects are replicated on some (but not all) processors, or
to store the shared data on a single processor.

Cheriton and Zwaenepoel describe a number of parallel applications in which
they have used broadcasting [Cheriton and Zwaenepoel 1985]. The applications
include distributed game playing, alpha-beta search, and the traveling salesman prob-
lem. The main difference between their work and ours, is that the programmer writes
programs using group communication primitives, while we are providing a higher-level
model to the programmer. Using the higher level model we are able to simplify the job
of the programmer, while still maintaining a good performance.

Finally, Gehani describes a language based on broadcasting [Gehani 1984].
Broadcasting Sequential Processes (BSP) provides a number of different primitives for
doing broadcasting, ranging from synchronous to asynchronous and from buffered to
unbuffered. Although we strongly believe that broadcasting is fundamental for imple-
menting parallel applications efficiently, we do not think that broadcast primitives are
the right programming paradigm for writing parallel applications. We think that a
higher level paradigm like the shared data-object model is needed to simplify the com-
plicated task of writing parallel programs.

Compiler Optimizations for Parallel Programming
Most of the work on compiler optimizations for parallel programming takes

place in the area of numerical applications, where shared arrays have to be decomposed
and partitioned among the memories of different machines. In FORTRAN-D [Fox et
al. 1990], for example, the programmer can specify a strategy for decomposing arrays
into blocks. The compiler uses this information to distribute the array among the physi-
cal memories and automatically generates send/receive primitives when needed. Paral-
lelism in such programs can be obtained by executing different iterations of a loop on
different processors, or by performing higher-level operations (e.g., matrix additions)

122 PARALLEL PROGRAMMING USING BROADCASTING AND SHARED OBJECTS CHAP. 4

in parallel. Such systems usually adhere to the Single Program Multiple Data (SPMD)
style [Karp 1987]. Besides FORTRAN-D, many similar projects exist [Callahan et al.
1988; Koelbel et al. 1990; Rosing et al. 1991]. Also, some work on functional
languages is related to this approach [Rogers and Pingali 1989; Chen et al. 1988].

Our work on Orca is much less focused on numerical applications and partitioned
arrays. Parallelism in Orca is explicit (through a fork statement) and many forms of
synchronization can be expressed, so Orca programs are not necessarily SPMD-like.
Objects in Orca are not partitioned but replicated. Also, this replication is transparent
to the user (except for performance). So, the goals of the optimizing Orca compiler and
the techniques used are different from those of the languages mentioned above.

Objects
Objects are used in many object-based languages for parallel or distributed pro-

gramming, such as Emerald [Jul et al. 1988], Amber [Chase et al. 1989], ALPS [Vish-
nubhotla 1988], and Mentat [Grimshaw 1990]. Objects in such languages typically
have two parts:

1. Encapsulated data.

2. A manager processthat controls access to the data.

The data are accessed by sending a message to the manager process, asking it to per-
form a certain operation on the data. As such objects contain a process as well as data,
they are said to beactive.

Although, in some sense, parallel object-based languages allow processes
(objects) to share data (also objects), their semantics are closer to message passing than
to shared variables. Access to the shared data is under full control of the manager pro-
cess. In ALPS, for example, all operations on an object go through its manager pro-
cess, which determines the order in which the operations are to be executed. Therefore,
the only way to implement the model is to store an object on one specific processor,
together with its manager process, and to translate all operations on the object into
RPCs to the manager process.

Our model does not have such centralized control. Objects in Orca are purely
passive: they contain data but no manager process. Access control to shared data-
objects is distributed; it is basically determined by only two rules:

1. Operations must be executed indivisibly.

2. Operations are blocked while their guards are false.

Therefore, the model can be implemented by replicating data-objects on multiple pro-
cessors, as we discussed in Section 4.4. Read operations can be applied to the local
copy, without any message passing being involved. Moreover, processes located on
different processors can apply read operations simultaneously, without losing any
parallelism.

SEC. 4.9 Comparison with Related Work 123

Linda’s Tuple Space
Linda [Ahuja et al. 1986] is one of the first languages to recognize the disadvan-

tages of central manager processes for guarding shared data. Linda supports so-called
distributed data structures, which can be accessed simultaneously by multiple
processes. In contrast, object-based languages typically serialize access to shared data
structures. Linda uses the Tuple Space model for implementing distributed data struc-
tures.

In general, distributed data structures in Linda are built out of multiple tuples.
Different tuples can be accessed independently from each other, so processes can mani-
pulate different tuples of the same data structure simultaneously. Multipleread opera-
tions of the same tuple can also be executed simultaneously. Tuples are modified by
taking them out of the Tuple Space first, so modifications of a given tuple are executed
strictly sequentially.

Although the idea of distributed data structures is appealing, we think the support
given by the Tuple Space for implementing such data structures has important disad-
vantages. For distributed data structures built out of single tuples, mutual exclusion
synchronization is done automatically. Operations on complex data structures (built out
of multiple tuples), however, have to be synchronized explicitly by the programmer. In
essence, Tuple Space supports a fixed number of built-in operations that are executed
indivisibly, but its support for building more complex indivisible operations is too
low-level [Kaashoek et al. 1989].

In Orca, on the other hand, programmers can define operations of arbitrary com-
plexity on shared data structures; all these operations are executed indivisibly, so
mutual exclusion synchronization is always done automatically by the run-time system.
This means it is the job of the implementation (the compiler and run-time system) to
see which operations can be executed in parallel and which have to be executed
sequentially. As discussed above, one way of doing this is by distinguishing between
read and write operations and executing reads in parallel on local copies; more
advanced implementations are also feasible.

Like Orca, Linda also uses extensive compile-time optimization [Carriero 1987],
but this is mainly aimed at reducing the overhead of associative addressing of Tuple
Space. Also, work has been done on a heuristic Linda kernel that determines during
run-time where to store tuples, based on usage statistics [Lucco 1987]. As far as we
know, however, no existing Linda system determines the optimal location for a tuple at
compile time.

Shared Virtual Memory
Shared Virtual Memory (SVM) [Li and Hudak 1989] simulates physically shared

memory on a distributed system. It partitions the global address space into fixed-sized
pages, just as with virtual memory. Each processor contains some portion of the pages.
If a process tries to access a nonlocal page, it incurs a page fault, and the operating sys-
tem will then fetch the page from wherever it is located. Read-only pages may be

124 PARALLEL PROGRAMMING USING BROADCASTING AND SHARED OBJECTS CHAP. 4

shared among multiple processors. Writable pages must reside on a single machine.
They cannot be shared. If a processor needs to modify a page, it will first have to
invalidate all copies of the page on other processors.

There are many important differences between the implementation of our model
and SVM. SVM is (at least partly) implemented inside the operating system, so it can
use the MMU. In Orca, everything except for the broadcast protocol is implemented in
software outside the operating system. This difference gives SVM a potential perfor-
mance advantage.

Shared data-objects are accessed through well-defined, high-level operations,
whereas SVM is accessed through low-level read and write instructions. Consequently,
we have a choice between invalidating objects after a write operation or updating them
by applying the operation to all copies (or, alternatively, sending the new value). With
SVM, there is no such choice; only invalidating pages is viable [Li and Hudak 1989].
In many cases invalidating copies will be far less efficient than updating them.

Several researchers have tried to solve this performance problem by relaxing the
consistency constraints of the memory [Hutto and Ahamad 1990; Minnich and Farber
1990]. Although these weakly consistent memory models may have better perfor-
mance, we fear that they also break the ease of programming for which DSM was
designed in the first place. Since Orca is intended to simplify applications program-
ming, Orca programmers should not have to worry about consistency. On the other
hand, systems based on release consistency weaken the ordering of events only for the
implementation [Carter et al. 1991; Lenoski et al. 1992]. The programmer still sees a
sequentially consistent memory. In the future, we may investigate whether a compiler
is able to relax the consistency transparently, much as is done in these systems.

Another important difference between Orca and SVM is the granularity of the
shared data. In SVM, the granularity is the page size, which is fixed (e.g., 4 Kbyte). In
Orca, the granularity is the object, which is determined by the user. So, with SVM, if
only a single bit of a page is modified, the whole page has to be invalidated. This pro-
perty leads to the well-known problem offalse sharing. Suppose a processP repeat-
edly writes a variableX and processQ repeatedly writesY. If X andY happen to be on
the same page (by accident), this page will continuously be moved betweenP andQ,
resulting in thrashing. IfX and Y are on different pages, thrashing will not occur.
Since SVM is transparent, however, the programmer has no control over the allocation
of variables to pages. In Orca, this problem does not occur, sinceX andY would be
separate objects and would be treated independently.

A more detailed comparison between our work and Shared Virtual Memory is
given in [Levelt et al. 1992].

SEC. 4.9 Comparison with Related Work 125

4.10. Conclusion
To summarize, in this chapter we have discussed multiprocessors (with shared

memory) and multicomputers (without shared memory). The former are easy to pro-
gram but hard to build, while the latter are easy to build but hard to program. We then
introduced a new model that is easy to program, easy to build, and has an acceptable
performance on problems with a moderate or large grain size. We have also designed
and implemented a shared object layer and a language, Orca, that allows programmers
to declare objects shared by multiple processes.

We have described two approaches to implementing shared data-objects in a dis-
tributed environment. In the first approach, objects are replicated on all the machines
that need to access them. When the language run-time system needs to read a shared
object, it just uses the local copy. When it needs to update a shared object, it reliably
broadcasts the operation on the object. This scheme is simple and has a semantic
model that is easy for programmers to understand. It is also efficient because the
amount of data broadcast is exactly what is needed. It is not constrained to be 1 Kbyte
or 8 Kbyte because the page size happens to be that, as in the work of Li and Hudak.
Most of our broadcasts are much smaller.

The second approach is more complicated to implement, but gives better perfor-
mance on applications that do not exhibit a high ratio of read operations versus write
operations. This approach uses a combination of compile-time and run-time optimiza-
tions to determine which objects to replicate and where to store nonreplicated objects.
We have applied the optimizer to three existing Orca applications. For all three appli-
cations, it made the right decisions. It significantly improved the speedup of two of the
three programs.

Although our initial experiences with the second approach are promising, there
still remain several problems to be solved. For example, for some applications, a par-
tial replication scheme is better.

We believe that the approach of explicitly computing read-write patterns may
serve as a basis for other optimizations. One important class of such optimizations is
adaptive caching, proposed in the Munin project [Bennett et al. 1990]. The idea is to
classify shared objects based on the way they are used. Aproducer-consumerobject,
for example, is written by one process and read by others. Awrite-onceobject is ini-
tialized once but not changed thereafter. Munin uses different coherence mechanisms
for different classes of objects. In general, using weaker coherence rules means better
performance.

Once the classification of objects is known, Munin is able to do many optimiza-
tions. Unfortunately, the current Munin implementation leaves the classification up to
the programmer. With the read-write patterns generated by the Orca compiler, we
hope to be able to do a similar classification automatically. This is another important
area for future research.

In conclusion, we believe that the use of group communication combined with
compile-time information is a good way to efficiently support shared objects. The

126 PARALLEL PROGRAMMING USING BROADCASTING AND SHARED OBJECTS CHAP. 4

model is a promising approach to parallel programming, as it is simple to understand
and efficient to implement. We believe that this paradigm offers a new and effective
way to exploit parallelism in future computing systems.

Notes
All the research described in this chapter is based on a fruitful collaboration with
Henri Bal and Andy Tanenbaum. This collaboration started around the summer of
1987 and has produced a number of papers, Bal’s thesis, and this thesis. The descrip-
tion of Orca, the comparison with other parallel languages, and the design of the
unoptimized Orca RTS appear in [Bal et al. 1989a; Bal 1990; Bal et al. 1992a; Bal
and Tanenbaum 1991; Tanenbaum et al. 1992]. The performance measurements con-

tain material from [Bal et al. 1990]. The joint research on the optimized RTS is new.

SEC. 4.10 Conclusion 127

5

FAULT-TOLERANT PROGRAMMING
USING BROADCASTING

Applications differ in their need for fault tolerance (see Fig. 5.1). In general, the
greater the potential damage due to a failure the more the need for fault tolerance. If a
nuclear reactor, for example, does not recover correctly from a failure, human lives
might be lost. If a text formatting program does not recover from a failure, the cost of
the failure is only the time to rerun the program. The cost and likelihood of a catas-
trophic failure determine how much users are willing to pay for fault tolerance. Users
would rather have their text formatting program run as fast possible and rerun the
whole program in the face of a failure than have the text formatting program run twice
as slow and be able to recover from failures. For a nuclear reactor, the tradeoff is
likely to be the other way around.

In this chapter, we will look at how useful group communication is for two appli-
cation areas that have different needs for fault tolerance: parallel applications and dis-
tributed services. In the first part of the chapter, we describe a simple scheme for
rendering parallel applications fault-tolerant. Our approach works for parallel Orca
applications that are not interactive. The approach is based on making a globally-
consistent checkpoint periodically and rolling back to the last checkpoint when a pro-
cess or processor fails. Making a consistent checkpoint is easy in Orca, because its
implementation is based on reliable group communication. The advantages of our
approach are its simplicity, ease of implementation, low overhead, and transparency to
the Orca programmer.

In the second part of this chapter, we will present an experimental comparison of
two fault-tolerant implementations of Amoeba’s directory service. One is based on
RPC and the other is based on group communication. The purpose of the comparison is
to show that the implementation using group communication is simpler and also more
efficient than the implementation based on RPC. The directory service exemplifies dis-
tributed services that provide high reliability and availability by replicating data.

128

..

..

..

..

..

.

Nuclear reactor

Airplane controller

Banking system

Weather prediction

Office automation

File server

Parallel application

UNIX troff program

Fault tolerance required

Fig. 5.1. Scale showing the amount of fault tolerance needed.

The chapter deviates in organization from previous chapters. It contains two
related but independent subchapters, each with its own introduction, research contribu-
tion, and discussion. We chose this organization instead of two chapters, because both
subchapters have one central theme: fault tolerance through group communication.
The fault-tolerant Orca implementation uses a group with a resilience degree of zero
and the fault-tolerant directory service uses a group with a resilience degree greater
than zero. At the end of this chapter, we will relate the two subchapters.

5.1. Transparent Fault Tolerance in Parallel Orca Programs
Designers of parallel languages frequently ignore fault tolerance. If one of the

processors on which a parallel program runs crashes, the entire program fails and must
be run again. For a small-scale parallel system with few processors, this may be
acceptable, since processor crashes are unlikely. The execution-time overhead of fault
tolerance and its implementation costs may not be worth the extra convenience. After
all, the goal of parallelizing a program is to reduce the execution time.

Consider, however, a parallel program that runs on a thousand CPUs for 12 hours
to predict tomorrow’s weather. Even if the mean-time-between-failure of a CPU is a
few years, the chance of one of them crashing can not be neglected. Moreover, if a
processor crashes when the computation is almost finished, the whole program has to
be started all over again, thus doubling its execution time. In general, the larger the
scale of the parallel system, the more important fault tolerance becomes. Future large-
scale parallel systems will have to take failures into account. An obvious question is:
Who will deal with processor crashes? There are two options. One is to have the pro-
grammer deal with them explicitly. Unfortunately, parallel programming is hard

SEC. 5.1 Transparent Fault Tolerance in Parallel Orca Programs 129

enough as it is, and fault tolerance will certainly add more complexity. The alternative
is to let the system (i.e., compiler, language run time system, and operating system)
make programs fault-tolerant automatically, in a way transparent to programmers. The
latter option is clearly preferable, but in general it is also hard to implement efficiently.

In this chapter, we will discuss how transparent fault tolerance has been imple-
mented in the Orca parallel language described in the previous chapter. The failures
that we consider are transient failures, such as hardware errors. The problem we have
tried to solve is modest: to avoid having to restart long-running parallel Orca programs
from scratch after each crash. The goal is to do so without bothering the programmer
and without incurring significant overhead. We have not tried to solve the more gen-
eral class of problems of making all distributed systems fault-tolerant. Instead, we con-
sider only the class of parallel programs that take some input, compute for a long time,
and then yield a result. Such programs do not interact with users and do not update
files.

Our solution is simple: make global checkpoints of the global state [Chandy and
Lamport 1985] of the parallel program using reliable group communication. If one of
the processors crashes, the whole parallel program is restarted from the checkpoint
rather than from the beginning. Users can specify the frequency of the checkpoints, but
otherwise are relieved from any details in making their programs fault-tolerant.

The key issue is how to make a global checkpoint that isconsistent, preferably
without temporarily halting the entire program. It turns out that this problem can be
solved in a surprisingly simple way in Orca.

The outline of the rest of this section is as follows. We first summarize how
Orca applications are run on Amoeba. Next, Section 5.1.2 describes the design of a
fault-tolerant Orca run time system. Section 5.1.3 gives the implementation details and
the problems we encountered with Amoeba. In Section 5.1.4, we give some perfor-
mance measurements. In particular, we show how much time it takes to make a check-
point and to restart a program after a crash. In addition, we measure the overhead of
checkpoints on example Orca programs. Section 5.1.5 compares our method with
related approaches, such as explicit fault-tolerant parallel programming, message log-
ging, and others. Finally, in Section 5.1.6, we present some conclusions and see how
our work can be applied to other systems.

5.1.1. Running Orca Programs under Amoeba
Orca can be implemented efficiently on a distributed system using a RTS that

replicates shared objects in the local memories of the processors. If a processor has a
local copy of an object, it can doreadoperations locally, without doing any communi-
cation. Write operations are broadcast to all nodes containing a copy. All these nodes
update their copies by applying the write operation to the copy. In this chapter, we will
consider only the unoptimized RTS (the RTS based only on group communication).
Extensions to our scheme are needed to make it work for the optimized version (the
RTS based on group communication and RPC).

130 FAULT-TOLERANT PROGRAMMING USING BROADCASTING CHAP. 5

To understand how the checkpointing scheme works, it is important to know how
Orca programs are run. Parallel Orca programs are run on the processor pool. An Orca
application is started by the programgax (Group Amoeba eXecute).Gax asks the
directory server for the capability of the program, and using the capability it fetches the
Orca binary (Orca program linked with the Orca RTS) from the file server. Next,gax
allocates the requested number of processors in the processor pool and starts the exe-
cutable program on each processor (see Fig 5.2). These Orca processes together form
one process group. A message sent to the group is received in the same order by all
processes (including the sending process), even in the presence of communication
failures, as described in Chapter 3.

Orca

RTS

Kernel

Orca

RTS

Kernel

Orca

RTS

Kernel

Gax

Kernel

Directory

Server

File Server Kernel

Ethernet

Fig. 5.2. An Amoeba system with an Orca application running on 3 proces-

sors. The Orca processes together form one process group. In the current con-

figuration, the file server is for performance reasons linked with the kernel.

5.1.2. Designing a Fault-Tolerant RTS
There are many ways of making Orca programs fault-tolerant. One approach is

to ask a special server to keep an eye on Orca applications and start them again if they
fail. In Amoeba such a server is available and is called theboot server. Unfortunately,
this does not gain much, since the application would have to start all over from the
beginning. For applications that have to meet a deadline this is not appropriate.

Another approach is to use a message logging and playback scheme [Powell and
Presotto 1983], such as optimistic recovery [Strom and Yemini 1985; Johnson 1989].
Message logging is designed for general distributed applications rather than just paral-
lel applications, and may be too expensive for parallel applications. Optimistic
recovery, for example, can deal with interactive programs. Programs using optimistic
recovery will not ask for the same input twice or produce the same output twice. While
this property is useful, it is not essential for most parallel programs, which frequently
are not interactive. For those programs, the message logging solution is not necessary.
A cheaper and simpler form of fault tolerance is adequate.

The method we use is to periodically make a globally-consistent checkpoint of
all the Orca processes. After a crash, all processes continue from the last checkpoint.
Since parts of the program may be executed multiple times, the method cannot be used
for interactive programs or any programs that may have side effects.

SEC. 5.1 Transparent Fault Tolerance in Parallel Orca Programs 131

The most important design issue is how to obtain aglobally-consistentcheck-
point. As an example, assume a process P1 makes a checkpoint at time T1 and then
sends a message to process P2. (Although Orca programs do not send messages, their
run-time systems do.) Assume that process P2 receives this message and then makes a
checkpoint, at time T2. Obviously, the two checkpoints are not consistent. If both
processes are rolled back to their checkpointed state, P1 would again send the message,
but P2 would be in a state where it had already accepted the message. So, P2 would
receive the message twice.

As explained in [Koo and Toueg 1987], checkpointing should be done con-
sistently relative to communication. It is not necessary to have all processors make
checkpoints at exactly the same time, but messages must not cross checkpoints. One
could envision making a consistent checkpoint by first telling each processor to stop
sending messages. When the whole system is quiet, each processor is instructed to
make its local checkpoint. All these checkpoints will then be consistent, since no inter-
process communication takes place during checkpointing. We will not go into the
details of how such a design might work. Suffice it to say that this solution would not
be very attractive. The reason is that it may take a lot of time and overhead to bring the
whole (distributed) system to a halt. Also, the more processors there are, the more time
is wasted.

In the unoptimized Orca run-time system based on reliable group communication
it is almost trivial to make consistent checkpoints. As we explained in Chapter 4, the
Orca run-time system communicates only through reliable, totally-ordered group com-
munication. All processes receive all broadcast messages in the same order. There-
fore, to make the global checkpoint consistent, all that is needed is to broadcast one
make checkpointmessage. This message will be inserted somewhere in the total order
of broadcast messages. Assume that themake checkpointmessage gets sequence
numberN in this total ordering. Then, at the time a process makes its local checkpoint,
it will have received and handled messages 1 toN−1, but not messagesN+1 and higher.
This applies toall processes. Therefore the checkpoints are all consistent.

To recover from a processor crash all processes roll back to their last common
checkpoint. No process will send a message before all processes have been rolled
back. Thus, when a process sends a message, all processes will receive it with the
same sequence number. Because all processes roll back and synchronize before they
continue running, they will start in a consistent state.

For some applications checkpoints clearly are not going to be cheap. Each pro-
cess must save its local data (or, at the very least, the difference with the previous
checkpoint). For some processes, this may easily involve writing several hundred kilo-
bytes to a remote file server. With the Amoeba file server, known as theBullet server
[Van Renesse et al. 1989], this may take a substantial fraction of a second. With multi-
ple processes, things will get worse. The time to make a globally-consistent checkpoint
will depend on the configuration of the distributed system and on the network. Clearly,
having a single centralized Bullet server for a thousand pool processors is not a good

132 FAULT-TOLERANT PROGRAMMING USING BROADCASTING CHAP. 5

idea. However, the Bullet server can be (and is) replicated, so different pool processors
can use different instantiations of this server.

The main advantage of our algorithm is that it is extremely simple and easy to
implement. While it is not optimal it is still useful. In particular, for long-running
noninteractive parallel applications, the overhead of making a checkpoint every few
minutes is quite acceptable. Also, the frequency of the checkpointing can easily be
changed. Using a lower frequency will decrease the overhead, but increase the average
amount of re-execution due to crashes. We will get back to this performance issue in
Section 5.1.4, where we give performance results.

To make our approach work for interactive programs, the system needs to make a
globally-consistent checkpoint each time some interaction with the outside world hap-
pens. As making a globally-consistent checkpoint is reasonably expensive, we did not
pursue this idea. For interactive parallel programs, the approach of Elnozahy and
Zwaenepoel is more promising [Elnozahy and Zwaenepoel 1992a].

Another disadvantage of our approach is that it works only for the unoptimized
version of the Orca RTS. The optimized version uses both RPC and group communica-
tion and it is therefore harder to make a consistent checkpoint. In this case, more com-
plicated protocols such as Chandy’s and Lamport’s distributed snapshot protocol are
needed [Chandy and Lamport 1985]. We will not pursue these ideas in this thesis.

5.1.3. Fault-Tolerant Implementation of Orca
In this section, we describe the problems encountered with implementing a

fault-tolerant run-time system for Orca on Amoeba. To understand the implementation
we have to take a closer look at how process management is done in Amoeba. Each
Amoeba kernel contains a simple process server. Whengaxstarts an Orca application
on a processor, it sends a descriptor containing capabilities for the text, data, and stack
segment to the processor’s process server. The process server fetches the segments
from the file server, builds a process from the segments, and starts the process. The
capability for the new process, theowner capability, is returned togax.

