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Abstract— The problem of simultaneous localization
and mapping has received much attention over the last
years. Especially large scale environments, where the robot
trajectory loops back on itself, are a challenge. In this
paper we introduce a new solution to this problem of
closing the loop. Our algorithm is EM-based, but differs
from previous work. The key is a probability distribution
over partitions of feature tracks that is determined in
the E-step, based on the current estimate of the motion.
This virtual structure is then used in the M-step to
obtain a better estimate for the motion. We demonstrate
the success of our algorithm in experiments on real laser data.

Index Terms— loop closing, SLAM, localization, mapping

I. I NTRODUCTION

In this paper we present a novel method for “closing
the loop” when building large scale environment models
from long sequences of sensor data. When a sequence is
taken such that the robot trajectory turns back on itself, a
difficult problem arises of identifying which measurements
correspond to previously seen features of the environment.
An important insight is that this is essentially a model
selection problem: we are interested in estimating structure
and motion parameters from measurement data, but it is
unclear how many structure elements there are.

The problem is important because accumulated measure-
ment error poses an inherent limitation on the accuracy by
which environment models can be recovered. Identifying
which measurements have already been seen is essential
in order to obtain accurate, globally correct models. Any
incremental method that tracks features and instantiates
new tracks in the standard way will end up representing
the same environment features multiple times.

Many different algorithmic approaches to loop closing
have been proposed in the literature. It is common to
use some method for detecting loop closings, and then
spreading the error along the already created path. One
such method for loop detection is described in [9], where
sets of new measurements are globally correlated with the
map, which itself is generated incrementally by locally
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registering new data. This approach is therefore called
“Local Registration and Global Correlation”. Other authors
assume that the point of loop closing is already known
[18], and focus on how to correct the map. In both cases,
an extended Kalman filter is used to correct the map
backwards in time.

A different approach is taken in [20] and [1], which both
use the the Expectation-Maximization (EM) algorithm [14]
to iteratively generate a better map. Thrun et al. [20] work
with a hybrid map representation, where the same algo-
rithm is first applied to the topological map to correct large
scale errors in the odometry, followed by finer adjustments
of the metric map. The E-step uses the current estimate
of the map to obtain a probability distribution over the
robot trajectory. A Kalman smoother is used for revising
past beliefs. In the M-step the most likely map is then
calculated based on the result from the E-step. In contrast,
the approach in [2] employs a metric representation and
remembers a history of hypotheses over robot trajectories
that were generated by a hybrid localization method in the
E-step, and selects the most likely one in the E-step before
applying the Kalman smoother.

An alternative approach to correcting the map is taken
in [10], which uses the Rao-Blackwellized particle filter
(RBPF) [17] in combination with scan matching. The
RBPF was first successfully applied to robotics localization
in [16] where it is known as FastSLAM, and in which each
particle in a filter represents a complete robot trajectory hy-
pothesis. In theory the RBPF can represent the probability
distribution over all possible trajectories and is therefore
capable of closing the loop. However, since the dimen-
sionality of the trajectory grows over time, the number of
particles would have to be increased exponentially to avoid
eliminating the potential for loop closing. Haehnel et al.
[10] therefore combine multiple scans by scan matching
to correct the odometry, and then uses only a sparse set
of pre-corrected poses in FastSLAM to extend the spatial
range over which multiple hypotheses can be represented.

The method we propose also uses the EM algorithm to
find the most likely robot trajectory and close the loops.
However, in contrast to other work like [20] the E-step
is used to create a probability distribution over partitions



of feature tracks, while the M-step maximizes the robot
trajectory based on the virtual structure obtained in the E-
step. This is related to our previous work in [4], [5], [6],
in which the correspondence problem in structure from
motion is addressed. As a side effect, at convergence,
we also obtain a distribution over all possibleenviron-
ment models, associated with the maximum a posteriori
(MAP) trajectory. This distribution ranges over models
of different complexity, and is useful in its own right to
perform Bayesian inference about the structure. If needed
the distribution can also be used to output a single most
likely structure model, e.g. to visualize the environment.

II. T HE LOOPCLOSING PROBLEM

We are interested in reconstructing a mobile robot’s
trajectory through an unknown environment, based on
measurements from onboard range sensors. A model of the
environment is typically also of interest, or can even be the
main goal of an application. Indeed, motion and model are
dual in some sense: if we know one, it is generally much
easier to determine the other. If the motion is known, a
model can be created easily by triangulation, and if the
model is known, it can be used to localize the robot.