To checkpoint a single process,gaxsends astunsignal to the process server that
manages the process. The process server stops the signaled process when it is in a safe
state, that is, when it is not in the middle of an RPC. (Interrupting a process while
doing an RPC would break the at-most-once semantics.) When the process has stopped,
the process server sends the process descriptor to the owner (gax in this case) and asks
it what do to with the process. Using the capabilities in the processor descriptor,gax
can copy the process state to the file server. After having copied the state,gax tells the
process server to resume the process.

Making a globally-consistent checkpoint of the complete Orca application works
in the following way. Everys seconds, a thread in the RTS of one of the machines
broadcasts amake checkpointmessage to all other processes in the application. When
a process receives this totally-ordered message, it asksgax to make a checkpoint of it,

SEC. 5.1 Transparent Fault Tolerance in Parallel Orca Programs 133

as described above. When all processes of the application have made a checkpoint,gax
stores the capabilities for the checkpoints with the directory server.

To be able to rollback to a consistent checkpoint while making a new consistent
checkpoint,gaxmarks the new checkpoint astentative. Whengax is sure that the new
checkpoint is consistent, it marks the tentative checkpoint as consistent and deletes the
previous consistent checkpoint.

Rolling back to a previous checkpoint works as follows. If a member of the
group that runs the Orca application crashes, the group communication primitives
return an error after some period of time. When a process sees such an error, it asks
gax to roll the application back.Gax kills any surviving members and then starts the
application again. Instead of using the original executable file, it uses the checkpoints
of the processes.

The actual implementation is more complicated, due to a number of problems.
The first problem is that by usinggax we have introduced a single point of failure: if
gaxcrashes, the Orca application cannot make any checkpoints or recover. To prevent
this from happening,gax is registered with the boot service. The boot service checks at
regular intervals whethergax is still there. If it is not there, the boot service restarts
gax. (When gax starts running again, it kills the remaining processes and rolls the
application back to the last checkpoint.) The boot service itself consists of multiple
servers that check each other. As long as the number of failures at any point in time is
smaller than the number of boot servers, the Orca application will continue running.

A second problem is that the checkpoints made by the process server do not con-
tain all the state information about the parallel program (e.g., the messages buffered by
the kernel). In particular, the kernel state information about process groups is not
saved.

As an example, suppose the RTS initiates a global checkpoint by broadcasting a
make checkpointmessage. At about the same time, a user process executes a write
operation on a shared object. As a result, its local RTS will send anupdatebroadcast
message and block the Orca process until this message has been handled. Assume that
the broadcast protocol orders theupdatemessage just after themake checkpointmes-
sage. The broadcast protocol will buffer this message in all kernels and it will be
delivered after the checkpoint is made. If after a crash a process has been rolled back
to this checkpoint, all the kernel information about the group is gone, including the buf-
fered message.

Fortunately, detecting that a message has been sent and not received by any pro-
cess when the checkpoint was made is easy. After a thread has sent a broadcast mes-
sage, it is blocked until the message is received and processed by another thread in the
same process. If after recovery there are any threads blocked waiting for such events,
they are unblocked and send the message again.

The problem that the kernel information about the group is not included in a
checkpoint is harder. We have solved this problem by havinggaxmaintain a state file,
in which it keeps track of additional status information. This file contains the current

134 FAULT-TOLERANT PROGRAMMING USING BROADCASTING CHAP. 5

members of the process group, as well as the port names to which the restart messages
(discussed below) are to be sent, the number of checkpoints made so far, and other mis-
cellaneous information.

As a consequence of this approach,gaxmust read the status file during recovery
and rebuild the process group. To rebuild the group,gax needs the help of the
processes that are being rolled back. These processes must actively join the newly
formed process group. Clearly, all this activity is only needed during recovery and not
after making a checkpoint. The problem is that it is difficult for the processes to distin-
guish between these two cases (i.e., resuming after making a checkpoint and resuming
after recovery). After all, the state of the parallel program after recovery is the same as
the state of the latest checkpoint.

Our solution to this problem is as follows. After making a checkpoint, a check-
point server does not continue the process immediately, but it first waits for acontinue
message fromgax. If it receives this message, it simply continues. On the other hand,
if a processor has crashed and the program has just recovered,gaxsends arestartmes-
sage instead of the usualcontinue. If the checkpoint server receives arestart, it first
participates in rebuilding the group state, before continuing the application.

An implementation issue concerns the text segment of a process. It is not neces-
sary to dump the text (code) segment of each process, since text segments do not
change and can be obtained by reading the executable file containing the process’s
image. At the expense of writing some more code, our prototype implementation
avoids saving the text segment of a process after the first checkpoint.

Another implementation issue is scalability. The cost of broadcasting themake
checkpointmessage is almost independent of the number of receivers (see Chapter 3)
and therefore scales well. However,gax and the Bullet server are likely to become a
bottleneck as the number of processors increases. This could be avoided by using a
distributed algorithm for making checkpoints, for example, by sending the checkpoints
to a neighbor instead of to the Bullet service.

Although the final implementation is more complicated than we expected, only
minor modifications were required to existing software. No changes were made to the
Amoeba kernel.

5.1.4. Performance
We have measured the performance of the implementation described in the pre-

vious section. The Orca programs run on a collection of 20-Mhz MC68030s. The
directory server and the file server are duplicated. They run on Sun 3/60s and use
WREN IV SCSI disks. All processors are connected by a 10 Mbit/s Ethernet. Given
this environment, an Orca program running onn pool processors can tolerate 1 failure
of the directory server or file server andn−1 concurrent pool-processor failures. If
both directory or both file servers crash, the Orca program will block until one of each
has recovered. Ifn concurrent pool-processor failures happen, the Orca program will
be restarted from the latest checkpoint by the boot server. Because all processors are

SEC. 5.1 Transparent Fault Tolerance in Parallel Orca Programs 135

connected by one network, the system will not operate if the network fails. If the sys-
tem had contained multiple networks, it could have tolerated network failures as well,
because the Amoeba network protocol, FLIP, is based on dynamic routing tables.

We have measured the overhead of checkpointing and recovery for a trivial Orca
program calledpingpong. Pingpongconsists of processes running on different proces-
sors and sharing one integer object. Each process in turn increments the shared integer
and blocks until it is its turn to increment it again. This program is interesting because
it sends a large number of messages: for each increment of the shared integer the RTS
sends one message. If this program were to run on a system based on message logging,
it would experience a large overhead.

We ranpingpongwith and without checkpointing and computed the average time
for making one checkpoint, including the first checkpoint. The results are given in Fig-
ure 5.3. Each process has 7 segments: one text segment of 91 Kbytes, one data segment
of 56 Kbytes, and 5 stack segments of 11 Kbytes each. The state file consists of 3670
bytes. The first checkpoint with text segment consists of 202 Kbytes and subsequent
checkpoints (without text segment) are 111 Kbytes. Ifpingpongis running on 10 pro-
cessors, taking a global checkpoint will involve writing 1.11 Mbytes to the file server.
With 8 or more processors, the Bullet service becomes a bottleneck, because it is only
duplicated.

Time

(sec)

Number of CPUs

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

5

5 5

5 5 5

5
5

5

Fig. 5.3. The average cost of making a checkpoint.

The time to recover from a processor crash is equal to the time to detect the pro-
cessor crash plus the time to startn processes. The time to detect a processor crash is
tunable by the user. The user can specify how often the other members in the group

136 FAULT-TOLERANT PROGRAMMING USING BROADCASTING CHAP. 5

should be checked. The time to start a new process on Amoeba is 58 msec [Douglis et
al. 1991]. Thus, most of the time for making a globally-consistent checkpoint is spent
in transferring segments from each processor to the file server.

For any application the total overhead (the difference between execution time
with and without checkpointing) introduced by our scheme depends on 3 factors:

1. The cost of making a checkpoint (dependent on the number of processors
and the size of the process’s image).

2. The cost of a roll back.

3. The mean time to failure (MTTF) of the system (hardware and software).

To minimize the average run-time of the application, given the numbers for these fac-
tors, one can compute the optimal computing interval (the time between two check-
points such that the average run-time is minimized) and thus the overhead introduced
by checkpointing (see Appendix B):

overhead=
Tcomp

Tcp333333 +
TMTTF

(Tcomp + Tcp) / 2 + Trb3333333333333333333

whereTcomp is the computing interval,Tcp is the mean time to make a checkpoint,Trb

is the mean time to recover from a crash.
For example, if an application runs for 24 hours using 32 processors, the cost for

a checkpoint is 15 seconds, the time to roll back is 115 seconds, and the MTTF is 24
hours, then the optimal checkpoint interval is 27 minutes. In this case the overhead is
1.6 percent. If the MTTF is 7 days, then the optimal checkpoint interval is 71 minutes
and the overhead is 0.7 percent.

5.1.5. Comparison with Related Work
Although considerable research has been done both on parallel programming and

on fault tolerance, few researchers have looked at fault-tolerant parallel programming.
In this section, we will look at some of this work and also at more general techniques
for fault tolerance.

Fault-Tolerant Parallel Programming
An alternative to our approach is to let programmers deal with processor crashes.

Bal describes experiences with explicit fault-tolerant parallel programming [Bal 1992].
The language used for these experiments was Argus [Liskov and Scheifler 1983; Weihl
and Liskov 1985; Liskov 1988]. Below we will first compare Bal’s work on Argus and
our work on Orca.

The Argus model is based on guardians, RPC, atomic transactions, and stable
storage. Processes communicate through RPC. A guardian is a collection of processes
and data located on the same processor. Programmers can define stable objects, which
are manipulated in atomic transactions (consisting of multiple RPC calls, possibly

SEC. 5.1 Transparent Fault Tolerance in Parallel Orca Programs 137

involving many different guardians). If a transaction commits, the new state of the
stable objects changed by the transaction is saved on stable storage. After a guardian
crashes, it is recovered (possibly on a different processor) by first restoring its stable
objects and then executing a user-defined recovery procedure.

The parallel Argus programs use multiple guardians, typically one per processor.
Each guardian does part of the work and all guardians run in parallel. Guardians occa-
sionally checkpoint important status information, by storing this information in stable
objects.

An important advantage of letting the programmer deal with fault tolerance is the
increased efficiency. The Argus programs, for example, only save those bits of state
information that are essential for recovering the program after a failure. They do not
checkpoint data structures that the programmer knows will not change, nor do they
save temporary (e.g., intermediate) results. In addition, it is frequently possible to
recover only the guardian that failed, rather than all guardians (and processes) in the
program. Finally, the programmer can controlwhencheckpoints are made. For exam-
ple, if a process has just computed important information that will be needed by other
processes, it can write this information to stable storage immediately.

In Orca, programmers do not have these options. Programming in Orca is
simpler, because fault tolerance is handled transparently by the system. For the parallel
Argus programs, the extra programming effort varied significantly between applica-
tions. Some applications were easy to handle. For example, a program using repli-
cated worker style parallelism [Carriero et al. 1986] merely needed to write the
worker’s jobs (tasks) to stable storage. If a worker crashed, the job it was working on
was simply given to someone else, similar to the scheme described in [Bakken and
Schlichting 1991]. Other applications, however, required much more effort. For paral-
lel sorting, for example, a lot of coordination among the parallel processes was needed
to obtain fault tolerance [Bal 1992].

Of course, there are many other language constructs that can be directly used for
fault-tolerant parallel programming. Examples are: exception handlers, fault-tolerant
Tuple Space [Xu 1988] and atomic broadcasting. Our group protocol, for example, can
tolerate processor crashes, so it can be used for building fault-tolerant parallel applica-
tions [Kaashoek and Tanenbaum 1990]. Little experience in using these mechanisms
for parallel programs is reported in the literature, however.

Other Mechanisms Providing Transparent Fault Tolerance
Several other systems provide fault tolerance in a transparent way [Birman and

Joseph 87; Strom and Yemini 1985; Koo and Toueg 1987; Johnson 1989; Sistla and
Welch 1989; Li et al. 1991; Elnozahy and Zwaenepoel 1992a]. Most of these schemes
are based on message logging and playback, usually in combination with periodic
checkpoints. They are more general than the method we described, in that they can
also handle interactive distributed programs and sometimes can even give real-time
guarantees about the system.

138 FAULT-TOLERANT PROGRAMMING USING BROADCASTING CHAP. 5

One of the message logging systems is done by Johnson [Johnson 1989] and runs
on V, a system similar to Amoeba. Johnson’s approach is much more general than our
approach (it can deal with interactions with the outside world) but it is also more com-
plicated and harder to implement. Johnson, for example, modified the V kernel [Cheri-
ton 1988b]. Furthermore, it logs every message. This increases the cost for communi-
cation substantially (14 percent or higher). Using our scheme the overhead depends on
the frequency of making checkpoints and is independent of the number of messages
that an application sends. For parallel programs, this property is important, since such
programs potentially communicate frequently.

An interesting system related to ours is that of Li, Naughton, and Plank [Li et al.
1990]. This system also makes periodic globally-consistent checkpoints. Unlike ours,
however, it does not delay the processes until the checkpoint is finished. Rather, it
makes clever use of the memory management unit. The idea is to make all pages that
have to be dumpedread-only. After this has been done, the application program is
resumed and acopier process is started in parallel, which writes the pages to disk.
Since all pages are read-only to the application, there is no danger of losing con-
sistency. If the application wants to modify a page, it incurs a page-fault. The page-
fault handler asks the copier process to first checkpoint this page. After this has been
done, the page is made writable and the application is resumed. In this way, much of
the checkpointing can overlap the application.

In principle, we could have used this idea for making a checkpoint of a single
process, but it would require extensive modifications to the memory management code
and the way checkpoints are made in Amoeba. As we wanted to keep our implementa-
tion as simple as possible, we were not prepared to implement this optimization.

Another related approach is that of Wu and Fuchs [Wu and Fuchs 1990]. They
describe a method to make a page-based shared virtual memory fault-tolerant. Like our
method, their method is transparent to the programmer and is intended for long running
parallel computations. In their method, the owner process of a modified page takes a
checkpoint before sending the page to the process that requests it. Therefore, unlike
our method, the frequency of checkpointing is determined by the patterns of data shar-
ing. Frequent checkpointing occurs if two processes alternately write the same page.

In a recent paper, Elnozahy, Johnson, and Zwaenepoel give performance figures
on a fault-tolerant system using consistent checkpointing [Elnozahy et al. 1992]. The
protocol to make a consistent checkpoint uses a server that coordinates the global
checkpoint. During each run of the protocol, each process makes a tentative check-
point, which is made permanent after the protocol has completed successfully. The
protocol ensures that each set of permanent checkpoints forms a consistent checkpoint,
which is identified with a monotonically increasing integer. This integer is tagged on
every application message to enable the protocol to run in the presence of message re-
ordering or loss. Besides using a different protocol for making a consistent checkpoint,
the authors employ a number of optimizations, such as incremental checkpointing,
copy-on-write checkpointing, and a log-based file server, to achieve very good perfor-

SEC. 5.1 Transparent Fault Tolerance in Parallel Orca Programs 139

mance. From the measurements on a number of parallel applications the authors con-
clude that consistent checkpointing is an efficient way to provide fault tolerance for
long running applications.

A final related approach is the Isis toolkit [Birman and Joseph 87; Birman et al.
1990]. The toolkit provides the programmer with a whole spectrum of tools for build-
ing fault-tolerant distributed applications. Some of the tools require explicit involve-
ment of the programmer, others are almost completely transparent. Using Isis’ trans-
parent state transfer and logging facilities one can easily turn a not fault-tolerant ser-
vice into a replicated fault-tolerant service. The toolkit is built using the Isis group
communication primitives discussed in Chapter 3.

5.1.6. Conclusion
We have described a simple method for making parallel Orca programs fault-

tolerant. The method is fully transparent, and works for parallel programs that take
input, compute, and then yield a result. The method is not intended for interactive pro-
grams, nor for real-time applications.

Our method makes use of the fact that processes in the Orca implementation
communicate through indivisible reliable group communication. In a system based on
point-to-point message passing, it would be harder to make a consistent checkpoint of
the global state of the program. One approach might be to simulate indivisible broad-
casting, for example by using the algorithm described in [Bal and Tanenbaum 1991].
This algorithm includes time-stamp vectors in each message being sent, which are used
in determining a consistent ordering. Another method would be to use Chandy’s and
Lamport’s distributed snapshot algorithm [Chandy and Lamport 1985].

This section also described an actual implementation of our system, on top of the
Amoeba distributed operating system. We have identified a number of problems with
some Amoeba services, in particular the process server. We managed to get around
these problems, but the implementation would have been much simpler if certain res-
trictions in Amoeba were removed (e.g., checkpoints do not include kernel state).
Finally, we have given some performance results of our system, using a simple applica-
tion.

5.2. A Fault-Tolerant Directory Service
In this section, we will look at another fault-tolerant application: the directory

service. The directory service exemplifies the class of applications that provide a
highly reliable and highly available service through replication of data. We compare
two implementations of the directory service on the Amoeba distributed operating sys-
tem: one based on RPC and one based on group communication. Both have been
implemented in C, not in Orca. From the comparison we conclude that for this class of
applications group communication is a more appropriate paradigm than RPC. The
directory service based on group communication has a simpler design and has better
performance.

140 FAULT-TOLERANT PROGRAMMING USING BROADCASTING CHAP. 5

The directory service is a vital service in the Amoeba distributed operating sys-
tem [Van Renesse 1989]. It provides, among other things, a mapping from ASCII
names to capabilities. In its simplest form a directory is basically a table with 2
columns: one storing ASCII strings and the other storing the corresponding capabilities.
Capabilities in Amoeba identify and protect objects (e.g., files). The set of capabilities
a user possesses determines which objects he can access and which not. The directory
service allows the users to store these capabilities under ASCII names to make life
easier for them.

The layout of an example directory with six entries is shown simplified in Fig-
ure 5.4. This directory has one row for each of the six file names stored in it. The
directory also has three columns, each one representing a different protection domain.
For example, the first column might store capabilities for the owner (with all the rights
bits on), the second might store capabilities for members of the owner’s group (with
some of the rights bits turned off), and the third might store capabilities for everyone
else (with only the read bit turned on). When the owner of a directory gives away a
capability for it, the capability is really a capability for a single column, not for the
directory as a whole. When giving a directory capability to an unrelated person, the
owner could give a capability for the third column, which contains only the highly res-
tricted capabilities. The recipient of this capability would have no access to the more
powerful capabilities in the first two columns. In this manner, it is possible to imple-
ment the UNIX protection system, as well as devise other ones for specific needs.

Column 1 Column 2 Column 3

File6

File5

File4

File3

File2

File1

Capability Capability Capability

Capability Capability Capability

Capability Capability Capability

Capability Capability Capability

Capability Capability Capability

Capability Capability Capability

Fig. 5.4. Layout of an example directory.

The directory service supports the operations shown in Figure 5.5. There are
operations to manipulate directories, to manipulate a single row (i.e., a tuple consisting
of a string and a capability) of a directory, and to manipulate a set of rows. One of the
most important things to know about the directory service is the frequency of the read
operations (e.g., list directory) and write operations (e.g., delete directory), because
these numbers influence the design. Measurements over three weeks showed that 98%

SEC. 5.2 A Fault-Tolerant Directory Service 141

of all directory operations are reads. Therefore, both the RPC directory service and the
group directory service optimize read operations.

222
Operation Description22
Create dir Create a new directory222
Delete dir Delete a directory222
List dir List a directory222
Append row Add a new row to a directory222
Chmod row Change protection222
Delete row Delete row of a directory222
Lookup set Lookup the capabilities in a set of rows222
Replace set Replace the capabilities in a set of rows2221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 5.5. Operations supported by the directory service.

In this chapter, we focus on the implementation of the directory service and not
on the reasons why this interface was chosen. This has been discussed by Van Renesse
[Van Renesse 1989]. For other papers discussing the design of a naming service we
refer the reader to [Curtis and Wittie 1984; Schroeder et al. 1984; Lampson 1986;
Cheriton and Mann 1989].

The directory service must be highly reliable and highly available. Users rely on
the directory service to store capabilities without losing them and users must always be
able to access their capabilities. To fulfill these demands the directory service repli-
cates (name, capability) pairs on multiple machines, each with its own disk. If one of
the machines is unavailable, one of the other machines will be able to reply to a user’s
request. If one of the disks becomes unreadable, one of the other disks can be used to
reply to a user’s request. The key problem is to keep the replicas of a name-capability
pair consistent in an efficient way. An update to a directory must be performed
quickly, because otherwise many applications will run less efficiently.

We require that the directory service maintainsone-copy serializability[Bern-
stein et al. 1987]. The execution of operations on the directory service must be
equivalent to a serial execution of the operations on a nonreplicated directory service.
To achieve this goal each operation of the directory service is executed indivisibly.
The directory service does not support indivisible execution of a set of operations, as
this requires atomic transactions [Gray 1978; Lampson 1981]. It also does not support
failure-free operations for clients, as this requires updating a log file on each operation.

142 FAULT-TOLERANT PROGRAMMING USING BROADCASTING CHAP. 5

We feel that these semantics are too expensive to support, and, moreover, are seldom
necessary.

Both implementations of the directory service assume clean failures. A proces-
sor works or does not work (i.e., fail-stop failures), and it does not send malicious or
contradictory messages (i.e., it does not exhibit Byzantine failures). The RPC imple-
mentation also assumes that network partitions will not happen; the group implementa-
tion, however, guarantees consistency even in the case of clean network partitions (e.g.,
any two processors in the same partition can communicate while any two processors in
different partitions cannot communicate) [Davidson et al. 1985]. Stronger failure
semantics could have been implemented using techniques as described in [Cristian
1991; Barrett et al. 1990; Hariri et al. 1992; Shrivastava et al. 1992]. Again, we feel
that these stronger semantics are too expensive to support, and, moreover, are overkill
for an application like the directory service.

In the rest of this section, we assume that the following basic requirements for a
fault-tolerant directory service are met. Each directory server should be located on a
separate electrical group (with its own fuse) and all the directory servers should be con-
nected by multiple, redundant, networks. Because the Amoeba communication primi-
tives are implemented on top of FLIP, the latter requirement can be fulfilled. Although
it could run on multiple networks without a single software modification, the current
implementation runs on a single network.

The outline of this section is as follows. In Section 5.2.1 we discuss an imple-
mentation of the directory service using RPC. In Section 5.2.2 we discuss an imple-
mentation using group communication. In Section 5.2.3 we will compare these two
implementations and give performance measurements for both. In Section 5.2.4 we
will draw some conclusions based on the comparison and describe related work.

5.2.1. Directory Service Based on RPC
The Amoeba directory service has a long history. It started out as a simple

server with few operations running on a single processor. It had no support for fault
tolerance. Robbert van Renesse designed and implemented the latest version, which
supports more complex operations and which is highly reliable and available [Van
Renesse 1989]. Here we will give a short overview of this design and implementation.

The RPC directory service is duplicated to achieve reliability. It uses two Bullet
file servers and two disk servers (see Fig. 5.6). The Bullet servers and the disk servers
share the same disk. The directory service uses the Bullet files to store the directories,
one copy on each Bullet server. The directory service uses the disk servers to store its
administrative data. The reason for storing the administrative data directly on disk is
that Bullet files are immutable. Thus, if a Bullet file would have been used to store the
administrative data, then each time a bit has to be changed in the administrative data, a
complete new Bullet file has to be created, containing a copy of the previous contents
plus the changed bit. To avoid this overhead, the directory service stores the adminis-
trative data directly on mutable media: the raw disk.

SEC. 5.2 A Fault-Tolerant Directory Service 143

The actual implementation of the directory service is slightly more complicated:
each server caches recently used directories in RAM. When a request is received, a
directory server looks first in its cache to see if the directory is stored there. If so, it
can reply immediately without going to the Bullet server. If not, the directory server
performs an RPC with the Bullet server to get the requested directory and stores it in its
cache for subsequent requests. The cache is there to avoid the overhead of making an
additional RPC with the Bullet server.

Disk 1

Dir

1

Bullet

1

Disk 2

Dir

2

Bullet

2

(a)

(c)

(d)

(b)

(b)

(a)

(c)

(d)

(b)

(b)

Fig. 5.6. The configuration. The boxes represent the directory servers, while

the circles represent the Bullet file servers. The arrows imply the client/server

relationship. (a) Administrative Data; (b) Directories; (c) Files; (d) Inten-

tions and other internal messages.

The administrative data are stored on a raw disk partition ofn fixed-length
blocks. Blocks 1 ton − 1 contain an object table of (Capability 1, Capability 2) pairs.
The number stored in theobject field of a directory capability indexes into this table.
The capabilities in an object table entry point to two identical Bullet files that store the
directory and thecheckfield for access protection. An update of the directory means
that the capabilities have to be replaced by the capabilities for the new Bullet files.
These capabilities are actually overwritten, which is why raw disks and not Bullet files
are used.

Block 0 is thecommit block(see Fig. 5.7). Thecopy modeindicates whether the
server is functioning alone or together with another server. During normal operation
the copy modeshould be set to 2 (calledtwo-copy mode), but if this server knows for
sure that the other server is unavailable, thecopy modewill be set to 1 (calledone-copy
mode). In one-copy mode, the server can perform operations for users without the con-
sent of the other server. If the server does not know for sure that the other server is
unavailable (e.g., because the network is partitioned), new updates cannot proceed to
prevent inconsistencies. Lookup and list operations can still be executed, however.
When the other server recovers, thecopy modeis set to 2 again.

Each time an update operation is performed, thesequence numberis increased.

144 FAULT-TOLERANT PROGRAMMING USING BROADCASTING CHAP. 5

Copy mode Sequence number # Intentions

Object number Capability 1 Capability 2

.

.

.

.

.

.

.

.

.

Fig. 5.7. Layout of the commit block.

Thesequence numberis sometimes required in recovery operations to tell which of the
two servers has the most recent version of the administration file. The rest of the com-
mit block is anintentions listof updates that may or may not have been performed yet.
Each entry in the list specifies the object number of the directory to be replaced, and
the capabilities of the Bullet files that store the new directory. This information makes
updates to the administrative data crash resistant.

Default Operation
Let us now look at how the directory service keeps the copies of the directories

consistent. It uses theduplication protocol, which is depicted in Figure 5.8. The proto-
col combines replication and concurrency control. It is only suited for a directory ser-
vice that is duplicated; a more complex protocol (two-phase commit) is needed for, for
example, a triplicated service.

The initiator is the directory server that got a user request involving the update of
one or more directories. Read operations can be handled by either directory server
without the need for communication between the servers. For write operations, the ini-
tiator records that it is busy, and creates the new versions of the directories. It creates,
in its own internal RAM memory, a new version of the commit block with the capabili-
ties of the new directories in the intentions list and an increased sequence number.

If the server is in two-copy mode, it will have to get the consent of the other
server. It sends the new commit block to the other server and waits for a reply. If the
request is rejected, this means that the other server also wants to do an update. The ini-
tiator undoes all operations and tries again later. To prevent a second clash, one of the
servers will always wait a random time before retrying.

If no reply arrives within a certain time, the initiator makes sure that the other
server has really crashed. A reliable method is to reset the processor that runs the
server, thus killing the server. When the initiator knows for sure that the other server is
unavailable, it sets the copy mode in the RAM copy of the commit block to 1.

Now, in either case, it writes the commit block to disk. At this point the opera-
tion has officially succeeded, and a reply is sent to the client. The initiator and the
other server, if alive, still have some administrative affairs to deal with. The other
server has to write its commit block to disk. Both have to update their object tables and

SEC. 5.2 A Fault-Tolerant Directory Service 145

Initiator:
lock(busy); /* set busy variable */
create new directories on Bullet files; /* the other copies are made later */
SequenceNo+= 1;
put Bullet capabilities in intentions list; /* build list in RAM */
if (CopyMode == 2) { /* two-copy mode? */

send intention to other server; /* perform RPC */
if (RpcFailure) { /* did RPC fail? */

reset other server; /* force the other server to fail */
CopyMode = 1; /* go to one-copy mode */

}
if (reply == rejected) { /* other server rejects request ? */

remove newly created Bullet files;
SequenceNo−= 1;
if (me == 2) wait random time;
try again; /* start over again */

}
}
write commit block to disk; /* commit intentions */
update object table; /* replace capability */
update directory cache; /* update RAM cache */
send reply to client;
if (me == 1 || CopyMode == 1) /* only one server must delete old dirs */

remove old Bullet files;
if (full intentions list) { /* once in while clean intentions */

write changes to object table to disk;
write commit block with empy intentions list to disk;

}
unlock(busy); /* done */

Other server:
if (!trylock(busy)) reply rejected;
else { /* got the lock */

update object table;
invalidate cache;
reply OK;
add intentions to commit block on disk;/* commit */
if (me == 1 || CopyMode == 1) /* only one server must delete old dirs */

remove old Bullet files;
if (full intentions list) { /* once in while clean intentions */

write changes to object table to disk;
write commit block with empy intentions list to disk;

}
unlock(busy);

}

Fig. 5.8. The duplication protocol.

caches, and periodically have to clean up the intentions lists stored in the commit
blocks on disk. The cleaning up is not done on every operation to avoid additional disk
accesses.

When the client’s RPC returns successfully, the user knows that one new copy of

146 FAULT-TOLERANT PROGRAMMING USING BROADCASTING CHAP. 5

the directory is stored on disk (as a Bullet file) and that the other server has received
the request and has stored the request in its intentions list on disk or will do so shortly.
It also knows that the other copy of the directory will be generated lazily (in the back-
ground) when the directory service is not busy.

Let us briefly analyze the cost of the duplication protocol in terms of communi-
cation cost and disk operations. In case of a read request, no communication is needed
and no disk accesses are needed (if the directory is in the cache). In case of a write
request, one Bullet file per directory has to be created (the other Bullet file is created
later in the background), one RPC needs to be done, and one disk write for the commit
block needs to be done. In the current implementation, the intentions list is cleaned by
a watchdog thread running in the background or when it fills up.

Recovery From Failures
The directory service can recover from one processor failure. As the directory

service is only duplicated, it cannot recover from network partitions, since in this case
the two copies could become inconsistent.

The protocol for recovery works as follows (see Fig. 5.9). When a directory
server comes back again, it reads its commit block from disk. If it is in one-copy mode,
it can continue immediately with its usual operation. If it is in two-copy mode, it
checks to see if the other server is running. If not, it waits until the other server is
restarted. If the other server is running, it asks for a copy of the object table and the
commit block (if the other side has a higher sequence number). After the server is up-
to-date, it tells the other server to enter two-copy mode. If the RPC with the other
server succeeds, the server enters normal operation.

Recovery:
if (CopyMode == 2) {

alive = true if other server is alive;
if (!alive) try again; /* recovery requires both servers to be up */
copy objects and commit block; /* if other side has higher sequence number */
tell other server to enter two-copy mode;
if (!OK) try again; /* did server fail during recovery ? */

}
continue operation as usual; /* recovery is done */

Fig. 5.9. The recovery protocol.

A server that crashed in two-copy mode cannot recover without the other server
being up. The reason is that the other server is likely to be in one-copy mode and
therefore has the most recent versions of the directories. A server that crashed in one-
copy mode can enter normal operation immediately, because only one server can have
crashed in one-copy mode. The other server must be in two-copy mode and is thus still
down or waiting for the one-copy mode server to come up.

SEC. 5.2 A Fault-Tolerant Directory Service 147

5.2.2. Directory Service Based on Group Communication
Having described the RPC design and implementation, we will now look at the

group design and implementation. Unlike the RPC directory service, the group imple-
mentation is triplicated (though four or more replicas are also possible without chang-
ing the protocol) and uses active replication. The implementation that we will describe
tolerates one server failure, but works even in the face of network partitions, while the
RPC directory service cannot tolerate network partitions. If one assumes that network
partitions do not happen, then the current group implementation (with a very few minor
modifications) can tolerate 2 server failures. To keep the copies consistent, it uses a
modified version of the read-one write-all policy, calledaccessible copies[El Abbadi
et al. 1985]. Recovery is based on the protocol described by Skeen [Skeen 1985].

The organization of the group directory service is depicted in Figure 5.10. The
directory service is currently built out of three directory servers, three Bullet servers,
and three disk servers. Like the RPC implementation, each directory server and its
associated Bullet server share a single disk. Unlike the RPC implementation, each
directory server only uses one Bullet server to store only one copy of each directory in
a separate Bullet file.

Disk 1

Bullet

1

Dir

1

(a)

(b)

(c)

Disk 2

Bullet

2

Dir

2

(a)

(b)

(c)

Disk 3

Bullet

3

Dir

3

(a)

(b)

(c)

Directory service group

Fig. 5.10. Organization of the directory service based on group communica-

tion. (a) Administrative data; (b) Directories; (c) Files.

The directory servers initially form a group with a resilience degree,r, of 2. This
means that ifSendToGroupreturns successfully, it is guaranteed that all three have
received the message and thus that, even if two processors fail, the message will still be
processed by the third one. Furthermore, it is guaranteed that even in the presence of

148 FAULT-TOLERANT PROGRAMMING USING BROADCASTING CHAP. 5

communication and processor failures, each server will receive all messages in the
same order. The strong semantics ofSendToGroupmake the implementation of the
group directory service simple.

The group service stores almost the same administrative data as the RPC service.
The administrative data are stored on a raw disk partition ofn fixed-length blocks.
Blocks 1 ton − 1 contain an object table of capabilities, indexed by object number.
Each capability in the object table points to a Bullet file that stores the directory, a ran-
dom number for access protection, and the sequence number of the last change. The
group implementation stores only a single capability, because each directory server
stores its own copy of the directory. Another difference is that the sequence number
for the last change is also stored with the directory. In the group implementation, if a
directory is changed only the file has to be written, while in the RPC implementation
both a Bullet file and the commit block have to be written. In this way, the group
implementation saves one disk operation (writing the commit block), though the RPC
implementation could have used the same optimization.

Block 0, the commit block for the group directory service is shown in Fig-
ure 5.11. There are three main differences with the RPC commit block: 1) there is no
intentions list; 2) instead of thecopy mode, there is aconfiguration vector; 3) there is
an additional field to keep track whether a server is recovering. (The actual implemen-
tation needs an intentions list for the directory operationreplace set, but to simplify our
presentation we ignore this operation.) The configuration vector is a bit vector,
indexed by server number. If server 2, for example, is down, bit 2 in the vector is set to
0. It describes the last configuration with a majority of which the server was a
member.

1 up? 2 up? 3 up? Sequence number Recovering?

Configuration vector

Fig. 5.11. Layout of the commit block.

During recovery, the sequence number is computed by taking the maximum of
all the sequence numbers stored with the directory files and the sequence number
stored in the commit block. At first sight it may seem strange that a sequence number
is also stored in the commit block, but this is needed for the following case. When a
directory is deleted, the reference to the Bullet file containing the directory and the
sequence number is deleted, but the server must record somewhere that it performed an
update. The sequence number in the commit block is used for this case. It is only
updated when a directory is deleted.

The recovering field is needed to keep track whether a server crashed during
recovery. If this field is set, the server knows that it crashed during recovery. In this
case, it sets the sequence number to zero, because its state is inconsistent. It may have
recent versions of some directories and old versions of other directories. The sequence

SEC. 5.2 A Fault-Tolerant Directory Service 149

number is set to zero to ensure that other servers will not try to update their directories
from a server whose state is inconsistent.

Default Operation
The protocol to keep the directories consistent and to perform concurrency con-

trol is given in Figure 5.12. A server in the group directory service consists of several
threads: the server threads and one group thread. The server threads are waiting for a
request from a client. The group thread is waiting for an internal message sent to the
group. At each server there can be multiple server threads, but there is only one group
thread. A server thread that receives a request and initiates a directory operation is
called theinitiator.

The initiator first checks if the current group has a majority (i.e., at least two of
the three servers must be up). If not, the request is refused; otherwise the request is
processed. The reason why even a read request requires a majority is that the network
might become partitioned. Consider the following situation. Two servers and a client
are on one side of the network partition and the client deletes the directoryfoo. This
update will be performed, because the two servers have a majority. Now assume that
the two servers crash and that the network partition is repaired. If the client asks the
remaining server to list the directoryfoo, it would get the contents of a directory that it
successfully deleted earlier. Therefore, read requests are refused if the group of servers
does not have a majority. (There is an escape for system administrators in case two
servers lose their data forever due to, for example, a head crash.)

As in the RPC implementation, read operations can be handled by any server
without the need for communication between the servers. When a read request is
received, the initiator checks if the kernel has any messages buffered usingGetInfo-
Group. If so, it blocks to give the group thread a chance to process the buffered mes-
sages; before performing a read operation, the initiator has to be sure that it has per-
formed all preceding write operations. If a client, for example, deletes a directory and
then tries to read it back, it has to receive an error, even if the client requests were pro-
cessed at different directory servers. As messages are sent usingr = 2, it is sufficient
to see if there are any messages buffered on arrival of the read request. Once these buf-
fered messages are processed, the initiator can perform the read request.

Write operations require communication among the servers. First, the initiator
generates a newcheckfield, because all the servers must use the samecheckfield when
creating a new directory. Otherwise, some servers may consider a directory capability
invalid, whereas others consider it valid. The initiator broadcasts the request to the
group using the primitiveSendToGroupand blocks until the group thread received and
executed the request. Once it is unblocked, it sends the result of the request back to the
client.

The group thread is continuously waiting for a message sent to the group (i.e., it
is blocked inReceiveFromGroup). If ReceiveFromGroupreturns, the group thread
first checks if the call toReceiveFromGroupreturned successfully. If not, one of the

150 FAULT-TOLERANT PROGRAMMING USING BROADCASTING CHAP. 5

Initiator:
if(!majority()) return failure; /* majority? */
if(read3operation(request)) { /* read request? */

GetInfoGroup(&group3state); /* check for buffered messages */
buffered3seqno = buffered(&group3state);
wait until seqno= buffered3seqno;

} else { /* write request */
generate check-field; /* for new directory */
SendToGroup(request, check-field, me);
wait until group thread has received and executed the request;

}
send reply to client;

Group thread:
if(group failure) { /* did a server fail? */

rebuild majority of group; /* callResetGroup*/
if(group rebuild failed) enter recovery;
GetInfoGroup(&group3state); /* get info about rebuilt group */
write commit block; /* update configuration vector */
try again; /* start receiving again */

} else {
create directory on Bullet file; /* use supplied check-field */
update cache;
update object table;
write changed object table to disk; /* commit */
increase3and3wakeup(seqno);
if(sender == me) wakeup initiator;
remove old Bullet files;

}

Fig. 5.12. Protocol to ensure consistency of the copies of a directory.

servers must have crashed. In this case, it rebuilds the group by callingResetGroup,
updates its commit block, and callsReceiveFromGroupagain. If it does not succeed in
building a group with a majority of the members of the original group, the server enters
recovery mode.

If ReceiveFromGroupreturns successfully, the server creates the new directories
on its Bullet server, updates its cache, updates its object table, and writes the changed
entry in the object table to its disk. As soon as one server has written the new entry to
disk, the operation is committed. If no server fails, each server will receive all requests
and service all requests in the same order and therefore all the copies of the directories
stay consistent. There might be a small delay, but eventually each server will receive
all messages.

When the client’s RPC returns successfully, the user knows that one new copy of
the directory is stored on disk and that at least two other servers have received the
request and stored the new directory on disk, too, or will do so shortly. If one server
fails, the client can still access his directories.

Let us again analyze the cost of a directory operation in terms of communication

SEC. 5.2 A Fault-Tolerant Directory Service 151

cost and disk operations. As in the RPC implementation, read operations do not
involve communication or disk operations (if the requested directory is in the cache).
Write operations require one group message sent withr = 2, a Bullet operation to store
the new directory, and one disk operation to store the changed entry in the object table.
Compared to the RPC implementation, the number of disk operations is smaller. The
RPC implementation requires an additional disk operation to store the intentions list.
The number of messages in the group service, however, is higher. ASendToGroup
with r = 2 requires 5 messages, whereas an RPC only requires 3 messages. The cost of
sending a message, however, is an order of magnitude less than the cost of performing
a disk operation. Thus, roughly, the performance of the group implementation is better
than the performance of the RPC implementation, while providing more fault tolerance
and a higher availability.

This analysis is not completely fair, however. If the RPC implementation, like
the group implementation, had stored the sequence number with the directory files and
thereby avoided one disk write for the commit block, the performance of the RPC
implementation would have been better, as it would send fewer messages. On the other
hand, if the RPC service had been triplicated, it would have been slower than the group
service, because then it would have sent more messages.

Recovery Protocol
A server starts executing the recovery protocol when it is a member of a group

that forms a minority or when it comes up after having been down. The protocol for
recovery of the group service is more complicated than the protocol for the RPC ser-
vice, because more servers are involved. Consider the following sequence of events in
a group of three servers that is up and running. Server 3 crashes. Servers 1 and 2
rebuild the group, so theirconfiguration vectors have the value 110 (1 and 2 are up; 3 is
down). Now, both 1 and 2 also crash. When server 1 comes up again, its vector reads
110, but on its own it cannot form a group. To execute a client update request, a major-
ity of the servers must be up and form one group; otherwise, copies of a directory could
become inconsistent, for example, in the case of a network partition.

If server 3 also comes up, its vector reads 111. At first sight, it may appear that 1
and 3 can form a group, as together they form a majority. However, this is not suffi-
cient. Server 2, who is still down, may have performed the latest update. To see this,
consider the following sequence of events just before 1 and 2 crashed. A client update
request is received by server 1, it successfully broadcasts it to server 1 and 2. Now
both 1 and 2 have the message buffered. It can happen that 1 crashes before processing
the message, while 2 crashes after processing the message. In this case, server 2 has
the latest version of the directories and thus 1 and 3 cannot form a new group and start
accepting requests.

Now assume that server 2 comes up instead of server 3. Theconfiguration vec-
tor of both servers 1 and 2 read 110. From this information they can conclude that 3
crashed before 1 and 2 did. Furthermore, no update can have been performed after 1 or

152 FAULT-TOLERANT PROGRAMMING USING BROADCASTING CHAP. 5

2 crashed, because there was no majority. Servers 1 and 2 together are therefore sure
that one of them has the latest version of the directories. Thus, they can recover
without server 3 and use thesequence numberto determine who actually has the latest
version.

In general, two conditions have to be met to recover:

1. The new group must have a majority to avoid inconsistencies during net-
work partitions.

2. The new group must contain the set of servers that possibly performed the
latest update.

It is the latter requirement that makes recovery of the group service complicated. Dur-
ing recovery the servers need an algorithm to determine which are the servers that
failed last.

Such an algorithm exists; it is due to Skeen [Skeen 1985], and it works as fol-
lows. Each server keeps amourned setof servers that crashed before it. When a server
starts recovering, it sets the new group to only itself. Then, it exchanges with all other
alive servers its mourned set. Each time it receives a new mourned set, it adds the
servers in the receivedmourned setto its own mourned set. Furthermore, it puts the
server with whom it exchanged the mourned set in the new group. The algorithm ter-
minates when all servers minus themournedset are a subset of the new group.

Figure 5.13 gives the complete recovery protocol. When a server enters recovery
mode, it first tries to join the group. If this fails, it assumes that the group is not created
yet and it creates the group. If, after a certain waiting period, an insufficient number of
members have joined the group, the server leaves the group and starts all over again. It
may have happened that two servers have created a new group (e.g., one server on each
side of a network partition) and that they both cannot acquire a majority of the
members.

Once a server has created or joined a group that contains a majority of all direc-
tory servers, it executes Skeen’s algorithm to determine the set of servers that crashed
last, thelast set. If this set is not a subset of the new group, the server starts all over
again, waiting for servers from thelast setto join the group. If thelast setis a subset
of the new group, the new group has the most recent version of the directories. The
server determines who in the group has them and gets them. Once it is up-to-date, it
writes the new configuration to disk and enters normal operation.

The recovery protocol can be improved. Skeen’s algorithm assumes that net-
work partitions do not occur. To make his algorithm work under our assumption that
network partitions can happen, we forced the servers that form a group with a minority
of the number of servers to fail. Now the recovery protocol will fail in certain cases in
which it is actually possible to recover. Consider the following sequence of events.
Server 1, 2, and 3 are up; server 3 crashes; server 1 and 2 form a new group; server 2
crashes. Now as we want to tolerate network partitions correctly, we forced server 1 to
fail. However, this is too strict. If server 1 stays alive and server 3 is restarted, server

SEC. 5.2 A Fault-Tolerant Directory Service 153

Recovery:
re-join server group or create it;
while (minority && !timeout) { /* wait for some time */

GetInfoGroup(&group3state);
}
if(minority) try again; /* start over again */
newgroup[me] = 1; /* initialize new group vector */
SequenceNo[me] = Sequence number; /* initialize sequence number vector *.
initialize mourned vector from configuration vector;
for (all members in group) { /* exchange info with each server */

exchange info with server s; /* exchange mourned set and sequence no */
if (success) { /* RPC succeeded? */

newgroup[s] = 1; /* add server to new group */
SequenceNo[s] = Sequence number;
mourned set += received mourned set;/* take union */

}
}
last = all servers− mourned set; /* the servers that performed the last update */
if(last is not subset of new group) try again;
s = HighestNumber(SequenceNo); /* determine server with highest sequence no */
get copies of latest version of directories from s;
if (!success) try again; /* succeeded in getting copies? */
write commit block; /* store configuration vector */
enter normal operation; /* recovery is done */

Fig. 5.13. Recovery protocol for group directory service.

1 and 3 can form a new group, because server 1 must have available all the updates that
server 2 could have performed. The rule in general is that two servers can recover, if
the server that did not fail has a higher sequence number, as in this case it is certain that
the new member has not formed a group with the (now) unavailable member in the
meantime.

5.2.3. Experimental Comparison
Both the RPC and group service are operational. The RPC service has been in

daily use for over two years. The group directory service has been used in an experi-
mental environment for several months and will shortly replace the RPC version. Both
directory services run on the same hardware: machines comparable to a Sun 3/60 con-
nected by 10 Mbit/s Ethernet. The Bullet servers run on Sun 3/60s and are equipped
with Wren IV SCSI disks.

Performance Experiments with Single Client
We have measured the failure-free performance of three kinds of operations on

an almost quiet network. The results are shown in Figure 5.14. The first experiment
measures the time to append a new (name, capability) pair to a directory and delete it
subsequently (e.g., appending and deleting a name for a temporary file). The second
experiment measures the time to create a 4-byte file, register its capability with the

154 FAULT-TOLERANT PROGRAMMING USING BROADCASTING CHAP. 5

directory service, look up the name, read the file back from the file service, and delete
the name from the directory service. This corresponds to the use of a temporary file
that is the output of the first phase of a compiler and then is used as an input file for the
second phase. Thus, the first experiment measures only the directory service, while the
second experiment measures both the directory and file service. The third experiment
measures the performance of the directory server for one lookup operations.

222
Sun Group

Operation Group RPC
NFS +NVRAM

(# copies) (3) (2) (1) (3)22
Append-delete 184 192 87 27222
Tmp file 215 277 111 522
Directory lookup 5 5 6 52221
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1

Fig. 5.14. Performance of three kinds of directory operations for three dif-

ferent Amoeba implementations and for one UNIX implementation. All times

are in msec.

For the ‘‘append-delete’’ test and for the ‘‘tmp file’’ test, the implementation
using group communication is slightly more efficient than the one using RPC. Thus,
although the group directory service is triplicated and the RPC implementation is only
duplicated, the group directory service is more efficient. The reason is that the RPC
implementation uses one additional disk operation to store intentions and the new
sequence number. For read operations, the performance of all implementations is the
same. Read operations do not involve any disk operations, as all implementations
cache recently used directories in RAM, and involve only one server.

For comparison reasons, we ran the same experiments using Sun NFS; the results
are listed in the third column. The measurements were run on SunOS 4.1.1 and the file
used was located in/usr/tmp/. NFS does not provide any fault tolerance or consistency
(e.g., if another client has cached the directory, this copy will not be updated con-
sistently when the original is changed). Compared to NFS, providing high reliability
and availability costs a factor of 2.1 in performance for the ‘‘append-delete’’ test and
1.9 in performance for the ‘‘tmp file’’ test.

The dominant cost in providing a fault-tolerant directory service is the cost for
doing the disk operations. Therefore, we have implemented a third version of the
directory service, which does not perform any disk operations in the critical path.
Instead of directly storing modified directories on disk, this implementation stores the
modifications to a directory in a 24 Kbyte NonVolatile RAM (NVRAM). When the
server is idle or the NVRAM is full, it applies the modifications logged in NVRAM to
the directories stored on disk. Because NVRAM is a reliable medium, this implemen-

SEC. 5.2 A Fault-Tolerant Directory Service 155

tation provides the same degree of fault tolerance as the other implementations, while
the performance is much better. A similar optimization has been used in [Daniels et al.
1987; Liskov et al. 1991; Hariri et al. 1992].