A. Problem Statement

We want to determine the robot’s trajectory together with
the corresponding 2D structure of the environment. The
robot’s trajectory, or itsmotion, M = {mi}ni=1 specifies its
posemi for each stepi. Since for 2D mapping the mobile
robot operates on a planar surface, the pose has three
degrees of freedom that are described by a 2D translation
(x,y) and a rotationθ. The environment’sstructure X=
{x j}Nj=1 is a set ofN 2D structure pointsx j ∈ R2.

The input data is a setU = {uk}Kk=1 of K feature
tracks uk, where each trackuk corresponds to one or more
observations of a single 2D structure pointx j . Note that
several tracks can refer to the same structure point and
that the overall numberN of structure points is unknown.
Assignments of tracks to structure points can be formalized
by apartition J= { jk}Kk=1 of the feature tracksU into non-
empty subsets, that assigns each trackuk to a structure point
x jk,1≤ jk ≤ N. This partition is usually unknown, and is
the key to solving the loop closing problem.

B. Known partition

In the case that the partitionJ is known, it is fairly
straightforward to determine the structureX and motion
M. The maximum a-posteriori estimate of structure and
motion based on the known tracks and partition is defined
by

X∗,M∗ = argmax
X,M

logL(X,M;U,J)+ logP(M) (1)

containing the likelihoodL(X,M;U,J) and a priorP(M) on
the motion, which can be based on odometry if available.

The likelihoodL(X,M;U,J) is proportional to the condi-
tional densityP(U,J|X,M) of the tracksU and partitionJ
given structureX and motionM and can be factored based
on the independence of the measurements under known
motion. DefiningN(J) as the number of structure points
predicted by the partitionJ, the set of tracksU under this
partition can be written as a union

U =
N(J)⋃
j=1

U j (2)

of setsU j of tracks, where all tracks in such a subsetU j

correspond to the same structure pointx. The independence
of the measurements allows rewriting the log-likelihood
L(X,M;U,J) from (1) as a sum of terms for each subset
U j :

logL(X,M;U,J) ∝ ∑
U j∈U

logP(U j |x j ,M)

Again based on the independence argument, each like-
lihood term over a subsetU j can be split into terms
corresponding to its componentsu∈U j . The log-likelihood
of a tracku itself is given by the sum of log-likelihoods of
its individual observationsoik ∈ u, whereo∈R2 describes
the observation in terms of a range measurement andi
indicates in which step the observation took place:

logP(U j |x j ,M) = ∑
u∈U j

∑
oik∈u

logP(oik|x j ,mi) (3)

We use a generative model to define the log-likelihood
of an individual observation. The generative model consists
of an observation functionh that geometrically predicts the
observationoik based on the robot’s posemi in step i, the
jkth structure point locationx jk and some additive noisen:

oik = h(mi ,x jk)+n (4)

For a range sensor, the observation functionh is a 2D rigid
transformation:

h(mi ,x j) = Ri (x j − ti)

where the rotationRi and translationti are the components
of the i-th robot posemi = (Ri , ti).

If we assume the noisen in the generative model (4) to
be i.i.d. zero-mean Gaussian noise with standard deviation
σ, then the log-likelihood of an observationo of the
structure pointx taken at posem can be written as the
negative, squared reprojection error:

logP(o|x,m) =− 1
2σ2‖o−h(m,x)‖2

C. Unknown partition

We derive how to solve the loop closing problem when
the partitions are unknown, which is typically the case. We
are interested in the posteriorP(X,M|U) over structureX
and motionM given the feature tracksU . By summing
over the discrete space of possible partitions, we can



marginalize over the unknown partitionJX, where the index
indicates the dependence on the dimensionality of the
chosen structureX:

P(X,M|U) = ∑
JX

P(X,M,JX|U)

The expectation maximization (EM) algorithm cannot be
applied here, since the dimensionality of the structureX is
not known. Even if sampling over the huge combined space
of structure and motion might be feasible, the evaluation of
the sum over all partitions is not, as the number of possible
partitions for a specific number of feature tracksK is given
by the Bell number

BK =
K

∑
k=1

S(K,k) (5)

with

S(K,k) =
1
k!

k−1

∑
i=0

(−1)i
(

k
i

)
(k− i)K (6)

the Stirling number of the second kind. The Bell number
grows hyper-exponentially inK with B1 = 1, B5 = 52,
B10 = 115975 andB50≈ 1.9 ·1047 and therefore prevents
any enumeration for non-trivial problems.