Using NVRAM, some sequences of directory operations do not require any disk
operations at all. Consider the use of/tmp. A file written in /tmp is often deleted
shortly after it is used. If the append operation is still logged in NVRAM when the
delete is performed, then both the append and the delete modifications to/tmp can be
removed from NVRAM without executing any disk operations at all.

Using group communication and NVRAM, the performance improvements for
the experiments are enormous (see the fourth column in Fig. 5.14.). This implementa-
tion is 6.8 and 4.3 times more efficient than the pure group implementation. The
implementation based on NVRAM is even faster than Sun NFS, which provides less
fault tolerance and has a lower availability. If the RPC service had been implemented
with NVRAM, one could expect similar performance improvements.

Performance Experiments with Multiple Clients
To determine the performance of the directory services for multiple clients we

ran three additional experiments. The first experiment measures the throughput for
lookup operations; its results are depicted in Figure 5.15. The graph shows the total
number of directory lookup operations that were processed by a directory service for a
varying number of clients. A rough estimate of the maximum number of lookup opera-
tions that, in principle, can be processed per second can be easily computed. The time
needed by a server to process a read operation is roughly equal to 3 msec (the time for a
lookup operation minus the time to perform an RPC with the server). The maximum
number of read operations per server is therefore 333 per second. Thus, the upper
bound on read operations for the group service using 3 servers is 1000 per second and
for the duplicated RPC implementation it is 666 per second.

Neither service achieves its upper bound, because the client requests are not
evenly distributed among the servers. To understand this, recall from Chapter 2 how a
server is located. The first time a client performs an RPC with some service, its kernel
locates the service by callingflip3broadcastwith as argument a message containing the
port p for the requested service. Every server that listens to the portp answers with an
RPCHEREIS message. The client’s kernel stores the FLIP address for each server that
answers in its port cache and sends the request to the first server that replied. If at
some point one of the servers is busy and is not listening top when a request comes in,
its kernel sends aNOTHEREback to the client’s kernel. The client’s kernel removes the
server’s FLIP address from its port cache and selects another server from its port cache
or locates the service again if its port cache does not contain an alternative.

This heuristic for choosing a server is not optimal. Some clients may pick the
same server, while another server is idle. From the graph one can see this happen.
This possibility was also reflected in our measurements. The numbers depicted are
averages over a large number of runs, but the standard deviation is high. In some runs,

156 FAULT-TOLERANT PROGRAMMING USING BROADCASTING CHAP. 5

Throughput

(#lookups/sec)

Number of clients

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7

d

d

d

d

d

d

d

×

× ×

×

×

×

×

6

6
6

6
6

6
6

d d d Group service
× × × Group service + NVRAM
6 6 6 RPC service

Fig. 5.15. Throughput for read operations

the standard deviation was almost 100 operations per second. The heuristic, however,
is good enough that with higher load the clients requests are evenly distributed among
the servers. One can also conclude from the graph that the RPC directory service can
support fewer clients than the group service. The RPC directory service gets over-
loaded with 520 requests per second, whereas the group service gets overloaded with
652 requests per second.

Figure 5.16 shows the throughput for the ‘‘append-delete’’ test. This experiment
measures the maximum number of pairs of append-delete operations that the service
can support per second. Again, an upper bound can easily be estimated for each ser-
vice. Processing a pair of append-delete operations takes roughly 22 msec in the group
NVRAM service, 179 msec for the group service, and 187 for the RPC service. As
write operations cannot be performed in parallel, the upper bounds per service are 45,
5, and 5. All three implementations reach the upper bound.

5.2.4. Discussion and Comparison
Making a fair comparison between the group directory service and the RPC

directory service is hardly possible, as both services assume different failure modes.
The RPC service is duplicated and does not provide consistency in the face of network
partitions, whereas the group service is triplicated and does provide consistency in the
face of network partitions. Furthermore, the RPC implementation employs lazy repli-
cation, whereas the group implementation employs active replication, resulting in a
higher degree of reliability and availability for the group directory service. After the

SEC. 5.2 A Fault-Tolerant Directory Service 157

Throughput

(#append-deletes/sec)

Number of clients

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7

d d d d d d d

×
×

×
×

×
×

×

6 6 6 6 6 6 6

d d d Group service

× × × Group service + NVRAM

6 6 6 RPC service

Fig. 5.16. Throughput for pairs of append-delete operations. As append and

delete operations are both write operations, the actual write throughput is twice

as high.

RPC directory service has performed an update on a directory, the new directory is
directly stored on only one Bullet file. If the Bullet server storing this file crashes
before the second replica is generated, the directory will become unavailable. In the
group directory service this cannot happen, because the service creates all replicas at
about the same time before the client is told that the update has succeeded.

Although the group service provides a higher reliability and availability, its pro-
tocols for normal operation (no failures) are as simple as the RPC protocols. The group
recovery protocols are more complex, but this is due to the fact that the group service is
built out of three servers instead of out of two. A three server implementation of the
RPC service would require a similar protocol for recovery as used in the group service.

The performance of the group directory service is better than the RPC directory
service. This is, however, mainly due to the fact that the group implementation avoids
one disk write. The RPC directory service could have been implemented in such a way
that it also avoids the additional disk write. Such an implementation is likely to have
the same performance as the group implementation. On the other hand, if the RPC
directory service had been triplicated, it would have had to implement two-phase lock-
ing [Eswaran et al. 1976], resulting in higher communication overhead compared with
the group implementation.

Summarizing, the group directory service is hard to compare with the RPC direc-
tory service due to differences in the failure semantics and differences in the imple-

158 FAULT-TOLERANT PROGRAMMING USING BROADCASTING CHAP. 5

mentations that are not related to using group communication or using RPC. However,
we believe that the comparison gives enough insight in all the design choices and
implementation issues that an RPC directory service with the same specification as the
group directory service will be more complicated and has no better performance than a
group implementation.

There is an extensive literature on designing and building fault-tolerant systems,
both covering practical and theoretical research. It is outside the scope of this thesis,
however, to review all this work. Instead we focus on a number of actual implementa-
tions of fault-tolerant file and directory services in systems similar to Amoeba.

Marzullo and Schmuck describe a fault-tolerant implementation of Sun’s Net-
work File System (NFS) using the Isis toolkit [Marzullo and Schmuck 1988]. As the
authors did not want to change the client side nor the server side of NFS, they intro-
duced an extra level of indirection. Client processes do not talk directly with the file
service, but go through an intermediate process, called anagent. The agents hide from
the clients that the file service is replicated and use internally one of Isis’s broadcast
primitives to keep their state consistent. The agents update the replicas of a file using
regular Sun RPC, because to employ broadcast would have meant changing the file
servers to use Isis.

Harp is another approach to increase the fault tolerance of NFS [Liskov et al.
1991]. Unlike Marzullo and Schmuck, the authors of Harp decided to change the file
server to avoid an extra level of indirection. Harp is based on a primary copy protocol
[Alsberg and Day 1976]. Clients communicate with one designated server, called the
primary, to perform operations. The other servers are termedsecondaries. On a write
operation, the primary first sends the results to secondaries before sending a reply to
the client. All servers store the result in NVRAM and copy the result lazily to disk to
improve performance. If the primary crashes, the secondaries elect a new primary.

Another fault-tolerant file system is Coda [Satyanarayanan 1990]. Coda repli-
cates files at the server side and also caches files at the client side. The clients cache
whole files, so even if all servers fail, the clients are able to continue working with the
cached files. If client and servers are connected, callbacks are used to keep the caches
of the clients and servers consistent. The servers themselves use active replication and
an optimistic variant of the read-one write-all policy to keep replicas consistent. The
implementation is based on a parallel RPC mechanism that exploits the multicast capa-
bility of a network [Satyanarayanan and Siegel 1990].

Another approach to a fault-tolerant distributed file system is Echo [Hisgen et al.
1990]. Like Harp, Echo uses a primary copy scheme. Unlike Harp, it does not perform
replication at the file level, but at the level of an array of disk blocks. One of the rea-
sons for doing so it that Echo usesmultiporteddisks, which can be accessed by multi-
ple servers. The multiported disks and replication at the level of disk blocks allow a
primary to continue working even if all secondaries have failed. The primary can
directly write to all disks without having to go through the secondaries.

A fault-tolerant directory service is described by Mishra, Peterson, and Schlicht-

SEC. 5.2 A Fault-Tolerant Directory Service 159

ing [Mishra et al. 1989]. This directory service also uses active replication, but it is
based on the assumption that operations are idempotent. It uses Psync’s protocols to
enforce an ordering on the messages sent by the servers [Peterson et al. 1989]. To
enhance concurrency of the directory service operations, the directory service uses the
partial ordering and the property that some operations are commutative (e.g., list direc-
tory and lookup entry). To be able to recover, the servers checkpoint their state to non-
volatile storage. Using the checkpoint and the partial order among messages, the ser-
vice can reconstruct the state before a failure.

Daniels and Spector describe an algorithm designed for replicated directories
[Daniels and Spector 1983; Bloch et al. 1987]. Their algorithm is based on Gifford’s
weighted voting [Gifford 1987]. The algorithm exploits the observation that many
operations on a single directory entry can be performed in parallel if the operations
access different entries. Simulations done by the authors show that the additional cost
for their algorithm is low, while it provides better performance.

5.2.5. Conclusion
We have tried to support the claim that a distributed system should not only support
RPC, but group communication as well. Group communication allows simpler and
more efficient implementations of a large class of distributed applications. As an
example to demonstrate the claim we looked in detail at the design and implementation
of a fault-tolerant directory service. The directory service using group communication
is not only easier to implement, but also more efficient.

5.3. Summary and Discussion
In this chapter we have discussed two different approaches to making applica-

tions fault-tolerant for two different application areas. We considered long running
noninteractive parallel applications and distributed services that need to be highly
available and highly reliable. Both approaches are based on group communication, but
in a different way. The fault-tolerant Orca RTS uses group communication with a resi-
lience degree of zero. The directory service uses group communication with a higher
resilience degree. Thus, the directory service pays for the fault tolerance each time a
message is sent to the group, whereas the RTS only pays for fault tolerance when a
checkpoint is made. On the other hand, in the approach used by the directory service
recovery is faster than in the approach used by the RTS. If a failure occurs in the RTS,
the RTS starts from the latest consistent checkpoint and recomputes all the work done
since the latest checkpoint. The directory service can continue serving requests as soon
as the group is rebuilt.

Another important difference is that the RTS approach is less general than the
approach used by the directory service. The RTS relies on a fault-tolerant file system
to store checkpoints and the state file, whereas the directory service does not rely on
other fault-tolerant services. Furthermore, the approach used by the RTS works only

160 FAULT-TOLERANT PROGRAMMING USING BROADCASTING CHAP. 5

for noninteractive programs that are willing to tolerate slow recovery. The approach
used by directory service can be used by any other distributed service.

The most important conclusion that one can draw from this chapter is that group
communication is a suitable tool to build fault-tolerant applications with. Due to reli-
able totally-ordered group communication, the fault-tolerant RTS is easy to implement,
while still providing good performance. Other approaches not based on group com-
munication require more complicated protocols, but may provide better performance.
By using group communication in the directory service, the service is not only easy to
implement, but also gives a better performance than the same service implemented
using RPC.

Notes
The section describing a fault-tolerant implementation of Orca contains material
from the paper by Kaashoek, Michiels, Tanenbaum, and Bal published in the
proceedings of theThird Symposium on Experiences with Distributed and Multipro-
cessor Systems[Kaashoek et al. 1992a]. The programgax was written by Raymond
Michiels. A short position paper by Kaashoek, Tanenbaum, and Verstoep published
at theFifth ACM SIGOPS European Workshopcontains a preliminary version of the
comparison of a directory service based on RPC and group communication
[Kaashoek et al. 1992b]. Most of the material in this thesis on the comparison is
new. The description of the RPC directory service borrows from the work described
in the thesis of Van Renesse [Van Renesse 1989]. Kees Verstoep has turned the pro-

totype group directory service into a production quality service.

SEC. 5.3 Summary and Discussion 161

6

SUMMARY

Most distributed systems provide only RPC to build parallel and distributed
applications. However, RPC is inherently point-to-point communication and many
applications need one-to-many communication. Using one-to-many communication,
processes can send a message ton destinations. The abstraction providing one-to-many
communication is called group communication. This dissertation describes the design,
implementation, performance, and usage of a system providing group communication.

A straightforward method of providing group communication is to use RPC. If a
process sends a message to a group ofn processes, it performsn − 1 RPCs. This
implementation, however, is far from optimal. It uses 2(n − 1) packets and is therefore
slow and wasteful of network bandwidth. Another problem with this implementation is
that it does not provide any ordering between messages from different senders. If two
processes,A andB, simultaneously performn − 1 RPCs, some of the destinations may
first get the RPC fromA and then the RPC fromB, whereas other destinations may get
them in the reverse order. This interleaving of RPCs complicates the implementation
of many applications.

This thesis proposed a different way of doing group communication. Our system
can best be described using a three layer model (see Fig. 6.1). The bottom layer pro-
vides unreliable group communication. The middle layer turns the unreliable group
communication into reliable totally-ordered group communication. The top layer uses
group communication to implement applications. We will summarize the goals for
each layer and how they were achieved.

6.1. Bottom Layer: FLIP
The goal in the bottom layer was to make hardware broadcast and hardware mul-

ticast available to higher layers. To achieve this in a clean and network-independent
way, a routing protocol is needed. Instead of extending existing protocols, we decided
to design a new protocol. The reason for doing so was that existing routing protocols

162

22
3 Applications (e.g., parallel programs or a fault-tolerant file system)22
2 Group communication22
1 Fast Local Internet Protocol (FLIP)2211

1
1
1
1
1

11
1
1
1
1
1

Fig. 6.1. Structure of the system.

were not designed for distributed systems and do not fulfill all the demands that a dis-
tributed system imposes on a routing protocol.

The new protocol, called FLIP, was designed, implemented, tested, and meas-
ured. FLIP meets the following distributed system requirements:

d Transparency
Unlike most other routing protocols, FLIP addresses are location-
independent. They do not identify a host, but an entity or a group of enti-
ties. Location-independent addresses are implemented by letting each host
perform dynamic routing. A FLIP routing table is a cache of hints that
map FLIP addresses to data-link addresses. FLIP updates the routing table
each time a FLIP message arrives and uses special messages (LOCATE,
HEREIS, andNOTHERE) to locate addresses that do not appear in the routing
table or for which the routing table contains out-of-date information.

d Efficient at-most-once RPC
FLIP simplifies an efficient implementation of at-most-once RPC. One of
the problems in achieving at-most-once semantics is deciding whether an
incoming request has been executed or not. With FLIP, this problem is
easily solved. Each time a server is started, the server chooses a new FLIP
address. Thus, all the requests sent to the previous incarnation of the
server will fail automatically. FLIP also allows for an efficient implemen-
tation of RPCs by being a datagram protocol and by employing a blast pro-
tocol for large messages. This ensures that both small and large RPCs can
be performed efficiently.

d Group communication
FLIP implements unreliable group communication by letting FLIP
addresses identify entities and by using a special data message (MULTI-

DATA). Because addresses identify entities, they can be used to identify a
group of processes. By sending data in aMULTIDATA message, the FLIP
router knows that it should forward the message to all locations for which
it has an entry in its routing table. Furthermore, the router can ask the net-
work drivers to use a single multicast address for all locations that are
identified by the FLIP address.

SEC. 6.1 Bottom Layer: FLIP 163

d Security
FLIP itself does not provide security, but it provides support for building
efficient secure distributed systems. A system administrator can designate
a network as either ‘‘trusted’’ or ‘‘untrusted.’’ A network in a machine
room, for example, can be marked as trusted, while a public telephone line
should be marked as untrusted. FLIP’s routing protocol will ensure that
messages that are requested to be sent securely traverse only trusted net-
works. In case there is no secure route the packet has to be encrypted. By
making a distinction between trusted and untrusted networks, FLIP can
send messages over trusted networks without performing computation-
intensive encryption.

In addition to trusted and untrusted networks, FLIP supports public and
private addresses to make the forgery of source addresses difficult.
Processes send messages to a process’s public address and receive mes-
sages on their secret private address. This makes it hard, for example, for
a process to impersonate the file server, because it needs to know the file
server’s secret private address. If no authentication is used, the only way
for a malicious user to impersonate the file server is to modify an Amoeba
kernel that allows processes to receive messages on a public address.

d Network Management
Current networks are complicated. They are built out of many different
networks connecting many hosts of different architectures. FLIP requires
almost no manual help from a system administrator to manage such a com-
plex environment. New hosts and networks may be added, existing hosts
may be moved, and networks may be reconfigured without informing FLIP
about these events. FLIP will automatically detect these changes and will
re-route messages, if needed. FLIP can do this, because addresses are
location-independent and routing tables are dynamically updated.

d WAN
A weak point of FLIP is WAN communication. FLIP was especially
designed for local-area internetworks and not for an internetwork consist-
ing of thousands of networks spread all over the world. FLIP does not pro-
vide any special support for WAN communication. On the contrary, FLIP
employs mechanisms that are likely not to scale to large internetworks.
Some early experience, however, suggests that FLIP can be used for small
scale WAN internetworks.

164 SUMMARY CHAP. 6

6.2. Middle Layer: Group Communication
The middle layer turns the unreliable group communication of the FLIP layer

into reliable and totally-ordered group communication, which can used by program-
mers to build applications. The main primitives it provides are:CreateGroup, Join-
Group, LeaveGroup, SendToGroup, ReceiveFromGroup, and ResetGroup. These
primitives provide an abstraction that enables programmers to design applications con-
sisting of one or more processes running on different machines. Furthermore, the prim-
itives guarantee that all members of a single group see all events in the same total
order. The events of a new member joining the group, a member leaving the group, a
member sending a message to the group, and recovery from a failed member are all
totally ordered. This property simplifies distributed programming.

The group communication primitives also allow users to trade performance
against fault tolerance. A user can ask the system to guarantee that messages are
delivered even in the presence of processor failures. If a user specifies, for example, a
resilience degree of one, the system will guarantee that all messages will be delivered
in the same order even if one of the group members fails. This property simplifies
building fault-tolerant distributed programs.

The protocol for implementing reliable totally-ordered group communication is
based on a negative acknowledgement scheme and a sequencer. In a positive ack-
nowledgement scheme, a member sends an acknowledgement to the sender as soon as
it receives the sender’s message. For group communication this scheme results in
bursty traffic and potentially in the loss of acknowledgements. Consider a group of 64
members of which 63 are sending an acknowledgement roughly at the same time.
They need to compete for network access. Furthermore, the acknowledgements will
arrive at the sender almost simultaneous. If the sender’s network interface does not
have enough buffer space, it is likely that some of the acknowledgements will be
dropped, defeating the whole purpose of sending it and resulting in unnecessary
retransmissions of the original message. Furthermore, current networks are very reli-
able. Thus, sendingn − 1 acknowledgements for each message is overkill. For these
reasons the group communication protocol is based on a negative acknowledgement
scheme.

Total ordering is enforced by having one sequencer per group. The sequencer is
not fundamentally different from the other members in the group. It just has a flag set
telling it to process messages differently. Any member is capable of becoming a
sequencer. If the sequencer fails, the remaining members elect a new one. The main
advantage of having a sequencer is that the protocols for totally-ordered broadcast
become simple and have a good performance. Sending a message to a group of 30
processes takes only 2.8 msec. The obvious disadvantage is that the sequencer is a
potential performance bottleneck in a large system. The number of messages per
second per group is limited by the number of messages that the sequencer can process
per second. This has been measured at 815 messages per second. We believe that this

SEC. 6.2 Middle Layer: Group Communication 165

number is high enough to support small to medium-large groups. Furthermore, com-
parable decentralized protocols have not achieved better performance.

6.3. Top Layer: Applications
The goal in the top layer was to demonstrate that group communication simpli-

fies building efficient distributed applications. We have looked at two application
areas: parallel applications and fault-tolerant applications.

Parallel applications
The model for parallel computation that we have used is the shared data-object

model. This model supports parallelism explicitly through afork statement, but com-
munication is completely transparent to the programmer. Orca processes running on
different processors can share variables of some abstract data type, even if there is no
physically shared memory present. By giving the programmer the illusion of shared
memory the difficult task of writing a parallel program is considerable easier. They
key issue in the shared data-object model is to implement the shared objects efficiently
in a distributed environment by avoiding sending messages, as the transmission and
processing of messages is factors more expensive than accessing local RAM.

We have shown that the RTS for the shared data-object model can be imple-
mented easily and efficiently using group communication. We discussed two imple-
mentations: an unoptimized RTS and an optimized RTS. The unoptimized RTS repli-
cates shared objects in each processor’s RAM. Read operations on shared objects can
be performed directly from local RAM. Write operations are broadcast to all proces-
sors involved in the parallel computation. As these broadcasts are reliable and totally-
ordered, the copies of the shared data-objects stay consistent. This RTS optimizes read
operations, because for many parallel applications the read/write ratio is high.

Although replicating shared objects is a good strategy, there are certain cases
where it is better to avoid replication. The optimized RTS uses compile-time informa-
tion to classify shared objects in two categories: objects that should be replicated
(read/write ratio≥ 1) and objects that should not be replicated (read/write ratio< 1).
Furthermore, the optimized RTS tries to store nonreplicated shared objects on the pro-
cessor that performs most operations. The Orca processes running on that processor
can perform all operations without communicating with any other processor. Proces-
sors that do not have a copy access data remotely via RPC.

Using three example applications, each having different communication patterns,
we have demonstrated that both the unoptimized and optimized RTS achieve good per-
formance. The unoptimized RTS achieved good performance for applications that use
shared objects with a high read/write ratio or use shared objects as a broadcast channel.
The optimized RTS also achieves good performance for applications that use shared
objects as a point-to-point communication channel.

166 SUMMARY CHAP. 6

Fault-Tolerant Parallel Applications
In parallel applications, fault tolerance is often ignored. The main goal in a

parallel application is to achieve better performance by using multiple processors and
to avoid wasting computing cycles on anything else. However, by using multiple pro-
cessors the chance that the computation aborts due to a processor failure increases.
Furthermore, parallel applications often run for a long time. Thus, restarting a parallel
application from scratch after a processor failure is not an attractive solution.

We have shown that the unoptimized RTS for the shared data-object model can
be made fault-tolerant in an easy and inexpensive way. The solution is to periodically
make a global consistent checkpoint and to roll back to the latest consistent checkpoint
after a processor failure. This solution works for noninteractive applications that read
input, compute, and produce a result.

As the unoptimized RTS only uses reliable totally-ordered broadcast for com-
munication, it is easy to make a consistent checkpoint without freezing the complete
application. Periodically, a thread broadcasts amake checkpointmessage. All
processes will receive this message in the same total order and can therefore make a
checkpoint immediately on receiving the message, and continue computing immedi-
ately after making the checkpoint. Thus, the overhead for fault tolerance is equal to the
cost of making a global consistent checkpoint.

Another attractive property of the solution is that the overhead for fault tolerance
is completely controlled by the user. The user specifies the period between two check-
points. By specifying a long period, the overhead for fault tolerance decreases, but the
cost for recovery increases. If a user, for example, specifies a period of infinity, the
solution is the same as starting from scratch after each failure. The cost for fault toler-
ance is then zero, but the cost for recovery is equal to the time needed to recompute
everything that was computed before the failure occurred.

Fault-Tolerant Distributed Service
To demonstrate that group communication is also useful for ‘‘normal’’ fault-

tolerant applications, we designed, implemented, and measured a fault-tolerant direc-
tory service. The directory service exemplifies services that achieve fault tolerance by
active replication of data. It uses group communication with a high resilience degree to
keep the replicated directories consistent.

The main cost in providing fault tolerance for this service is the overhead of per-
forming disk operations. To avoid the cost for disk operations in the critical path, the
directory service was modified to use NonVolatile RAM (NVRAM). This implemen-
tation can perform 90 write operations per second, a factor of 9 more than without
NVRAM. The maximum number of read operations is the same for both implementa-
tions: 652 operations per second.

The directory service using group communication was based on an implementa-
tion using RPC. We compared the group version with the RPC version. The group ser-

SEC. 6.3 Top Layer: Applications 167

vice achieves better performance and its design is simpler. The comparison, however,
is not completely fair, as the RPC implementation is duplicated, whereas the group
implementation is triplicated. The RPC service can perform 10 write operations per
second (without using NVRAM) and 531 read operations per second.