In order to avoid the unknown dimensionality problem,
we can integrate out the structureX, resulting in the
posterior over the motion given the feature tracks. Indeed,
once we have the motion of the robot, it is straightforward
to solve for the structure. The posteriorP(M|U) over the
motionM is obtained by marginalizing over both, the struc-
tureXJ and the partitionJ, where now the dimensionality of
the structure depends on the specific partitionJ as indicated
by the index:

P(M|U) = ∑
J

∫
XJ

P(M,J,XJ|U) (7)

Again a sum over partitions makes direct evaluation im-
possible. However, this time EM is applicable, because we
know the dimensionality of the motionM and can typically
get a good initial estimate, either from the odometry of
the robot, or from incremental scan matching or just by a
heuristic.

III. A N EM-BASED SOLUTION

We apply the EM algorithm to the loop closing problem
based on the posteriorP(M|U) over the motionM from
equation (7). Finding the motionM∗ that maximizes this
posterior P(M|U) is equivalent to maximizing the joint
distribution P(M,U), as is maximizing the log of that
distribution:

M∗ = argmax
M

P(M|U)

= argmax
M

P(M,U)

= argmax
M

logP(M,U) (8)

As in equation (7), the partition can be included into (8)
by marginalization:

M∗ = argmax
M

logP(M,U)

= argmax
M

log ∑
J∈J

P(M,J,U) (9)

A direct evaluation is not possible because of the combina-
torial size of the sum, instead we apply the EM algorithm
[14]. EM is an iterative algorithm that alternates between an
expectation (E) and a maximization (M) step. A derivation
of the algorithm and deeper insights in terms of a lower
bound formulation is provided in [15]. Our notation is
based on [3].

The EM algorithm applied to the loop closing problem
iteratively improves an initial estimate of the motionM0.
In iteration t, the E-step determines the expected log-
likelihood Qt(M) over the motionM,

Qt(M) , 〈logP(U,J|M)〉

where the expectation〈.〉 is taken with respect to the
distribution f t(J) over the partitionJ given the tracksU
and the current motion estimateMt :

f t(J) , P(J|U,Mt) (10)

The M-step then optimizes the expected log-posterior
Qt(M)+ logP(M) with respect to the free motion variable
M to obtain a better motion estimateMt+1:

Mt+1 , argmax
M

[
Qt(M)+ logP(M)

]
(11)

The distribution f t(J) over partitions cannot be evalu-
ated directly because of the hyper-exponential number of
partitions for K feature tracks that is given by the Bell
numberBK as defined in (5). Instead we sample from this
distribution in the E-step, which is known as Monte Carlo
EM.

IV. M ONTE CARLO EM

We show how to apply Monte Carlo EM to the problem
of loop closing. In Monte Carlo EM, or short MCEM [19],
the distribution f t(J) from (10) over the hidden variable,
in our case the partitionsJ, that is needed in the E-step,
is replaced by a Monte Carlo approximation. We obtain
this approximation by using Markov chain Monte Carlo or
MCMC sampling.

MCMC methods produce samples from a target dis-
tribution π(J) by simulating a Markov chain with the
same equilibrium distribution. The algorithm starts from
a random initial stateJ(0) and proposes probabilistically
generated successor states, which is equivalent to running
a Markov chain. It is important to note that this method
produces samples of an arbitrary target functionπ(J) while
only requiring function evaluations at specific states.



A. E-step

For the expectation step we have to determine the func-
tion over partitions to sample from, starting from equation
(10). Applying Bayes Law to this equation yields two
terms, a priorP(J|Mt) on the partition, and the likelihood
P(U |J,Mt) of the partition:

f t(J) = P(J|U,Mt)
∝ P(U |J,Mt)P(J|Mt)

The priorP(J|Mt) on the partition depends on the current
motion estimateMt . We can therefore use information
about the distance between points generated by tracks to
determine their prior probability of belonging to the same
set in the partition.