6.4. Conclusion
The goal in this thesis was to demonstrate that group communication is suitable

for distributed systems, as it simplifies distributed programming and give enormous
performance benefits if a network supports broadcast or multicast. In attempting to
achieve this goal, we made the following research contributions:

d A clean, simple, and integrated three-layered model for group communica-
tion.

d A new network protocol, FLIP, that meets the communication require-
ments of a distributed system.

d An efficient protocol for reliable and totally-ordered group communica-
tion.

d A new model and implementation for DSM based on compiler optimiza-
tions, group communication, and shared data-objects.

d An efficient scheme to make a broad class of parallel applications fault-
tolerant in a transparent way.

d A fault-tolerant directory service based on group communication, demon-
strating that fault-tolerant services based on group communication are
easier to implement and more efficient than the same service implemented
using RPC.

By showing that reliable totally-ordered group communication can be done as effi-
ciently as an RPC and by using it in a number of parallel and fault-tolerant applications,
we demonstrated the utility and desirability of group communication in distributed sys-
tems.

168 SUMMARY CHAP. 6

Appendix A
The FLIP Protocol

The FLIP protocol makes it possible that routing tables automatically adapt to
changes in the network topology. The protocol is based on 6 message types. We will
discuss in detail the actions undertaken by the packet switch when receiving a FLIP
fragment.

22
LOCATE22

/* Remember that source can be reached through networkntw on locationloc. */
UpdateRoutingTable(pkt→source, ntw, loc, pkt→act3hop, pkt→flags & UNSAFE);
if (pkt→act3hop== pkt→max3hopand

lookup(pkt→destination, &dsthop, ntw, pkt→flags & SECURITY)) {
/* Destination is known; sendHEREISmessage back. */
pkt→type= HEREIS;
pkt→max3hop= pkt→act3hop + dsthop;
pkt→act3hop−= Networkweight[ntw];
pkt3send(pkt, ntw, loc);

} else { /* destination is unknown or incorrect */
/* Forget all routes to destination, except those onntw */
RemoveFromRoutingTable(pkt→destination, ALLNTW, ALLLOC, ntw);
/* Forward pkt on all other networks, if the hop count and security allow it */
pkt3broadcast(pkt, ntw, pkt→max3hop− pkt→act3hop, pkt→flags & SECURITY);

}2211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 7.1. The protocol forLOCATE messages. ALOCATE message is broadcast,

while the route to the source address is remembered.

If a fragment arrives over an untrusted network, theUnsafebit in theFlags field
is set. This also happens when a fragment is sent over an untrusted network. Further-
more, FLIP refuses to send a fragment with theSecuritybit set over an untrusted net-
work. We have omitted these details from the protocol description below to make it
easier to understand.

TheLOCATE message is to find the network location of a NSAP (see Fig. 7.1). It

169

is broadcast to all FLIP boxes. If a FLIP box receives aLOCATE message, it stores the
tuple (Source Address, Network, Location, Actual Hop Count, Flags & UNSAFE) in
its routing table, so that a reply to theLOCATE message can find its way back. If the
Actual Hop Countin the LOCATE message is equal to theMaximum Hop Count, the
Destination Addressis in the routing table, the destination network is safe (if neces-
sary), and the destination network is not equal to the source network, theLOCATE mes-
sage is turned into anHEREIS message and sent back to theSource Address. TheMax-
imum Hop Countof theHEREIS message is set to theActual Hop Countof theLOCATE

message plus the hop count in the routing table. If theActual Hop Countin the
LOCATE message is less than theMaximum Hop Count, the entries forDestination
Addressin the routing table are removed, except for the entries that route the address to
the network on which theLOCATE arrived, and the message is broadcast on the other
networks.

222
HEREIS22

hops= pkt→max3hop− pkt→act3hop;
AddToRoutingTable(pkt→destination, ntw, loc, hops, pkt→flags & UNSAFE);
if (route(pkt→source, &dstntw, &dstloc, ntw, pkt→act3hop, pkt→flags & SECURITY)) {

/* A network is found that is different from the network on which
* pkt arrived and on which the destination is reachable. */
pkt→act3hop−= Networkweight[dstntw];
pkt3send(pkt, dstntw, dstloc);

} else discard(pkt); /* Source is unknown, too far away, or unsafe. */22211
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1

Fig. 7.2. The protocol forHEREIS messages.HEREIS messages are returned to

the source in response toLOCATE messages, while the route to the destination

(of theLOCATE message) is remembered.

It is important that the packet switch only sends anHEREIS message back if the
Actual Hop Countof the LOCATE message isequal to the Maximum Hop Count. By
using a largeMaximum Hop Countthe sender of theLOCATE message can force an
interface module to respond instead of a packet switch and at the same time invalidate
any old routing information for the address that is located. If the address to be located
is registered at an interface on a distance smaller thanMaximum Hop Count, this
scheme works correctly, because an interface always sends anHEREIS back for an
address that is registered with it.

An HEREIS message is sent as a reply to aLOCATE message (see Fig. 7.2). If an
HEREIS message arrives, the tuple (Destination Address, Network, Location, Actual
Hop Count, Flags & UNSAFE) is added to the routing table. If theSource Addressis
in the routing table and the network on which the source can be reached is not equal to
the network on which the message arrived and the incrementedActual Hop Countdoes
not exceed theMaximum Hop Count, the message is forwarded. Otherwise, the mes-
sage is discarded. If the destination network is equal to the source network,route()
will return false; the message is discarded.

170 APPENDIX A

22
UNIDATA22

UpdateRoutingTable(pkt→source, ntw, loc, pkt→act3hop, pkt→flags & UNSAFE);
hops= pkt→max3hop− pkt→act3hop;
switch (route(pkt→destination, &dstntw, &dstloc, ntw, hops, pkt→flags & SECURITY)) {

case OK: /* forward message */
pkt→act3hop+= Networkweight[dstntw];
pkt3send(pkt, dstntw, dstloc);
break;

case TooFarAway: /* send pkt back to source. */
pkt→type= NOTHERE;
pkt→acthop−= Networkweight[ntw];
pkt3send(pkt, ntw, loc);
break;

case Unsafe: /* send pkt back to source. */
pkt→type= UNTRUSTED;
pkt→flags |= UNREACHABLE;
pkt→acthop−= Networkweight[ntw];
pkt3send(pkt, ntw, loc);
break;

}
}2211
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 7.3. The protocol forUNIDATA messages. If the destination is known and,

if necessary, safe, the message is forwarded. If the destination is unknown, the

message is returned as aNOTHERE message. If the message can only be

transferred over trusted networks, and the destination network is untrusted, the

message is returned as anUNTRUSTED message.

UNIDATA messages are used to transfer fragments of a message between two
NSAPs. When such a message arrives, the tuple (Source Address, Network, Location,
Actual Hop Count, Flags & UNSAFE) is stored in the routing table (see Fig. 7.3). If
the Destination Address is in the routing table, the destination network is not equal to
the source network, the incrementedActual Hop Countdoes not exceed theMaximum
Hop Count, and the destination network is safe, the message is fragmented (if needed),
and each fragment is forwarded. If there are multiple choices in the routing table, one
is chosen, based on an implementation-defined heuristic, such as the safety or the
minimum number of hops. The null destination address maps to all networks and loca-
tions.

If the Destination Addressof a UNIDATA message is not in the routing table, or
the destination network is unsafe, the message is transformed into aNOTHERE message
by setting theTypeto NOTHERE, and is returned to theSource Address. The data in the
message isnot discarded, unless the decrementedActual Hop Countwas zero.

If the Maximum Hop Countminus theActual Hop Countof a UNIDATA message
is less than the Hop Count stored in the routing table, the implementor can decide to
send aNOTHERE message back to the sender. Chances are that the message would not
have reached its destination. A new locate of theDestination Addresswill re-establish

The FLIP Protocol 171

222
NOTHERE22

RemoveFromRoutingTable(pkt→destination, ntw, loc, NONTW);
hops= pkt→max3hop− pkt→act3hop;
if (route(pkt→destination, &dstntw, &dstloc, ntw, hops, pkt→flags & SECURITY) {

/* There is another route to destination; use it. */
pkt→type= UNIDATA ;
pkt→act3hop+= Networkweight[dstntw];
pkt3send(pkt, dstntw, dstloc);

} else if (route(pkt→source, &dstntw, &dstloc, ntw, hops, pkt→flags & SECURITY)) {
/* Forward to original source. */
pkt→act3hop−= Networkweight[dstntw];
pkt3send(pkt, dstntw, dstloc);

} else discard(pkt); /* Source is unknown, too far away, or untrusted. */2221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 7.4. The protocol forNOTHERE messages. If there is an alternative route,

try that one. Otherwise forward back to the original source.

the route, and update the routing tables. If the destination network is untrusted, then
theUnreachablebit is set, and the message is returned as anUNTRUSTEDmessage.

If a NOTHEREmessage arrives at a FLIP box, the corresponding entry in the rout-
ing table is invalidated (see Fig.7.4). If another route is present in the routing table, the
Typefield is set back toUNIDATA . Now operation continues as if aUNIDATA message
arrived, except that the routing table operation is skipped. This way an alternate route,
if available, will be tried automatically. If not, theNOTHERE is forwarded to its source
(if still safe).

222
UNTRUSTED22

UpdateRoutingTable(pkt→destination, ntw, loc, pkt→act3hop, UNSAFE);
hops= pkt→max3hop− pkt→act3hop;
if (route(pkt→destination, &dstntw, &dstloc, ntw, hops, SECURE) {

/* There is another safe route to destination; use it. */
pkt→type= UNIDATA ;
pkt→act3hop+= Networkweight[dstntw];
pkt3send(pkt, dstntw, dstloc);

} else if (route(pkt→source, &dstntw, &dstloc, ntw, hops, SECURE)) {
/* Return to source (if still safe). */
pkt→act3hop−= Networkweight[dstntw];
pkt3send(pkt, dstntw, dstloc);

} else discard(pkt); /* Source is unknown, too far away, or untrusted. */2221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 7.5. The protocol for anUNTRUSTED message. If there is an alternative

safe route, try that one. Otherwise return to its original source.

172 APPENDIX A

If an UNTRUSTED message arrives at a FLIP box (see Fig. 7.5), the route in the
routing table is updated, and a new safe route, if present, is tried. If there is no such
route, the message is forwarded back to the original source (but only if there exists a
route back that is safe).

22
MULTIDATA22

UpdateRoutingTable(pkt→source, ntw, loc, pkt→act3hop, pkt→flags & UNSAFE);
/* See if there are any known (and safe) destinations. */
if (list = lookup(dstaddr, &dsthop, ntw, pkt→flags & SECURITY)) {

/* Send message to all locations on list, if the hop count allows it. */
pkt3multicast(list, pkt→max3hop− pkt→act3hop);

} else discard(pkt);221
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

Fig. 7.6. The protocol forMULTIDATA messages. Forward to all known desti-

nations.

A MULTIDATA message is transferred like anUNIDATA message (see Fig. 7.6).
However, if there are multiple entries of theDestination Addressin the routing table,
the message is forwarded to all destinations instead of just one. If there is no entry for
theDestination Address, or the destination network is unsafe, the message is discarded
and not returned as aNOTHERE message. FLIP does not assume that a network has
support for multicast. If a network has such a capability, FLIP will try to take advan-
tage of it. If not, the message is sent point-to-point to all destinations on the network.

The FLIP Protocol 173

Appendix B
Analysis of the Cost of a Checkpoint

In this section we will deduce the formula to compute the overhead of check-
pointing and the optimal computing interval given the time to make a checkpoint, the
time to recover from a crash, and the MTTF of the system.

For the derivation we introduce the following variables:

Ttot is the time needed to run the application without checkpointing;
Tcomp is the time between two checkpoints;
Tcp is the mean time to make a global consistent checkpoint;
Trb is the mean time to roll back;
TMTTF is the mean time to failure.

Tcomp Tcp Tcomp Tcp Tcomp Tcp Tcomp Tcp

Fig. 8.1. An Orca execution without failures.

An execution of an Orca application without any failures consists of a sequence
of alternating computing intervals of lengthTcomp and checkpoint intervals of length
Tcp (see Fig. 8.1). If a failure happens during a computing interval or a checkpoint
interval, an extra interval with duration equal to the recover time plus the time wasted
before the crash is inserted (see Fig. 8.2). The mean time wasted can be estimated by
(Tcomp + Tcp) / 2.

Tcomp Tcp (Tcomp+Tcp) /2 Trb Tcomp Tcp Tcomp Tcp

Fig. 8.2. An Orca execution with a failure.

174

Let Ttot be the total computation time needed to finish the application. Then, the
number of computing intervals is equal toTtot / Tcomp and the number of failures dur-
ing the total run-time is approximatelyTtot / TMTTF (assumingTcp << Ttot andTrb <<
Ttot). Thus the average run-time is:

Tcomp

Ttot333333 (Tcomp + Tcp) +
TMTTF

Ttot333333 (
2

Tcomp + Tcp3333333333 + Trb).

The overhead for checkpointing is the average run-time divided byTtot minus 1:

overhead=
Tcomp

Tcp333333 +
TMTTF

2

Tcomp + Tcp3333333333 + Trb

3333333333333333 .

Minimizing the overhead function gives:

optimal computing interval= √77777772TcpTMTTF

Analysis of the Cost of a Checkpoint 175

References

Adve, S. V. and Hill, M. D., “Weak Ordering - A new Definition,”Proc. Seventeenth
Annual International Symposium on Computer Architecture, pp. 2-14, Seattle,
WA, May 1990. Cited on page 96.

Ahamad, M. and Bernstein, A. J., “An Application of Name Based Addressing to Low
Level Distributed Algorithms,”IEEE Trans. on Soft. Eng., Vol. 11, No. 1, pp.
59-67, Jan. 1985. Cited on page 4.

Ahamad, M., Hutto, P. W., and John, R., “Implementing and Programming Causal Dis-
tributed Shared Memory,”Proc. Eleventh International Conference on Distri-
buted Computing Systems, pp. 274-281, Arlington, TX, May 1991. Cited on
page 96.

Aho, A. V., Hopcroft, J. E., and Ullman, J. D., “The Design and Analysis of Computer
Algorithms,” Addison-Wesley, Reading, MA, 1974. Cited on page 7.

Ahuja, S., Carriero, N. J., and Gelernter, D. H., “Linda and Friends,”IEEE Computer,
Vol. 19, No. 8, pp. 26-34, Aug. 1986. Cited on pages 96, 124.

Ahuja, S., Carriero, N. J., Gelernter, D. H., and Krishnaswamy, V., “Matching
Language and Hardware for Parallel Computation in the Linda Machine,”IEEE
Trans. on Computers, Vol. 37, No. 8, pp. 921-929, Aug. 1988. Cited on page
122.

Almasi, G. S. and Gottlieb, A., “Highly Parallel Computing,” Benjamin/Cummings,
Redwood City, CA, 1989. Cited on page 88.

Alsberg, P. and Day, J., “A Principle for Resilient Sharing of Distributed Resources,”
Proc. Second International Conference on Software Engineering, pp. 627-644,
Oct. 1976. Cited on page 159.

Andrews, G. R., “Paradigms for Process Interaction in Distributed Programs,”ACM
Computing Surveys, Vol. 23, No. 1, pp. 49-90, Mar. 1991. Cited on page 109.

176

Andrews, G. R., Olsson, R. A., Coffin, M., Elshoff, I., Nilsen, K., Purdin, T., and
Townsend, G., “An Overview of the SR Language and Implementation,”ACM
Trans. Prog. Lang. Syst., Vol. 10, No. 1, pp. 51-86, Jan. 1988. Cited on page
122.

Athas, W. C. and Seitz , C. L., “Multicomputers: Message-Passing Concurrent Com-
puters,”IEEE Computer, Vol. 21, No. 8, pp. 9-24, Aug. 1988. Cited on page 1.

Backes, F., “Transparent Bridges for Interconnection of IEEE 802 LANs,”IEEE Net-
work, Vol. 2, No. 1, pp. 5-9, Jan. 1988. Cited on page 39.

Bakken, D. E. and Schlichting, R. D., “Tolerating Failures in the Bag-of-Tasks Pro-
gramming Paradigm,”Proc. 21st International Symposium on Fault-Tolerant
Computing, pp. 248-255, Montreal, Canada, June 1991. Cited on page 138.

Bal, H. E., “Programming Distributed Systems,” Silicon Press, Summit, NJ, 1990.
Cited on pages 7, 88, 100, 109, 127.

Bal, H. E., “Fault-Tolerant Parallel Programming in Argus,”Concurrency−Practice
and Experience, Vol. 4, No. 1, pp. 37-55, Feb. 1992. Cited on pages 137, 138.

Bal, H. E., Kaashoek, M. F., and Tanenbaum, A. S., “A Distributed Implementation of
the Shared Data-Object Model,”Proc. First USENIX/SERC Workshop on
Experiences with Building Distributed and Multiprocessor Systems, pp. 1-19, Ft.
Lauderdale, FL, Oct. 1989a. Cited on page 127.

Bal, H. E., Kaashoek, M. F., and Tanenbaum, A. S., “Experience with Distributed Pro-
gramming in Orca,” Proc. 1990 International Conference on Computer
Languages, pp. 79-89, New Orleans, LA, Mar. 1990. Cited on pages 109, 111,
117, 127.

Bal, H. E., Kaashoek, M. F., and Tanenbaum, A. S., “Orca: A language for Parallel
Programming of Distributed Systems,”IEEE Trans. on Soft. Eng., Vol. 18, No.
3, pp. 190-205, Mar. 1992a. Cited on pages 7, 88, 127.

Bal, H. E., Kaashoek, M. F., Tanenbaum, A. S., and Jansen, J., “Replication Tech-
niques for Speeding up Parallel Applications on Distributed Systems,”
Concurrency−Practice and Experience, Vol. 4, No. 5, pp. 337-355, Aug. 1992b.
Cited on pages 101, 102, 109.

Bal, H. E., Steiner, J. G., and Tanenbaum, A. S., “Programming Languages for Distri-
buted Computing Systems,”ACM Computing Surveys, Vol. 21, No. 3, pp. 261-
322, Sep. 1989b. Cited on pages 3, 15.

Bal, H. E. and Tanenbaum, A. S., “Distributed Programming with Shared Data,”Com-
puter Languages, Vol. 16, No. 2, pp. 129-146, 1991. Cited on pages 127, 140.

References 177

Barrett, P. A., Hilborne, A. M., Verissimo, P., Rodrigues, L., Bond, P. G., Seaton, D.
T., and Speirs, N. A., “The Delta-4 Extra Performance Architecture (XPA),”
Proc. 20th International Symposium on Fault-Tolerant Computing, pp. 481-488,
Newcastle, UK, June 1990. Cited on page 143.

Bennett, J. K., Carter, J. B., and Zwaenepoel, W., “Munin: Distributed Shared Memory
Based on Type-Specific Memory Coherence,”Proc. Second Symposium on Prin-
ciples and Practice of Parallel Programming, pp. 168-176, Seattle, WA, Mar.
1990. Cited on pages 96, 126.

Bernstein, P. A., Hadzilacos, V., and Goodman, N., “Concurrency Control and
Recovery in Database Systems,” Addison-Wesley, Reading, MA, 1987. Cited on
page 142.

Bershad, B. N. and Zekauskas, M. J., “Midway: Shared Memory Parallel Programming
with Entry Consistency for Distributed Memory Multiprocessors,” CMU-CS-
91-170, Carnegie Mellon University, Pittsburgh, PA, Sep. 1991. Cited on page
96.

Birman, K. P., Cooper, R., Jospeh, T. A., Kane, K. P., Schmuck, F., and Wood, M.,
“Isis - A Distributed Programming Environment,” Cornell University, Ithaca,
NY, June 1990. Cited on pages 46, 47, 59, 140.

Birman, K. P. and Joseph, T. A., “Exploiting Virtual Synchrony in Distributed Sys-
tems,”Proc. Eleventh Symposium on Operating Systems Principles, pp. 123-138,
Austin, TX, Nov. 87. Cited on pages 9, 138, 140.

Birman, K. P. and Joseph, T. A., “Reliable Communication in the Presence of
Failures,” ACM Trans. Comp. Syst., Vol. 5, No. 1, pp. 47-76, Feb. 1987. Cited
on pages 47, 79.

Birman, K. P., Schiper, A., and Stephenson, P., “Lightweight Causal and Atomic
Group Multicast,”ACM Trans. Comp. Syst., Vol. 9, No. 3, pp. 272-314, Aug.
1991. Cited on pages 46, 79.

Birrell, A. D., “Secure Communication Using Remote Procedure Calls,”ACM Trans.
Comp. Syst., Vol. 3, No. 1, pp. 1-14, Feb. 1985. Cited on page 34.

Birrell, A. D. and Nelson, B. J., “Implementing Remote Procedure Calls,”ACM Trans.
Comp. Syst., Vol. 2, No. 1, pp. 39-59, Feb. 1984. Cited on pages 4, 18, 33.

Bisiani, R. and Forin, A., “Architectural Support for Multilanguage Parallel Program-
ming on Heterogeneous Systems,”Proc. Second International Conference on
Architectural Support for Programming Languages and Operating Systems, pp.
21-30 , Palo Alto, CA, Oct. 1987. Cited on page 96.

178 References

Black, A., Hutchinson, N., Jul, E., Levy, H. M., and Carter, L., “Distribution and
Abstract Types in Emerald,”IEEE Trans. on Soft. Eng., Vol. 13, No. 1, pp. 65-
76, Jan. 1987. Cited on page 96.

Bloch, J. J., Daniels, D. S., and Spector, A. Z., “A Weighted Voting Algorithm for
Replicated Directories,”Journal of the ACM, Vol. 34, No. 4, pp. 859-909, Oct.
1987. Cited on page 160.

Bolosky, W. J., Fitzgerald, R. P., and Scott, M. L., “Simple But Effective Techniques
for NUMA Memory Management,”Proc. Twelfth Symposium on Operating Sys-
tems Principles, pp. 19-31, Litchfield Park, AZ, Dec. 1989. Cited on page 95.

Burkhardt, H., Frank, S., Knobe, B., and Rothnie, J., “Overview of the KSR1 Computer
System,” KSR-TR-9202001, Kendall Square Research, Boston, MA, Feb. 1992.
Cited on page 95.

Butler, R., Lusk, E., McCune, W., and Overbeek, R., “Parallel Logic Programming for
Numeric Applications,”Proc. Third International Conference on Logic Pro-
gramming, pp. 375-388, London, July 1986. Cited on page 117.

Callahan, C. D., Cooper, K. D., Hood, R. T., Kennedy, K., and Torczon, L., “Para-
Scope: a Parallel Programming Environment,”International Journal of Super-
computer Applications, Vol. 2, No. 4, pp. 84-99, Winter 1988. Cited on page
123.

Carriero, N. J., “Implementation of Tuple Space Machines,” RR-567, Dept. of Com-
puter Science, Yale University, New Haven, CT, Dec. 1987. Cited on page 124.

Carriero, N. J. and Gelernter, D. H., “The S/Net’s Linda Kernel,”ACM Trans. Comp.
Syst., Vol. 4, No. 2, pp. 110-129, May 1986. Cited on page 122.

Carriero, N. J., Gelernter, D. H., and Leichter, J., “Distributed Data Structures in
Linda,” Proc. Thirteenth Symposium on Principles of Programming Languages,
pp. 236-242, St. Petersburg, FL, Jan. 1986. Cited on page 138.

Carter, J. B., Bennett, J. K., and Zwaenepoel, W., “Implementation and Performance of
Munin,” Proc. Thirteenth Symposium on Operating System Principles, pp. 137-
151, Pacific Grove, CA, Oct. 1991. Cited on pages 96, 117, 125.

Censier, L. M. and Feautrier, P., “A New Solution to Cache Coherence Problems in
Multicache Systems,”IEEE Trans. on Computers, pp. 1112-1118, Dec. 1978.
Cited on page 88.

Chaiken, D., Kubiatowicz, J., and Agrawal, A., “LimitLess Directories: a Scalable
Cache Coherence Scheme,”Proc. Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pp. 224-234,
Santa Clara, CA, Apr. 1991. Cited on page 95.

References 179

Chandy, K. M. and Lamport, L., “Distributed Snapshots: Determining Global States of
Distributed Systems,”ACM Trans. Comp. Syst., Vol. 3, No. 1, pp. 63-75, Feb.
1985. Cited on pages 130, 133, 140.

Chang, J., “Simplifying Distributed Database Design by Using a Broadcast Network,”
Proc. ACM SIGMOD 1984 Annual Conference, pp. 223-233, Boston, MA, June
1984. Cited on page 4.

Chang, J. and Maxemchuk, N. F., “Reliable Broadcast Protocols,”ACM Trans. Comp.
Syst., Vol. 2, No. 3, pp. 251-273, Aug. 1984. Cited on pages 49, 80.

Chanson, S. T., Neufeld, G. W., and Liang, L., “A Bibliography on Multicast and
Group Communication,”Operating Systems Review, Vol. 23, No. 4, pp. 20-25,
Oct. 1989. Cited on page 79.

Chase, J. S., Amador, F. G., Lazowska, E. D., Levy, H. M., and Littlefield, R. J., “The
Amber System: Parallel Programming on a Network of Multiprocessors,”Proc.
Twelfth Symposium on Operating Systems Principles, pp. 147-158, Litchfield
Park, AZ, Dec. 1989. Cited on pages 96, 117, 123.

Chen, M., Choo, Y., and Li, J., “Compiling Parallel Programs by Optimizing Perfor-
mance,” Journal of Supercomputing, Vol. 1, No. 2, pp. 171-207, July 1988.
Cited on page 123.

Cheriton, D. R., “Preliminary Thoughts on Problem-Oriented Shared Memory,”
Operating Systems Review, Vol. 19, No. 4, pp. 26-33, Oct. 1985. Cited on page
96.

Cheriton, D. R., “VMTP: a Transport Protocol for the Next Generation of Communica-
tion Systems,”Proc. SIGCOMM 86, pp. 406-415, Stowe, VT, Aug. 1986. Cited
on pages 7, 41.

Cheriton, D. R., “VMTP: Versatile Message Transaction Protocol,” RFC 1045, SRI
Network Information Center, Feb. 1988a. Cited on page 41.

Cheriton, D. R., “The V Distributed System,”Commun. ACM, Vol. 31, No. 3, pp. 314-
333, Mar. 1988b. Cited on pages 9, 18, 42, 139.

Cheriton, D. R., Goosen, H. A., and Boyle, P. D., “Paradigm: a Highly Scalable Shared
Memory Multicomputer,”IEEE Computer, Vol. 24, No. 2, pp. 33-49, Feb. 1991.
Cited on page 95.

Cheriton, D. R. and Mann, T. P., “Decentralizing a Global Naming Service for
Improved Performance and Fault Tolerance,”ACM Trans. Comp. Syst., Vol. 7,
No. 2, pp. 147-183, May 1989. Cited on page 142.

Cheriton, D. R. and Zwaenepoel, W., “Distributed Process Groups in the V kernel,”
ACM Trans. Comp. Syst., Vol. 3, No. 2, pp. 77-107, May 1985. Cited on pages 4,
9, 45−47, 82, 122.

180 References

Cohen, D., “On Holy Wars and a Plea for Peace,”IEEE Computer, Vol. 14, No. 10, pp.
48-54, Oct. 1981. Cited on page 25.

Comer, D. E., “Internetworking with TCP/IP 2nd ed.,” Prentice-Hall, Englewood
Cliffs, NJ, 1992. Cited on pages 6, 41.

Cooper, E. C., “Replicated Distributed Programs,”Proc. Tenth Symposium on Operat-
ing Systems Principles, pp. 63-78, Orcas Islands, WA, Dec. 1985. Cited on page
84.

Cox, A. L. and Fowler, R. J., “The Implementation of a Coherent Memory Abstraction
on a NUMA Multiprocessor: Experiences with PLATINUM,”Proc. Twelfth
Symposium on Operating Systems Principles, pp. 32-44, Litchfield Park, AZ,
Dec. 1989. Cited on page 95.

Cristian, F., “Understanding Fault-Tolerant Distributed Systems,”Commun. ACM, Vol.
34, No. 2, pp. 56-78, Feb. 1991. Cited on pages 4, 143.

Curtis, R. and Wittie, L., “Global Naming in Distributed Systems,”IEEE Software,
Vol. 1, No. 4, pp. 76-80, July 1984. Cited on page 142.

Daniels, D. S. and Spector, A. Z., “An Algorithm for Replicated Directories,”Proc.
Second Annual Symposium on Principles of Distributed Computing, pp. 104-113,
Montreal, Canada, Aug. 1983. Cited on page 160.

Daniels, D. S., Spector, A. Z., and Thompson, D. S., “Distributed Logging for Trans-
action Processing,”Proc. ACM SIGMOD 1987 Annual Conference, pp. 82-96,
San Francisco, CA, May 1987. Cited on page 156.

Danzig, P. B., “Finite Buffers and Fast Multicast,”Perf. Eval. Rev., Vol. 17, No. 1, pp.
79-88, May 1989. Cited on page 49.

Dasgupta, P., Leblanc, R. J., Ahamad, M., and Ramachandran, U., “The Clouds Distri-
buted Operating System,”IEEE Computer, Vol. 24, No. 11, pp. 34-44, Nov.
1991. Cited on page 18.

Davidson, S. B., Garcia-Molina, H., and Skeen, D., “Consistency in Partitioned Net-
works,” ACM Computing Surveys, Vol. 17, No. 3, pp. 341-370, Sep. 1985. Cited
on page 143.

Dechter, R. and Kleinrock, L., “Broadcast Communication and Distributed Algo-
rithms,” IEEE Trans. on Computers, Vol. 35, No. 3, pp. 210-219, Mar. 1986.
Cited on page 4.

Deering, S. E., “Host Extensions for IP Multicasting,” RFC 1112, SRI Network Infor-
mation Center, Aug. 1988. Cited on page 6.

References 181

Deering, S. E. and Cheriton, D. R., “Multicast Routing in Datagram Internetworks and
Extended LANs,”ACM Trans. Comp. Syst., Vol. 8, No. 2, pp. 85-110, May 1990.
Cited on page 42.

Delp, G. S., Farber, D. J., Minnich, R. G., Smith, J. M., and Tam, M.-C., “Memory as a
Network Abstraction,”IEEE Network, Vol. 5, No. 4, pp. 34-41, July 1991. Cited
on page 96.

Dijkstra, E. W., “Guarded Commands, Nondeterminacy, and Formal Derivation of Pro-
grams,”Commun. ACM, Vol. 18, No. 8, pp. 453-457, Aug. 1975. Cited on page
98.

Dinning, A., “A Survey of Synchronization Methods for Parallel Computers,”IEEE
Computer, Vol. 22, No. 7, pp. 66-77, July 1989. Cited on page 94.

Douglis, F., Kaashoek, M. F., Tanenbaum, A. S., and Ousterhout, J. K., “A Comparison
of Two Distributed Systems: Amoeba and Sprite,”Computing Systems, Vol. 4,
No. 4, pp. 353-384, 1991. Cited on pages 37, 137.

Dubois, M., Scheurich, C., and Briggs, F. A., “Synchronization, Coherence, and Event
Ordering in Multiprocessors,”IEEE Computer, Vol. 21, No. 2, pp. 9-21, Feb.
1988. Cited on page 96.

Elnozahy, E. N., Johnson, D. B., and Zwaenepoel, W., “The Performance of Consistent
Checkpointing,” Proc. Eleventh Symposium on Reliable Distributed Systems,
Houston, TX, Oct. 1992. Cited on pages 10, 139.

Elnozahy, E. N. and Zwaenepoel, W., “Manetho: Transparent Rollback-Recovery with
Low Overhead, Limited Rollback, and Fast Output Commit,”IEEE Trans. on
Computers, Vol. 41, No. 5, pp. 526-531, May 1992a. Cited on pages 133, 138.

Elnozahy, E. N. and Zwaenepoel, W., “Replicated Distributed Processes in Manetho,”
Proc. 22nd International Symposium on Fault-Tolerant Computing, pp. 18-27,
Boston, MA, July 1992b. Cited on page 82.

El Abbadi, A., Skeen, D., and Cristian, F., “An Efficient, Fault-Tolerant Algorithm for
Replicated Data Management,”Proc. Fifth Symposium on Principles of Data-
base Systems, pp. 215-229, Portland, OR, Mar. 1985. Cited on page 148.

Eswaran, K. P., Gray, J. N., Lorie, R. A., and Traiger, I. L., “The Notion of Con-
sistency and Predicate Locks in a Database System,”Commun. ACM, Vol. 19,
No. 11, pp. 624-633, Nov. 1976. Cited on pages 84, 100, 102, 158.

Evans, A., Kantrowitz, W., and Weiss, E., “A User Authentication Scheme Not Requir-
ing Secrecy in the Computer,”Commun. ACM, Vol. 17, No. 8, pp. 437-442, Aug.
1974. Cited on page 14.

182 References

Finlayson, R., Mann, T., Mogul, J., and Theimer, M., “A Reverse Address Resolution
Protocol,” RFC 903, SRI Network Information Center, June 1984. Cited on page
6.

Fischer, M. J., Lynch, N. A., and Paterson, M. S., “Impossibility of Distributed Con-
sensus with One Faulty Process,”Journal of the ACM, Vol. 32, No. 2, pp. 374-
382, Apr. 1985. Cited on page 53.

Fleisch, B. D. and Popek, G. J., “Mirage: a Coherent Distributed Shared Memory
Design,” Proc. Twelfth Symposium on Operating Systems Principles, pp. 211-
223, Litchfield Park, AZ, Dec. 1989. Cited on page 95.

Fox, G., Hiranandani, S., Kennedy, K., Koelbel, C., Kremer, U., Tseng, C-W., and Wu,
M-Y., “FORTRAN-D Language Specification,” TR90-141, Rice University,
Dec. 1990. Cited on page 122.

Frank, A. J., Wittie, L. D., and Bernstein, A. J., “Multicast Communication on Network
Computers,”IEEE Software, Vol. 2, No. 3, pp. 49-61, May 1985. Cited on page
45.

Garcia-Molina, H., “Elections in a Distributed Computing System,”IEEE Trans. on
Computers, Vol. 31, No. 1, pp. 48-59, Jan. 1982. Cited on page 70.

Gehani, N. H., “Broadcasting Sequential Processes,”IEEE Trans. on Soft. Eng., Vol.
10, No. 4, pp. 343-351, July 1984. Cited on pages 4, 122.

Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., and Hennessy, J.,
“Memory Consistency and Event Ordering in Scalable Shared-Memory Mul-
tiprocessors,”Proc. Seventeenth Annual International Symposium on Computer
Architecture, pp. 15-26, Seattle, WA, May 1990. Cited on page 96.

Gifford, D. K., “Weighted Voting for Replicated Data,”Proc. Seventh Symposium on
Operating System Principles, pp. 150-159, Pacific Grove, CA, Dec. 1987. Cited
on page 160.

Gray, J. N., “Notes on Database Operating Systems,” Vol. 60, pp. 393-481, inOperat-
ing Systems: an Advanced Course, Lecture Notes in Computer Science, Springer
Verlag, New York, 1978. Cited on page 142.

Grimshaw, A. S., “The Mentat Run-Time System: Support for Medium Grain Parallel
Computing,”Proc. Fifth Distributed Memory Computing Conference, pp. 1064-
1073, Charleston, SC, Apr., 1990. Cited on page 123.

Gueth, R., Kriz, J., and Zueger, S., “Broadcasting Source-Addressed Messages,”Proc.
Fifth International Conference on Distributed Computing Systems, pp. 108-115,
Denver, CO, 1985. Cited on page 45.

References 183

Hariri, S., Choudhary, A., and Sarikaya, B., “Architectural Support for Designing
Fault-Tolerant Open Distributed Systems,”IEEE Computer, Vol. 25, No. 6, pp.
50-61, June 1992. Cited on pages 143, 156.

Hisgen, A., Birrell, A. D., Jerian, C., Mann, T., Schroeder, M., and Swart, C., “Granu-
larity and Semantic Level of Replication in the Echo Distributed File System,”
IEEE TCOS Newsletter, Vol. 4, No. 3, pp. 30-32, 1990. Cited on page 159.

Hoare, C. A. R., “The Emperor’s Old Clothes,”Commun. ACM, Vol. 24, No. 2, pp.
75-83, Feb. 1981. Cited on page 100.

Hughes, L., “A Multicast Interface for UNIX 4.3,”Software−Practice and Experience,
Vol. 18, No. 1, pp. 15-27, Jan. 1988. Cited on page 45.

Hughes, L., “Multicast Response Handling Taxonomy,”Computer Communications,
Vol. 12, No. 1, pp. 39-46, Feb. 1989. Cited on page 46.

Hutto, P. W. and Ahamad, M., “Slow Memory: Weakening Consistency to Enhance
Concurrency in Distributed Shared Memories,”Proc. Tenth International
Conference on Distributed Computing Systems, pp. 302-309, Paris, May 1990.
Cited on page 125.

Ioannidis, J., Duchamp, D., and Maguire Jr., G. Q., “IP-based Protocols for Mobile
Internetworking,” Proc. SIGCOMM 91 Conference on Communications Archi-
tectures and Protocols, pp. 235-245, Z¨urich, Switserland, Sep. 1991. Cited on
page 41.

Jenq, J.-F. and Sahni, S., “All Pairs Shortest Paths on a Hypercube Multiprocessor,”
Proc. 1987 International Conference on Parallel Processing, pp. 713-716, St.
Charles, IL, Aug. 1987. Cited on page 114.

Jeremiassen, T. E. and Eggers, S. J., “Computing Per-Process Summary Side-Effect
Information,” Fifth Workshop on Languages and Compilers for Parallel Comput-
ing, pp. 115-122, New Haven, CT, Aug. 1992. Cited on page 107.

Johnson, D. B., “Distributed System Fault Tolerance Using Message Logging and
Checkpointing,” TR89-101 (Ph.D. thesis), Rice University, Dec. 1989. Cited on
pages 10, 131, 138, 139.

Johnson, D. B. and Zwaenepoel, W., “The Peregrine High-Performance RPC System,”
TR91-151, Rice University, Mar. 1991. Cited on page 37.

Joseph, T. A. and Birman, K. P., “Low Cost Management of Replicated Data in Fault-
Tolerant Systems,”ACM Trans. Comp. Syst., Vol. 4, No. 1, pp. 54-70, Feb. 1986.
Cited on page 4.

Jul, E., Levy, H. M., Hutchinson, N., and Black, A., “Fine-Grained Mobility in the
Emerald System,”ACM Trans. Comp. Syst., Vol. 6, No. 1, pp. 109-133, Feb.
1988. Cited on pages 109, 123.

184 References

Kaashoek, M. F., Bal, H. E., and Tanenbaum, A. S., “Experience with the Distributed
Data Structure Paradigm in Linda,”Proc. First USENIX/SERC Workshop on
Experience with Building Distributed and Multiprocessor Systems, pp. 171-191,
Ft. Lauderdale, FL, Oct. 1989. Cited on page 124.

Kaashoek, M. F., Michiels, R., Bal, H. E., and Tanenbaum, A. S., “Transparent Fault-
Tolerance in Parallel Orca Programs,”Proc. Symposium on Experiences with
Distributed and Multiprocessor Systems III, pp. 297-312, Newport Beach, CA,
Mar. 1992a. Cited on page 161.

Kaashoek, M. F. and Tanenbaum, A. S., “Fault Tolerance Using Group Communica-
tion,” Proc. Fourth ACM SIGOPS European Workshop, Bologna, Italy, Sep.
1990. Cited on page 138. (Also published in Operating Systems Review, Vol.
25, No. 2)

Kaashoek, M. F. and Tanenbaum, A. S., “Group Communication in the Amoeba Distri-
buted Operating System,”Proc. Eleventh International Conference on Distri-
buted Computing Systems, pp. 222-230, Arlington, TX, May 1991. Cited on
page 86.

Kaashoek, M. F., Tanenbaum, A. S., Flynn Hummel, S., and Bal, H. E., “An Efficient
Reliable Broadcast Protocol,”Operating Systems Review, Vol. 23, No. 4, pp. 5-
20, Oct. 1989. Cited on page 86.

Kaashoek, M. F., Tanenbaum, A. S., and Verstoep, K., “An Experimental Comparison
of Remote Procedure Call and Group Communication,”Proc. Fifth ACM
SIGOPS European Workshop, Le Mont Saint-Michel, France, Sep. 1992b. Cited
on page 161.

Karp, A. H., “Programming for Parallelism,”IEEE Computer, Vol. 20, No. 5, pp. 43-
57, May 1987. Cited on page 123.

Keleher, P., Cox, A. L., and Zwaenepoel, W., “Lazy Release Consistency for Software
Distributed Shared Memory,”Proc. Nineteenth Annual Symposium on Computer
Architecture, pp. 13-21, Cold Coast, Australia, May 1992. Cited on page 96.

Knuth, D. E. and Moore, R. W., “An Analysis of Alpha-Beta Pruning,”Artificial Intel-
ligence, Vol. 6, pp. 293-326, 1975. Cited on page 7.

Koelbel, C., Mehrotra, P., and Van Rosendale, J., “Supporting Shared Data Structures
on Distributed Memory Architectures,”Proc. Second Symposium on Principles
and Practice of Parallel Programming, pp. 177-186, Seattle, WA, Mar. 1990.
Cited on page 123.

Koo, R. and Toueg, S., “Checkpointing and Roll-Back Recovery for Distributed Sys-
tems,” IEEE Trans. on Soft. Eng., Vol. 13, No. 1, pp. 23-31, Jan. 1987. Cited on
pages 132, 138.

References 185

Kung, H. T., “Gigabit Local Area Networks: a Systems Perspective,”IEEE Communi-
cations Magazine, Vol. 30, No. 4, pp. 79-89, Apr. 1992. Cited on page 5.

LaRowe Jr., R. P., Ellis, C. S., and Kaplan, L. S., “The Robustness of NUMA Memory
Management,”Proc. Thirteenth Symposium on Operating System Principles, pp.
137-151, Pacific Grove, CA, Oct. 1991. Cited on page 95.

Lamport, L., “How To Make a Multiprocessor Computer that Correctly Executes Mul-
tiprocess Programs,”IEEE Trans. on Computers, Vol. 28, No. 9, pp. 690-691,
Sep. 1979. Cited on pages 88, 89.

Lampson, B. W., “Atomic Transactions,” pp. 246-265, inDistributed Systems - Archi-
tecture and Implementation, Lecture and Notes in Computer Science, Springer
Verlag, Berlin, 1981. Cited on page 142.

Lampson, B. W., “Designing a Global Name Service,”Proc. Fifth Annual Symposium
on Principles of Distributed Computing, pp. 1-10, Calgary, Canada, Aug. 1986.
Cited on page 142.

Lawler, E. L. and Wood, D. E., “Branch-and-Bound Methods: a Survey,”Operations
Research, Vol. 14, No. 4, pp. 699-719, July 1966. Cited on page 7.

Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W., Gupta, A., Hennessy, J.,
Horowitz, M., and Lam, M. S., “The Stanford Dash Multiprocessor,”IEEE Com-
puter, Vol. 25, No. 3, pp. 63-79, Mar. 1992. Cited on pages 95, 96, 125.

Levelt, W. G., Kaashoek, M. F., Bal, H. E., and Tanenbaum, A. S., “A Comparison of
Two Paradigms for Distributed Shared Memory,”Software−Practice and
Experience, 1992. Cited on pages 7, 125. (accepted for publication)

Li, K. and Hudak, P., “Memory Coherence in Shared Virtual Memory Systems,”ACM
Trans. Comp. Syst., Vol. 7, No. 4, pp. 321-359, Nov. 1989. Cited on pages 9, 95,
124, 125.

Li, K., Naughton, J. F., and Plank, J. S., “Real-Time, Concurrent Checkpoint for Paral-
lel Programs,”Proc. Second Symposium on Principles and Practice of Parallel
Programming, pp. 79-88, Seattle, WA, Mar. 1990. Cited on page 139.

Li, K., Naughton, J. F., and Plank, J. S., “Checkpointing Multicomputer Applications,”
Proc. Tenth Symposium on Reliable Distributed Systems, pp. 1-10, Bologna,
Italy, Oct. 1991. Cited on page 138.

Liang, L., Chanson, S. T., and Neufeld, G. W., “Process Groups and Group Communi-
cation: Classification and Requirements,”IEEE Computer, Vol. 23, No. 2, pp.
56-68, Feb. 1990. Cited on pages 4, 45, 46.

Liskov, B., “Distributed Programming in Argus,”Commun. ACM, Vol. 31, No. 3, pp.
300-312, Mar. 1988. Cited on pages 10, 137.

186 References

Liskov, B., Ghemawat, S., Gruber, R., Johnson, P., Shrira, L., and Williams, M.,
“Replication in the Harp File System,”Proc. Thirteenth Symposium on Operat-
ing System Principles, pp. 226-238, Pacific Grove, CA, Oct. 1991. Cited on
pages 156, 159.

Liskov, B. and Scheifler, R. W., “Guardians and Actions: Linguistic Support for
Robust, Distributed Programs,”ACM Trans. Prog. Lang. Syst., Vol. 5, No. 3, pp.
381-404, July 1983. Cited on page 137.

Luan, S. W. and Gligor, V. D., “A Fault-Tolerant Protocol for Atomic Broadcast,”
IEEE Trans. Parallel and Distributed Systems, Vol. 1, No. 3, pp. 271-285, July
1990. Cited on page 82.

Lucco, S. E., “A Heuristic Linda Kernel for Hypercube Multiprocessors,”Conf. on
Hypercube Multiprocessors, pp. 32-38, 1987. Cited on page 124.

Marzullo, K. and Schmuck, F., “Supplying High Availability with a Standard Network
File System,”Proc. Eighth International Conference on Distributed Computing
Systems, pp. 447-453, San Jose, CA, June 1988. Cited on page 159.

Melliar-Smith, P. M., Moser, L. E., and Agrawala, V., “Broadcast Protocols for Distri-
buted Systems,”IEEE Trans. Parallel and Distributed Systems, Vol. 1, No. 1, pp.
17-25, Jan. 1990. Cited on page 82.

Minnich, R. G. and Farber, D. J., “Reducing Host Load, Network Contention, and
Latency in a Distributed Shared Memory System,”Proc. Tenth International
Conference on Distributed Computing Systems, pp. 468-475, Paris, May 1990.
Cited on pages 96, 125.

Mishra, S., Peterson, L. L., and Schlichting, R. D., “Implementing Fault-Tolerant
Replicated Objects Using Psync,”Proc. Eighth Symposium on Reliable Distri-
buted Systems, pp. 42-52, Seattle, WA, Oct. 1989. Cited on page 160.

Montgomery, W. A., “Robust Concurrency Control for a Distributed Information Sys-
tem,” MIT/LCS/TR-207 (Ph.D. thesis), M.I.T., Cambridge, MA, Dec. 1978.
Cited on page 83.

Mullender, S. J., “Principles of Distributed Operating System Design,” Ph.D. Thesis,
Vrije Universiteit, Amsterdam, 1985. Cited on page 10.

Mullender, S. J., Van Rossum, G., Tanenbaum, A. S., Van Renesse, R., and Van
Staveren, H., “Amoeba: a Distributed Operating System for the 1990s,”IEEE
Computer, Vol. 23, No. 5, pp. 44-53, May 1990. Cited on pages 10, 18.

National Bureau of Standards, “Data Encryption Standard,” Fed. Inf. Process. Stand.
Publ. 46, Jan. 1977. Cited on page 23.

References 187

Navaratnam, S., Chanson, S., and Neufeld, G., “Reliable Group Communication in Dis-
tributed Systems,”Proc. Eighth International Conference on Distributed Com-
puting Systems, pp. 439-446, San Jose, CA, June 1988. Cited on page 83.

Nitzberg, B. and Lo, V., “Distributed Shared Memory: a Survey of Issues and Algo-
rithms,” IEEE Computer, Vol. 24, No. 8, pp. 52-60, Aug. 1991. Cited on page 9.

Ousterhout, J. K., Cherenson, A. R., Douglis, F., Nelson, M. N., and Welch, B. B.,
“The Sprite Network Operating System,”IEEE Computer, Vol. 21, No. 2, pp.
23-36, Feb. 1988. Cited on page 18.

Peterson, L. L., Buchholtz, N. C., and Schlichting, R. D., “Preserving and Using Con-
text Information in IPC,”ACM Trans. Comp. Syst., Vol. 7, No. 3, pp. 217-246,
Aug. 1989. Cited on pages 9, 83, 160.

Plummer, D. C., “An Ethernet Address Resolution Protocol,” RFC 826, SRI Network
Information Center, Nov. 1982. Cited on page 6.

Postel, J., “Internet Protocol,” RFC 791, SRI Network Information Center, Sep. 1981a.
Cited on pages 6, 41.

Postel, J., “Internet Control Message Protocol,” RFC 792, SRI Network Information
Center, Sep. 1981b. Cited on pages 6, 41.

Powell, M. L. and Presotto, D. L., “Publishing: a Reliable Broadcast Communication
Mechanism,”Proc. Ninth Symposium on Operating System Principles, pp. 100-
109, Bretton Woods, NH, Oct. 1983. Cited on page 131.

Ramachandran, U., Ahamad, M., and Khalidi, M. Y., “Coherence of Distributed Shared
Memory: Unifying Synchronization and Data Transfer,”Proc. 1989 Interna-
tional Conference on Parallel Processing, Vol. 2, pp. 160-169, St. Charles, IL,
Aug. 1989. Cited on page 95.

Rogers, A. and Pingali, K., “Process Decomposition Through Locality of Reference,”
Proc. SIGPLAN 89 Conf. on Programming Language Design and Implementa-
tion, pp. 69-80, Portland, OR, July 1989. Cited on page 123.

Rosing, M., Schnabel, R., and Weaver, R., “The DINO parallel programming
language,”Journal of Parallel and Distributed Computing, Vol. 13, pp. 30-42,
1991. Cited on page 123.

Rozier, M., Abrossimov, V., Armand, F., Boule, I., Gien, M., Guillemont, M.,
Herrmann, F., Kaiser, C., Langlois, S., Leonard, P., and Neuhauser, W., “Chorus
Distributed Operating System,”Computing Systems, Vol. 1, No. 4, pp. 305-370,
1988. Cited on pages 18, 45.

Saltzer, J. H., Reed, D. P., and Clark, D. D., “End-to-End Arguments in System
Design,”ACM Trans. Comp. Syst., Vol. 2, No. 4, pp. 277-288, Nov. 1984. Cited
on page 24.

188 References

Satyanarayanan, M., “Scalable, Secure, and Highly Available Distributed File Access,”
IEEE Computer, Vol. 23, No. 5, pp. 9-22, May 1990. Cited on page 159.

Satyanarayanan, M. and Siegel, E. H., “Parallel Communication in a Large Distributed
Environment,” IEEE Trans. on Computers, Vol. 39, No. 3, pp. 328-348, Mar.
1990. Cited on pages 84, 159.

Saunders, R. M. and Weaver, A. C., “The Xpress Transfer Protocol (XTP) - A
Tutorial,” Computer Communication Review, Vol. 20, No. 5, pp. 67-80, Oct.
1990. Cited on page 37.

Schroeder, M. D., Birrell, A. D., and Needham, R. M., “Experience with Grapevine:
The Growth of a Distributed System,”ACM Trans. Comp. Syst., Vol. 2, No. 1,
pp. 3-23, Feb. 1984. Cited on page 142.

Schwan, K., Blake, B., Bo, W., and Gawkowski, J., “Global Data and Control in Multi-
computers: Operating System Primitives and Experimentation with a Parallel
Branch-and-Bound Algorithm,”Concurrency−Practice and Experience, Vol. 1,
No. 2, pp. 191-218, Dec. 1989. Cited on page 96.

Shrivastava, S. K., Ezhilchelvan, P. D., Speirs, N. A., Tao, S., and Tully, A., “Principal
Features of the VOLTAN Family of Reliable Node Architectures for Distributed
Systems,”IEEE Trans. on Computers, Vol. 41, No. 5, pp. 542-549, May 1992.
Cited on page 143.

Sistla, A. P. and Welch, J. L., “Efficient Distributed Recovery Using Message Log-
ging,” Proc. Eighth Annual Symposium on Principles of Distributed Computing,
pp. 223-238, Edmonton, Alberta, Aug. 1989. Cited on page 138.

Skeen, D., “Determining the Last Process to Fail,”ACM Trans. Comp. Syst., Vol. 3,
No. 1, pp. 15-30, Feb. 1985. Cited on pages 148, 153.

Spafford, E. H., “The Internet Worm: Crisis and Aftermath,”Commun. ACM, Vol. 32,
No. 6, pp. 678-688, June 1989. Cited on page 35.

Spector, A. Z., Pausch, R., and Bruell, G., “Camelot: a Flexible, Distributed Trans-
action Processing System,”Proc. CompCon 88, pp. 432-439, San Francisco, CA,
Feb. 1988. Cited on page 10.

Stoer, J. and Bulirsch, R., “Introduction to Numerical Analysis,” Springer-Verlag, New
York, NY, 1983. Cited on pages 7, 104.

Strom, R. E. and Yemini, S., “Optimistic Recovery in Distributed Systems,”ACM
Trans. Comp. Syst., Vol. 3, No. 3, pp. 204-226, Aug. 1985. Cited on pages 10,
131, 138.

Strom, R. E. and Yemini, S., “Typestate: a Programming Language Concept for
Enhancing Software Reliability,”IEEE Trans. on Soft. Eng., Vol. 12, No. 1, pp.
157-171, Jan. 1986. Cited on page 100.

References 189

Stumm, M. and Zhou, S., “Algorithms for Implementing Distributed Shared Memory,”
IEEE Computer, Vol. 23, No. 5, pp. 54-64, May 1990. Cited on page 122.

Swan, R. J., Fuller, S. H., and Siewiorek, D. P., “Cm* - A Modular, Multimicroproces-
sor System,”Proc. Nat. Comp. Conf., pp. 645-655, 1977. Cited on page 94.

Tanenbaum, A. S., “Computer Networks 2nd ed.,” Prentice-Hall, Englewood Cliffs,
NJ, 1989. Cited on pages 5, 72.

Tanenbaum, A. S., “Modern Operating Systems,” Prentice-Hall, Englewood Cliffs, NJ,
1992. Cited on pages 2, 15.

Tanenbaum, A. S., Kaashoek, M. F., and Bal, H. E., “Parallel Programming Using
Shared Objects and Broadcasting,”IEEE Computer, Vol. 25, No. 8, pp. 10-19,
Aug. 1992. Cited on pages 86, 127.

Tanenbaum, A. S., Kaashoek, M. F., Van Renesse, R., and Bal, H. E., “The Amoeba
Distributed Operating System - a Status Report,”Computer Communications,
Vol. 14, No. 6, pp. 324-335, Aug. 1991. Cited on page 15.

Tanenbaum, A. S., Mullender, S. J., and Van Renesse, R., “Using Sparse Capabilities
in a Distributed Operating System,”Proc. Sixth International Conference on Dis-
tributed Computing Systems, pp. 558-563, Cambridge, MA, May 1986. Cited on
page 13.

Tanenbaum, A. S., Van Renesse, R., Van Staveren, H., Sharp, G., Mullender, S. J., Jan-
sen, A., and Van Rossum, G., “Experiences with the Amoeba Distributed Operat-
ing System,”Commun. ACM, Vol. 33, No. 12, pp. 46-63, Dec. 1990. Cited on
pages 10, 18, 37.

Tseung, L. C. N. and Yu, K-C., “The implementation of Guaranteed, Reliable, Secure
Broadcast Networks,”1990 ACM Eighteenth Annual Computer Science Confer-
ence, pp. 259-266, Washington D.C., Feb. 1990. Cited on page 83.

Van Renesse, R., “The Functional Processing Model,” Ph.D. Thesis, Vrije Universiteit,
Amsterdam, 1989. Cited on pages 10, 15, 141−143, 161.

Van Renesse, R., Tanenbaum, A. S., Van Staveren, H., and Hall, J., “Connecting RPC-
based Distributed Systems Using Wide-area Networks,”Proc. Seventh Interna-
tional Conference on Distributed Computing Systems, pp. 28-34, Berlin, Sep.
1987. Cited on page 35.

Van Renesse, R., Tanenbaum, A. S., and Wilschut, A., “The Design of a High-
Performance File Server,”Proc. Ninth International Conference on Distributed
Computing Systems, pp. 22-27, Newport Beach, CA, June 1989. Cited on page
132.

190 References

Verissimo, P., Rodrigues, L., and Baptista, M., “AMp: a Highly Parallel Atomic Multi-
cast Protocol,”Proc. SIGCOMM 89, pp. 83-93, Austin, TX, Sep. 1989. Cited on
page 84.

Vishnubhotla, P., “Synchronization and Scheduling in the ALPS Objects,”Proc. Eighth
International Conference on Distributed Computing Systems, pp. 256-264, San
Jose, CA, June 1988. Cited on page 123.

Weihl, W. and Liskov, B., “Implementation of Resilient, Atomic Data Types,”ACM
Trans. Prog. Lang. Syst., Vol. 7, No. 2, pp. 244-269, Apr. 1985. Cited on page
137.

Wilson, A. W., “Hierarchical Cache/Bus Architecture for Shared Memory Multiproces-
sors,”Proc. Fourteenth Annual International Symposium on Computer Architec-
ture, pp. 244-252, Pittsburgh, PA, June 1987. Cited on page 95.

Wood, M. D., “Replicated RPC Using Amoeba Closed Group Communication,” IR-
306, Vrije Universiteit, Amsterdam, Oct. 1992. Cited on page 84.

Wu, K-L. and Fuchs, W. K., “Recoverable Distributed Shared Virtual Memory,”IEEE
Trans. on Computers, Vol. 39, No. 4, pp. 460-469, Apr. 1990. Cited on page
139.

Xu, A. S., “A Fault-tolerant Network Kernel for Linda,” TR-424, M.I.T., Cambridge,
MA, Aug. 1988. Cited on page 138.

Young, M., Tevenian, A., Rashid, R., Golub, D., Eppinger, J., Chew, J., Bolosky, W.,
Black, D., and Baron, R., “Duality of Memory and Communication in the Inple-
mentation of a Multiprocessor Operating System,”Proc. Eleventh on Operating
Systems Principles, pp. 63-67, Austin, TX, Nov. 1987. Cited on page 74.

Zimmerman, H., “OSI Reference Model - The ISO Model of Architecture for Open
Systems Interconnection,”IEEE Trans. on Communications, Vol. 28, No. 4, pp.
425-432, Apr. 1980. Cited on pages 16, 37.

Zwaenepoel, W., “Protocols for Large Data Transfers over Local Networks,”Proc.
Ninth Data Communications Symposium, pp. 22-32, Whistler Mountain, Canada,
Sep. 1985. Cited on page 36.

References 191

Index

A
Accessible copies, 148
ALPS, 123
Amber, 123
Amoeba, 10
Amoeba process descriptor, 133
ARP, 6
ASP, 114
At-most-once remote procedure call, 32

B
BB method, 57
Bcastreq, 65
Blocking send, 92
Boot server, 131
Broadcasting, 5, 6
Broadcasting Sequential Processes, 122
Broadcastreceive, 66
Bullet server, 132
Bus-based multicomputer, 91
Bus-based multiprocessor, 89

C
Capability, 13, 32
Causal ordering, 46
Check field, 13, 144
Checkpoint, 132
Closed group, 46, 50
Cm*, 94
Coda, 159
Commit block, 144, 149

Configuration vector, 149
Copy mode, 144
CreateGroup, 51
Crossbar switch, 90

D
Delivery semantics, 46
DES, 23
Directory, 141
Directory service, 32, 141, 167
Distributed operating system, 2
Distributed shared memory, 9, 93, 122
Distributed shared memory (DSM), 7
Distributed system, 1
Distributed system requirements, 17
Duplication protocol, 145
Dynamic group, 46

E
Echo, 159
Emerald, 123
EP-identifier, 23

F
Fault tolerance, 3
Fault-tolerant application, 10, 167
FIFO ordering, 46
FLIP, 6, 16, 163
FLIP address, 20
FLIP box, 21
FLIP header, 24

192

FLIP interface, 22
FLIP packet switch, 21
FLIP routing table, 26
ForwardRequest, 54
Fragment, 20
Functional specialization, 3

G
Gax, 131, 133
Geographically distributed application, 4
GetInfoGroup, 54
Globally-consistent checkpoint, 132,

167
Group addressing, 45
Group communication, 6, 18, 163, 165
Group descriptor, 51
Group primitives, 51
Group structure, 46

H
Harp, 159
Hopcnt, 23, 24
Hypercube, 1, 92

I
ICMP, 6
IGMP, 6
Initiator, 150
Intentions list, 145
Internetwork, 16
Invitation protocol, 70
IP, 6, 16, 41
Isis, 9, 47, 79, 140

J
JoinGroup, 52

L
LeaveGroup, 53
Linda, 122, 124

M

Mailbox, 93
Memory coherence, 88, 89
Mentat, 123
Mether, 96
Microkernel, 12
Mourned set, 153
Multicasting, 5, 6
Multicomputers, 91
Multiprocessors, 88
Munin, 96

N
Negative acknowledgement scheme, 49,

165
Network management, 19, 34, 164
Network operating system, 2
Network service access point (NSAP),

20
Network weight, 26
Nonblocking send, 92
NonUniform Memory Access Machines

(NUMA), 93
NonVolatile RAM (NVRAM), 155

O
Object field, 13, 144
Object manager, 102
Object-based NUMA, 95
Omega network, 90
One-copy mode, 144
One-copy serializability, 142
One-way function, 13, 23
Open group, 46
Operation descriptor, 101
Optimistic recovery, 131
Optimum computing interval, 137
Orca, 88, 98
Order, 5
Ordering, 45
OSI model, 16
Overlapping groups, 47
Owner capability, 13, 133

Index 193

P
Packet, 20
Page-oriented NUMA, 94
Parallel application, 3, 166
Partial replication, 122
PB method, 57
Pingpong program, 136
Port, 13, 32, 48
Port cache, 32, 156
Positive acknowledgement scheme, 49,

165
Primary copy protocol, 159
Primary server, 159
Private address, 22
Process descriptor, 105
Processhist, 66
Processor pool, 10
Processrec, 68
Psync, 9, 160
Public address, 23

R
RARP, 6
ReceiveFromGroup, 53, 62
Recovery protocol, 70
Release consistency, 96
Reliability, 45
Remote Procedure Call (RPC), 4, 18, 32,

93, 163
ResetGroup, 53
Resilience degree, 53
Response semantics, 46
Roll back, 132, 167

S
Score, 105
Secondary server, 159
Security, 19, 34, 164
SendToGroup, 53, 63
Sequencer, 49, 55, 165
Sequentially consistent, 88
Shared data-object model, 7, 97, 166

Shared Virtual Memory, 124, 125
Snoopy cache, 89
SOR, 117
SR, 122
Stale value, 89
Static group, 46
Stun signal, 133
Synchronization, 91

T
TCP, 16
Total ordering, 46, 53
Transparency, 18, 163
TSP, 110
Tuple Space, 124
Two-copy mode, 144

U
UDP, 16

V
V, 9, 47, 82
VMTP, 7, 41

W
Weak ordering, 96, 125
Wide-area network, 1, 19, 35, 164
Word-oriented NUMA, 94

194 Index

Curriculum Vitae

Name: M. Frans Kaashoek

Date of birth: April 4, 1965

Place of birth: Leiden, The Netherlands

Nationality: Dutch

Email: kaashoek@cs.vu.nl

Education

Sept ’77 - Aug ’83Secondary
school

Eerste Christelijk Lyceum, Haarlem, The
Netherlands.

University Sept ’83 - Dec ’88 Vrije Universiteit, Amsterdam, The Nether-
lands. Master degree (with honors).

Dec ’88 - Dec ’92 Vrije Universiteit, Amsterdam, The Nether-
lands. Ph.D. student in Computer Systems.
Supervisor: A.S. Tanenbaum.

Work experience

Fall semester ’85 - Dec ’88: Teaching assistant for the courses ‘‘Introduction to Pro-
gramming,’’ ‘‘Data Structures,’’ and ‘‘Compiler Construction.’’

Fall semester ’87 - Dec ’88: Research assistant on the Amsterdam Compiler Kit.

Dec ’88 - Dec ’92 : Teaching assistant for the courses ‘‘Compiler Construction,’’
‘‘Operating Systems,’’ ‘‘Computer Networks,’’ and ‘‘Distributed Operating Sys-
tems.’’

195

Publications (refereed)

1. Kaashoek, M.F., van Renesse, R., van Staveren, H., and Tanenbaum, A.S., ‘‘FLIP:
an Internetwork Protocol for Supporting Distributed Systems,’’ACM Trans. Comp.
Syst.(accepted for publication)

2. Levelt, W.G., Kaashoek, M.F., Bal, H.E., and Tanenbaum, A.S., ‘‘A Comparison of
Two Paradigms for Distributed Shared Memory,’’Software−Practice and Experience.
(accepted for publication)

3. Tanenbaum, A.S., and Kaashoek, M.F., ‘‘The Amoeba Microkernel’’ inDistributed
Open Systems, Brazier and Johansen (eds).

4. Kaashoek, M.F., Tanenbaum, A.S., and Verstoep, K., ‘‘Group Communication in
Amoeba and its Applications,’’Proc. OpenForum 92, Utrecht, The Netherlands, Nov.
1992

5. Kaashoek, M.F., Tanenbaum, A.S., and Verstoep, K., ‘‘An Experimental Com-
parison of Remote Procedure Call and Group Communication,’’Proc. Fifth ACM
SIGOPS European Workshop, Le Mont Saint-Michel, France, Sept. 1992

6. Tanenbaum, A.S., Kaashoek, M.F., and Bal, H.E., ‘‘Parallel Programming Using
Shared Objects and Broadcasting,’’IEEE Computer, Vol. 25, No. 8, pp. 10-19, Aug.
1992.

7. Bal, H.E., Kaashoek, M.F., Tanenbaum, A.S., and Jansen, J., ‘‘Replication Tech-
niques for Speeding up Parallel Applications on Distributed Systems,’’
Concurrency−Practice and Experience, Vol. 4, No. 5, pp. 337-355, Aug. 1992.

8. Bal, H.E., Kaashoek, M.F., and Tanenbaum, A.S., ‘‘Orca: A language for Parallel
Programming of Distributed Systems,’’IEEE Trans. on Soft. Eng., Vol. 18, No. 3, pp.
190-205, Mar. 1992.

9. Kaashoek, M.F., Michiels, R., Bal, H.E., and Tanenbaum, A.S., ‘‘Transparent
Fault-tolerance in Parallel Orca Programs,’’Proc. Symposium on Experiences with Dis-
tributed and Multiprocessor Systems III, pp. 297-312, Newport Beach, CA, Mar. 1992.

10. Douglis, F., Kaashoek, M.F., Tanenbaum, A.S., and Ousterhout, J.K., ‘‘A Com-
parison of Two Distributed Systems: Amoeba and Sprite,’’Computing Systems, Vol. 4,
No. 3, pp. 353-384, Dec. 1991.

11. Tanenbaum, A.S., Kaashoek, M.F., van Renesse, R., and Bal, H.E., ‘‘The Amoeba

196 Curriculum Vitae

Distributed Operating System - a Status Report,’’Computer Communications, Vol. 14,
No. 6, pp. 324-335, Aug. 1991.

12. Bal, H.E., Kaashoek, M.F., and Tanenbaum, A.S., ‘‘Orca: a Language Based on
Shared Data-objects,’’Proc. EPCC Workshop on Linda-like Systems and Their Imple-
mentation, Edinburgh Parallel Computing Centre, University of Edinburgh, pp. 5-13,
Edinburgh, June 1991.

13. Kaashoek, M.F., and Tanenbaum, A.S., ‘‘Group Communication in the Amoeba
Distributed Operating System,’’Proc. Eleventh Internatinal Conference on Distributed
Computer Systems, IEEE Computer Society, pp. 222-230, Arlington, TX, May 1991.

14. Flynn Hummel, S., Tanenbaum, A.S., and Kaashoek, M.F., ‘‘A Scalable Object-
based Architecture,’’Second Workshop on Scalable Shared-Memory Multiprocessors,
Toronto, May 1991.

15. Bal, H.E., Kaashoek, M.F., and Tanenbaum, A.S., ‘‘Parallel Programming on
Amoeba,’’Proc. Sixth International Workshop on the Use of Supercomputers in
Theoretical Sciences, Plenum Press, pp. 89-105, Antwerpen, Belgium, Jan. 1991.

16. Kaashoek, M.F., and Tanenbaum, A.S., ‘‘Fault Tolerance Using Group Communi-
cation,’’ Proc. Fourth ACM SIGOPS European Workshop, Bologna, Italy, Sept. 1990.

17. Bal, H.E., Kaashoek, M.F., and Tanenbaum, A.S., ‘‘Experience with Distributed
Programming in Orca,’’Proc. 1990 International Conference on Computer Languages,
pp. 79-89, New Orleans, LA, Mar. 1990.

18. Kaashoek, M.F., Bal, H.E., and Tanenbaum, A.S., ‘‘Experience with the Distri-
buted Data Structure Paradigm in Linda,’’Proc. First USENIX/SERC Workshop on
Experience with Building Distributed and Multiprocessor Systems, pp. 171-191, Ft.
Lauderdale, FL, Oct. 1989.

19. Bal, H.E., Kaashoek, M.F., and Tanenbaum, A.S., ‘‘A Distributed Implementation
of the Shared Data-Object Model,’’Proc. First USENIX/SERC Workshop on Experi-
ences with Building Distributed and Multiprocessor Systems, pp. 1-19, Ft. Lauderdale,
FL, Oct. 1989.

Publications (submitted for publication)
20. Kaashoek, M.F., Tanenbaum, A.S., ‘‘Efficient Reliable Group Communication for
Distributed Systems,’’ IR-295, Vrije Universiteit, Amsterdam, June 1992.

21. Bal, H.E., and Kaashoek, M.F., ‘‘Optimizing Object Distribution in Orca by

Curriculum Vitae 197

Integrating Compile-Time and Run-Time Techniques,’’ IR-254 (revised), Vrije Univer-
siteit, Amsterdam, Sept. 1991.

22. Kaashoek, M.F., Tanenbaum, A.S., and Verstoep, K., Using Group Communica-
tion to Implement a Fault-Tolerant Directory Service,’’ IR-305, Vrije Universiteit,
Amsterdam, Oct. 1992.

Publications (unrefereed)
23. Bal, H.E., Tanenbaum, A.S., and Kaashoek, M.F., ‘‘Orca: A Language for Distri-
buted Programming,’’SIGPLAN Notices, Vol. 25, No. 5, pp. 17-25, May 1990.

24. Moergestel, L., Bal, H., Kaashoek, F., van Renesse, R., Sharp, G., van Staveren,
H., Tanenbaum, A.S., ‘‘Amoeba on a Multiprocessor,’’ IR-206, Vrije Universiteit,
Amsterdam, Dec. 1989.

25. Tanenbaum, A.S., Kaashoek, M.F., Langendoen, K.G., and Jacobs, C.J.H., ‘‘The
Design of Very Fast Portable Compilers,’’SIGPLAN Notices, Vol. 24, No. 11, pp.
125-132, Nov. 1989.

26. Kaashoek, M.F., Tanenbaum, A.S., Flynn Hummel, S., and Bal, H.E., ‘‘An Effi-
cient Reliable Broadcast Protocol,’’Operating Systems Review, Vol. 23, No. 4, pp. 5-
20, Oct. 1989.

27. Kaashoek, F., and Langendoen, K., ‘‘The Code Expander Generator,’’ IM-9, Vrije
Universiteit, Amsterdam, May 1988.

198 Curriculum Vitae

This page intentionally left blank.

Curriculum Vitae 199

This page intentionally left blank.

0 Curriculum Vitae

Contents

Acknowledgements iv

Samenvatting vi

1 INTRODUCTION 1

1.1 Applications for Distributed Computer Systems 3

1.2 Why Group Communication? 4

1.3 Problems and Solutions 6

1.4 Related Work 8

1.5 Experimental Environment: Amoeba 10

1.6 Outline of the Thesis 14

2 FAST LOCAL INTERNET PROTOCOL 16

2.1 Distributed System Requirements 17

2.2 Flip Service Definition 20

2.3 The Host Interface 22

2.4 The Flip Protocol 24
2.4.1 The FLIP Fragment Format 24
2.4.2 The FLIP Routing Protocol 26

2.5 Using Flip under Amoeba 30

2.6 Performance of FLIP 36

2.7 Discussion and Comparison 37
2.7.1 Discussion 39
2.7.2 Comparison 41

2.8 Conclusion 42

3 EFFICIENT RELIABLE GROUP
COMMUNICATION 44

i

3.1 Design Issues in Group Communication 45

3.2 Design Choices 47

3.3 Group Primitives in Amoeba 51

3.4 The Broadcast Protocol 54
3.4.1 Basic Protocol 56
3.4.2 Protocol during Normal Operation 60
3.4.3 Protocol for Recovery 70

3.5 Performance 72

3.6 Comparison with Related Work 78

3.7 Conclusion 85

4 PARALLEL PROGRAMMING USING BROAD-
CASTING AND SHARED OBJECTS 87

4.1 Architectures for Parallel Programming 88
4.1.1 Multiprocessors 88
4.1.2 Multicomputers 91

4.2 NUMA Machines 93

4.3 The Shared Data-Object Model 97

4.4 Orca Programs 98
4.4.1 The Language 98
4.4.2 The Interface between the Compiler and the Run-Time

System 100

4.5 Object Management 101

4.6 Optimized Object Management 103

4.7 The Optimizing Compiler and Run-Time System 106
4.7.1 The Optimizing Compiler 106
4.7.2 The Optimizing Run-Time System 107

4.8 Example Applications and Their Performance 109
4.8.1 The Traveling Salesman Problem 110
4.8.2 The All-Pairs Shortest Paths Problem 114
4.8.3 Successive Overrelaxation 117

4.9 Comparison with Related Work 120

4.10 Conclusion 126

ii Contents

5 FAULT-TOLERANT PROGRAMMING USING
BROADCASTING 128

5.1 Transparent Fault Tolerance in Parallel Orca Programs 129
5.1.1 Running Orca Programs under Amoeba 130
5.1.2 Designing a Fault-Tolerant RTS 131
5.1.3 Fault-Tolerant Implementation of Orca 133
5.1.4 Performance 135
5.1.5 Comparison with Related Work 137
5.1.6 Conclusion 140

5.2 A Fault-Tolerant Directory Service 140
5.2.1 Directory Service Based on RPC 143
5.2.2 Directory Service Based on Group

Communication 148
5.2.3 Experimental Comparison 154
5.2.4 Discussion and Comparison 157
5.2.5 Conclusion 160

5.3 Summary and Discussion 160

6 SUMMARY 162

6.1 Bottom Layer: FLIP 162

6.2 Middle Layer: Group Communication 165

6.3 Top Layer: Applications 166

6.4 Conclusion 168

Appendix A: the FLIP Protocol 169

Appendix B: Analysis of the Cost of a Checkpoint 174

References 176

Index 192

Curriculum Vitae 195

Contents iii

Acknowledgements

The classical paradigm of a student working single-handedly on his dissertation in an
ivory tower is not applicable to the way this thesis was done. Many people contributed
in various important ways. Without their help the present dissertation would have
never been written. To reflect the style in which the research was done, each chapter
ends with a short note giving the history of the results presented.

I am especially indebted to Andy Tanenbaum, my supervisor, who taught me my
first steps in Science. He created a very stimulating environment to work in, he taught
me how to write, how to discuss, and the importance of grant proposals and papers. He
gave me complete freedom in the search of a topic, but followed every single step care-
fully and provided me with suggestions and critical comments. I hope he considers me
a grown-up now.

I wish to thank my co-supervisor, Henri Bal. In addition to being a very fine per-
son to work with, Henri also undertook the unpleasant task of making sure that the
thesis writing was on schedule and of reading the very first draft of each chapter. His
eye for detail caught many errors and his suggestions for the organization of each
chapter have helped me in structuring the material presented.

I also wish to thank the external referee, Willy Zwaenepoel. By the time Willy
received a draft of the dissertation, many reviewers and people had commented on it.
Nevertheless, after he had read a chapter a long email message showed up in my mail-
box with comments on all aspects of my writing and the arguments that I had used. I
also wish to thank him for the advice that he has given me in the last couple of years on
the various problems that a Ph.D student encounters.

I am grateful to the many co-authors of various papers: Henri Bal, Fred Douglis,
Susan Flynn Hummel, Ceriel Jacobs, Jack Jansen, Koen Langendoen, Willem Levelt,
Raymond Michiels, John Ousterhout, Robbert van Renesse, Hans van Staveren, Andy
Tanenbaum, and Kees Verstoep. Most of the results in this thesis can be traced back to
one of these collaborative efforts. It was a pleasure to have the opportunity to work
with them.

Another group of excellent people who contributed in many ways to the results
presented in this dissertation is the VU Amoeba team. Although the delivery of the
Amoeba distribution and Greg’s TODO lists made life sometimes less pleasant (espe-
cially for Greg), it was great fun to be member of this team. I am very grateful for the
patience and the help that they provided while I installed and debugged the next version
of the kernel or FLIP driver. On the other hand, given the coffee that most members of

iv

the team drink, I am not surprised that they can stomach occasional kernel crashes. It
usually knocked me out for two weeks.

I wish to thank John Carter, Leendert van Doorn, Fred Douglis, Elmootazbellah
Nabil Elnozahy, Dick Grune, Philip Homburg, Ceriel Jacobs, Wiebren de Jonge, Koen
Langendoen, Robbert van Renesse, John Romein, Loek Schoenmaker, Greg Sharp,
Kees Verstoep, and Mark Wood for reading drafts of this dissertation. Their careful
reading and suggestions considerably improved it.

I also wish to thank the Department of Mathematics and Computer Science of the
Vrije Universiteit for providing support for carrying out the research. I am grateful for
their generous funding of the many trips, books, and computers. Also, special thanks to
the system administrators for doing an excellent job in maintaining a fantastic com-
puter infrastructure, even during evenings and weekends.

Thanks to my parents for their ever continuing guidance and financial support. I
am deeply indebted to them for everything they taught me.

Most of all I would like to thank Mathilde for all her strong and loving support.

Acknowledgements v

Samenvatting

Een gespreid computersysteem is een verzameling computers, verbonden door
één of meer datanetwerken. De computers in een gespreid systeem kunnen met elkaar
communiceren door via deze netwerken boodschappen te versturen. Een bedrijfssys-
teem voor een gespreid computersysteem heeft tot taak ervoor te zorgen dat gebruikers
er gemakkelijk op kunnen werken.

De meeste gespreide bedrijfssystemen bieden de programmeur communica-
tieprimitieven voor het sturen van een boodschap van ´eén proces naar precieséénander
proces. Veel programmatuur echter heeft baat bij communicatieprimitieven waarmee
men een boodschap van ´eén proces naarmeerdereprocessen tegelijkertijd kan sturen.
Dergelijke communicatieprimitieven worden groepscommunicatie-primitieven
genoemd. Deze dissertatie beschrijft het ontwerp, de implementatie, het gebruik en de
effectiviteit van een gespreid bedrijfssysteem dat gebaseerd is op groepscommunicatie.
Het onderzoek is praktisch van aard: alle gerapporteerde idee¨en zijn geïmplementeerd
als onderdeel van het gespreide systeem Amoeba en de meeste resultaten worden
dagelijks gebruikt.

Deze groepscommunicatie kan men eenvoudig realiseren door een primitieve te
maken die meerdere keren de bestaande communicatieprimitieve aanroept om een
boodschap van ´eén proces naar ´eén ander proces te sturen, maar deze methode is duur:
om een boodschap betrouwbaar naarn processen te sturen zijn 2(n − 1) netwerkpakket-
ten nodig. Een ander probleem met deze aanpak is dat boodschappen van verschillende
zenders niet geordend worden: als twee processen,A en B, n − 1 boodschappen
betrouwbaar versturen, dan kunnen sommige ontvangers eerst de boodschap vanA
ontvangen en dan de boodschap vanB, terwijl andere ontvangers de boodschappen in
omgekeerde volgorde kunnen ontvangen. Het ongeordend zijn van de boodschappen
bemoeilijkt het schrijven van gespreide programmatuur.

In deze dissertatie wordt een andere methode voor groepscommunicatie voor-
gesteld. Het hier beschreven systeem kan het best als een gelaagd model beschouwd
worden (zie figuur 1). De onderste laag biedt onbetrouwbare groepscommunicatie, de
middelste laag gebruikt de onbetrouwbare groepscommunicatie van de onderste laag
om betrouwbare en totaal geordende groepscommunicatie te implementeren en de
bovenste laag gebruikt de betrouwbare en totaal geordende groepscommunicatie van de
middelste laag om er gespreide programmatuur mee te implementeren. In deze samen-
vatting wordt de functionaliteit van elke laag kort samengevat en wordt aangegeven
hoe de geleverde functionaliteit bereikt wordt.

vi

222
3 Programmatuur (bv. parallelle programma’s of een foutbestendig opslagsysteem)222
2 groepscommunicatie222
1 Fast Local Internet Protocol (FLIP)22211

1
1
1

11
1
1
1

Figuur 1. Structuur van het systeem.

Onderste laag: FLIP
Bij veel datanetwerken kan men een boodschap onbetrouwbaar en ongeordend

van één naar meerdere computers sturen. De onderste laag stelt deze fysieke
broadcast- en multicast-faciliteiten van het netwerk beschikbaar voor hogere lagen.
Om dit op een nette en netwerk-onafhankelijke wijze te doen is een routeringsprotocol
nodig. In plaats van bestaande protocollen aan te passen presenteren we in hoofdstuk 2
een nieuw routeringsprotocol, genaamd Fast Local Internetwork Protocol (FLIP). De
reden voor deze keuze is, dat bestaande routeringsprotocollen niet voor gespreide syste-
men ontworpen zijn en dus niet aan alle eisen voldoen die door een gespreid computer-
systeem aan een routeringsprotocol gesteld worden.

In hoofdstuk 2 worden de volgende eisen geïdentificeerd: transparantie,
effici ënte communicatie van ´eén proces naar ´eén ander proces in de vorm van Remote
Procedure Call (RPC), groepscommunicatie, data-beveiliging, beheer van
datanetwerken en communicatie over wereldwijde datanetwerken. FLIP is een router-
ingsprotocol dat aan alle genoemde eisen voldoet of het mogelijk maakt voor een
gespreid bedrijfssysteem aan deze eisen te voldoen.

Als voorbeeld zullen we kort samenvatten hoe FLIP transparantie biedt. In
tegenstelling tot de adressen in de meeste andere routeringsprotocollen zijn FLIP-
adressenplaats-onafhankelijk: een FLIP-adres identificeert een proces of een groep van
processen en niet de computer, met het gevolg dat, als een proces van plaats verhuist,
het zijn eigen FLIP-adres kan behouden.

Men kan adressen in routeringsprotocollen goed vergelijken met telefoonnum-
mers. Als iemand verhuist naar een andere woonplaats, dan krijgt hij of zij een nieuw
telefoonnummer. Dit is echter buitengewoon onhandig: het zou wenselijk zijn dat
iemand zijn hele leven te bereiken is onder hetzelfde telefoonnummer, zodat iedereen
hem kan bereiken waar hij zich op dat gegeven moment ook bevindt. De meeste
routeringsprotocollen werken met adressen, zoals de PTT met telefoonnummers werkt:
ze zijn plaats-afhankelijk. FLIP-adressen daarentegen gedragen zich zoals telefoon-
nummers in de ideale situatie: ze zijn volkomen plaats-onafhankelijk.

De plaats-onafhankelijke adressen in FLIP worden geïmplementeerd door iedere
computer een algoritme voor dynamische routering te laten uitvoeren. Iedere computer
heeft een routetabel die bij elk FLIP-adres een verwijzing bevat naar een lokatie van
een computer. De verwijzingen zijnhints: ze zijn in de meeste gevallen correct, maar
er bestaat de mogelijkheid dat ze achterhaald en daardoor onbruikbaar zijn. FLIP
ontdekt automatisch of een hint achterhaald is, zoekt uit wat de juiste lokatie voor het

Samenvatting vii

desbetreffende adres is en slaat deze nieuwe gegevens op in de routetabel. Zolang een
proces niet verhuist en het netwerkenstelsel niet van configuratie verandert, zijn de
hints correct. Bij elke verandering van plaats of verandering in de configuratie kan een
hint onbruikbaar worden, maar over het algemeen zullen dergelijke veranderingen niet
zo vaak voorkomen.

Middelste laag: groepscommunicatie
De middelste laag zet de onbetrouwbare multicast-communicatie van FLIP om in

betrouwbare en totaal geordende groepscommunicatie. De primitieven voor groeps-
communicatie, beschreven in hoofdstuk 3, garanderen dat alle leden van ´eén groep alle
gebeurtenissen betreffende die groep in dezelfde volgorde waarnemen. De toetreding
van een nieuw lid tot de groep, het ontvangen van een boodschap gericht aan de groep
en het falen van ´eén van de leden worden door alle nog goed functionerende leden in
dezelfde volgorde waargenomen. De geleverde abstractie maakt het eenvoudig voor
programmeurs om gespreide programmatuur te schrijven.

Met deze primitieven voor groepscommunicatie kan de programmeur ook naar
believen efficiëntie inruilen voor foutbestendigheid. Een programmeur kan het systeem
vragen om te garanderen dat een boodschap correct afgeleverd wordt, zelfs wanneer
één of meer computers falen (d.w.z. onbruikbaar worden door een fout in de software
of hardware). Als de programmeur bijvoorbeeld een foutbestendigheidsgraad van 1
specificeert, zal het systeem garanderen dat alle goed-functionerende leden alle
boodschappen in dezelfde volgorde ontvangen, zelfs als ´eén van de leden van de groep
faalt. Deze eigenschap van het systeem vereenvoudigt het schrijven van foutbestendige
programmatuur.

Het protocol dat onbetrouwbare communicatie omzet in betrouwbare en totaal
geordende communicatie, is gebaseerd op eensequencer en een negative-
acknowledgement-schema. In een communicatieprotocol stuurt de ontvanger van een
boodschap vaak direct een ‘‘acknowledgement’’, een boodschap om te bevestigen dat
de eerste boodschap correct gearriveerd is. In een negative-acknowledgementschema
worden er geen acknowledgementpakketjes gestuurd, maar vraagt het protocol om
opnieuw een boodschap te sturen, zodra het ontdekt dat een computer een boodschap
gemist heeft. Aangezien de tegenwoordige datanetwerken zeer goed functioneren, zal
het niet vaak voorkomen dat een boodschap verloren gaat en levert een negative-
acknowledgementschema een besparing op in het aantal acknowledgementpakketten.

De totale ordening wordt gegarandeerd door ´eén sequencer per groep te hebben.
Deze sequencer is niet fundamenteel verschillend van de andere leden in de groep. Elk
lid kan sequencer worden, maar op elk moment is er maar ´eén sequencer; als de
sequencer faalt, kiezen de overige leden een nieuwe sequencer. In dit opzicht is de
sequencer te vergelijken met de voorzitter van een commissie: elke commissie heeft
één voorzitter en als deze niet aanwezig kan zijn, wordt er een nieuwe voorzitter
gekozen.

Met behulp van een sequencer kan eenvoudig een totale ordening gegarandeerd

viii Samenvatting

worden, en wel als volgt. Wanneer een lid een boodschap naar de groep wil sturen, dan
verstuurt hij deze naar de sequencer. De sequencer kent er het volgende ongebruikte
sequence nummeraan toe en stuurt de boodschap met sequence nummer naar de groep.
Met behulp van het nummer kunnen alle overige leden er altijd voor zorgen dat ze de
boodschappen die aan de groep gestuurd worden, in de totale ordening afleveren. Het
complete protocol is gecompliceerder, omdat er rekening gehouden moet worden met
het verlies van boodschappen en het falen van computers.

Het nadeel van een protocol met een sequencer zou kunnen zijn dat de sequencer
mogelijkerwijs de prestatie van het protocol beperkt, aangezien alle boodschappen via
de sequencer moeten gaan. In de praktijk blijkt dit mee te vallen. Ten eerste is er ´eén
sequencer per groep en niet ´eén voor het hele systeem en dus hoeven alleen de
boodschappen van ´eén groep behandeld te worden door een gegeven sequencer. Ten
tweede verricht de sequencer weinig werk: hij ontvangt de boodschap en stuurt de
boodschap meteen weer weg, voorzien van een sequence nummer. Metingen laten dan
ook zien dat de sequencer 815 boodschappen per seconde kan verwerken op standaard
hardware (een collectie van 20-Mhz MC68030’s verbonden door een 10 Mbit/s Ether-
net). We verwachten dat dit ruim voldoende is voor het ondersteunen van middelgrote
tot grote groepen. Het voordeel van een sequencer is dat het protocol voor totale
ordening er eenvoudig en effici ¨ent door wordt. Het betrouwbaar en totaal geordend
versturen van een boodschap naar een groep van 30 processen kost slechts 2.8 msec.
De prestatie van het protocol is daarmee beter dan die van enig ander soortgelijk proto-
col.

De bovenste laag: programmatuur
Het doel van de bovenste laag was om aan te tonen dat groepscommunicatie het

ontwikkelen van efficiënte gespreide programmatuur vereenvoudigt. In deze disserta-
tie zijn twee toepassingsgebieden bestudeerd: parallelle programmatuur en foutbesten-
dige programmatuur. We zullen beide hier kort behandelen.

Parallelle programmatuurHet doel van parallelle programmatuur is prestatieverbeter-
ing door meerdere computers tegelijkertijd te gebruiken. Er zijn grofweg twee soorten
computerarchitectuur waarop men parallelle programmatuur kan draaien: multiproces-
sors en gespreide systemen. Eenmultiprocessoris een verzameling computers die een
gemeenschappelijk geheugen delen; ze zijn gemakkelijk te programmeren, maar
moeilijk zo te bouwen dat ze voldoende effici ¨ent zijn. Gespreide systemen zijn
moeilijk te programmeren maar gemakkelijk te bouwen. In hoofdstuk 4 beschrijven we
hoe groepscommunicatie gebruikt kan worden om een model te implementeren dat de
voordelen van beide combineert. Dit model, hetshared-data-object-model, geeft de
programmeur de illusie dat hij of zij op een systeem met gemeenschappelijk geheugen
werkt, terwijl er in werkelijkheid geen fysiek gemeenschappelijk geheugen is. Het
kernprobleem bij het implementeren van het shared-data-object-model is het effici ¨ent
nabootsen van gemeenschappelijk geheugen door het versturen van zo weinig mogelijk

Samenvatting ix

boodschappen, aangezien deze laatste duur zijn vergeleken met het lezen van een
waarde uit het lokale geheugen.

In hoofdstuk 4 tonen we twee implementaties van het shared-data-object-model.
Bij de eenvoudigste implementatie wordt een gemeenschappelijk object in het lokale
geheugen van alle computers gerepliceerd. Leesoperaties op een gemeenschappelijk
object kunnen nu eenvoudig uitgevoerd worden door direct het lokale geheugen te
lezen, terwijl schrijfoperaties met behulp van groepscommunicatie naar alle computers
gestuurd worden die het parallelle programma uitvoeren. Aangezien de boodschappen
naar de groep betrouwbaar en totaal geordend verstuurd worden, blijven de copie¨en van
een gemeenschappelijk object consistent. Deze implementatie bevoordeelt leesopera-
ties boven schrijfoperaties, wat nuttig is omdat vele parallelle programma’s een hoge
lees/schrijf-ratio hebben.

Repliceren van gemeenschappelijke objecten is in het algemeen maar niet altijd
een goede strategie. De andere implementatie van het shared-data-object-model deelt
gemeenschappelijke objecten in in twee klassen: objecten die gerepliceerd moeten wor-
den (lees/schrijf ratio≥ 1) en objecten die niet gerepliceerd behoeven te worden
(lees/schrijf ratio< 1) en probeert objecten die niet gerepliceerd hoeven te worden op
die computer te plaatsen die de meeste operaties op dat object uitvoert. De processen
die op die computer draaien, kunnen de operaties nu uitvoeren door rechtstreeks het
lokale geheugen te gebruiken in plaats van door het versturen van boodschappen. Pro-
cessen die geen copie hebben, moeten een boodschap sturen naar de computer die het
object beheert.

Met behulp van drie parallelle programma’s, elk met een andere structuur, heb-
ben we aangetoond dat beide implementaties goede prestaties leveren. De eerste
implementatie is het meest effici ¨ent voor programmatuur die een gemeenschappelijk
object vaker leest dan schrijft of die een gemeenschappelijk object als een broadcast-
communicatiekanaal gebruikt, terwijl de tweede implementatie qua effici ¨entie de
voorkeer verdient voor programmatuur die een gemeenschappelijk object als punt-
naar-punt communicatiekanaal gebruikt.

Foutbestendige programmatuurHoofdstuk 5 richt zich op twee soorten foutbestendige
programmatuur: parallelle programmatuur en ‘‘normale’’ foutbestendige programma-
tuur. We bespreken elke soort apart.

In parallelle programmatuur wordt foutbestendigheid vaak genegeerd. Echter,
het belangrijkste doel van een parallel programma is het verkrijgen van hogere
effici ëntie door het gebruiken van meerdere computers tegelijkertijd. Maar door meer-
dere computers te gebruiken, stijgt ook de kans dat het programma niet succesvol ein-
digt doordatéén van de computers faalt. Opnieuw starten na zo’n fout is geen bevredi-
gende oplossing, aangezien parallelle programma’s vaak lang draaien.

Het eerste deel van hoofdstuk 5 laat zien dat de eerste implementatie van het
shared-data-object-model gemakkelijk en goedkoop foutbestendig gemaakt kan wor-
den. Dit gebeurt door periodiek de totale toestand van het programma op schijf op te

x Samenvatting

slaan en na een fout terug te gaan naar de laatst opgeslagen toestand. Deze aanpak
werkt goed voor programma’s die invoer lezen, onafgebroken rekenen en dan uitvoer
produceren, maar werkt niet goed voor programma’s die tussendoor invoer lezen of uit-
voer produceren, omdat het programma teruggerold kan worden, maar de invoer en uit-
voer niet.

De sleutel tot het foutbestendig maken van parallelle programmatuur is groeps-
communicatie. Aangezien de eerste implementatie van het shared-data-object-model
alleen totaal geordende groepscommunicatie gebruikt, is het mogelijk om de toestand
van het programma, die immers opgebouwd is uit de toestand van meerdere processen,
op te slaan zonder alle processen in het programma eerst stop te zetten. Periodiek
wordt er een boodschap naar de groep gestuurd die aangeeft dat de toestand opgeslagen
moet worden, bijvoorbeeld door deze naar schijf weg te schrijven. Aangezien alle pro-
cessen deze boodschap in dezelfde volgorde ontvangen, kunnen ze na ontvangst meteen
de toestand wegschrijven en vervolgens doorgaan met rekenen. De kosten van fout-
bestendigheid zijn dus gelijk aan de kosten van het sturen van een boodschap en het
wegschrijven van de toestand.

Een aantrekkelijke eigenschap van deze aanpak is dat de lengte van het interval
tussen het opslaan van toestanden wordt aangegeven door de programmeur, waardoor
deze de kosten van de foutbestendigheid zelf kan bepalen. Een kort interval maakt
foutbestendigheid relatief duur, maar de kosten voor het herstarten na een fout zijn laag
(er hoeft maar weinig werk opnieuw gedaan te worden). Door een lang interval te
kiezen, kunnen de kosten voor foutbestendigheid laag gehouden worden, maar als er
een fout optreedt, moet er veel werk opnieuw uitgevoerd worden.

In ‘‘normale’’ foutbestendige programmatuur kan groepscommunicatie ook heel
nuttig zijn. Om dit aan te tonen bespreken we in het tweede deel van hoofdstuk 5 twee
implementaties van een foutbestendig gegevensopslagsysteem: de ´ene werkt met punt-
naar-punt communicatie en de andere met groepscommunicatie. Het gekozen pro-
gramma is een voorbeeld van programmatuur die foutbestendigheid bereikt door
gegevens te repliceren op meerdere plaatsen.

Bij het vergelijken van de genoemde implementaties zijn twee aspecten van
belang: hoe effici ¨ent het programma is en hoe ingewikkeld de implementatie is. De
implementatie met behulp van groepscommunicatie is eenvoudiger en effici ¨enter dan
de implementatie met behulp van punt-naar-punt communicatie, terwijl de implementa-
tie gebaseerd op groepscommunicatie zelfs foutbestendiger is.

Conclusie
Door te laten zien dat betrouwbare en totaal geordende groepscommunicatie

effici ënt geïmplementeerd kan worden en door te laten zien dat groepscommunicatie
het programmeren van gespreide programmatuur vereenvoudigt, is een essentieel deel
van het bewijs geleverd voor de stelling dat gespreide systemen groepscommunicatie
behoren te verschaffen.

Samenvatting xi