Using the independence of the measurements given fixed
motion, in this case the current motion estimateMt , the
likelihood can be factored into setsU j of tracks as defined
in (2), that correspond to unique structure points:

P(U |J,Mt) =
N(J)

∏
j=1

P(U j |Mt)

In order to further evaluate this expression in terms of
single measurements, the unknown location of the structure
point x j described by the setUJ has to be included by
marginalization. By applying the chain rule, we obtain
a prior on the structure pointx j as well as a likelihood
P(U j |x j ,Mt) of a set of tracks that was defined in (3):

P(U j |Mt) =
∫

x j

P(x j ,U j |Mt)

=
∫

x j

kP(x j |Mt)P(U j |x j ,M
t) (12)

To evaluate equation (12) we have to solve for the
integral over the point locationsx j . If we optimize each
x j given the motionMt and all tracksu∈U j that apply to
it and assume that the resulting posterior

P(x j |U j ,M
t) = kP(x j |Mt)P(U j |x j ,M

t)

is approximated well by a Gaussian centered atx∗j (U j |Mt),
the optimized value of x j , with covariance matrix
Σ j(U j |Mt), modulo an unknown constantk, then the inte-
gral from equation (12) can be approximated via Laplace’s
method by the following distribution

P(U j |Mt)≈ P(x∗j |Mt)
√
|2πΣ∗j |P(U j |x∗j ,Mt)

which yields the required densityf t(J) over partitionsJ
from equation (10):

f t(J)≈ P(J|Mt)
N(J)

∏
j=1

P(x∗j |Mt)
√
|2πΣ∗j |P(U j |x∗j ,Mt) (13)

Integrating out the continuous pointx in the context of
sampling is known asRao-Blackwellization[12], as the
variance in the sample is reduced by treating the continuous
part of the state analytically.

B. M-step

In the maximization step, a better estimateMt+1 for
the motionM is found using equation (11) to maximize
the expected log-posteriorQt(M) + logP(M) based on
the approximated distributionf t(J) over the partitionsJ
obtained in the E-step:

Mt+1 = argmax
M

[
Qt(M)+ logP(M)

]
One of the resulting terms is the log prior logP(M) on the
motion, that can for example be based on robot odometry or
a motion estimate based on an incremental scan matching
approach. The other term is the expected log-likelihood,
that can be approximated by a sum over the samples
J(r),1≤ r ≤R that were obtained in the E-step, and finally
rewritten in terms of a histogramCt(J) over the partitions:

Qt(M) = 〈logP(U,J|M)〉P(J|U,Mt )

= ∑
J

P(J|U,Mt) logP(U,J|M)

≈ 1
R∑

r
logP(U,J(r)|M)

= ∑
J

Ct(J) logP(U,J|M)

A key realization to implementing this efficiently is that
indexing the anonymous structure pointsx by the set of
tracksUx that determine them allows us to share the results
of the optimization between many different partitions that
share the setUx. Please note that this is possible because the
observations, and therefore also the tracks and their disjoint
combinations as given by partitions, are independent given
the motion. We defineCt(Ux) to be the number of samples
containing the partitionUx divided by the number of
samplesR:

Ct(Ux) =
|{J|Ux ∈ J}|

R

This expression can be interpreted in terms of virtual
structure. Each set of tracks corresponds to a virtual
structure point, and the frequency of its occurrence in
the sampling determines the weight it gets assigned. The
M-step is therefore performed by an optimization with
the structure replaced by the virtual structure, and the
components weighted according to the histogramCt(Ux).

V. REVERSIBLE JUMP MCMC SAMPLING

We use the trans-dimensional MCMC algorithm from [8]
for Monte Carlo estimation in the E-step. We start with a
random initial stateJ(0) and iterate the following steps:

1) Propose a move typem ∈ M with probability
bm(J(r)), whereJ(r)is the current state.

2) Generate a random sampleu from the move-specific
proposal densitygm. The move typem and random
sampleu determine how to move from the current
stateJ(r) to the proposed stateJ′.



Fig. 1. The result of feature detection is shown together with the raw data.
The raw laser range data is shown as black dots with the red/blue robot
indicating the center of the range sensor. Incrementally fitted line segments
are drawn as cyan lines, while diamonds represent corners detected as
intersections of neighboring line segments.

3) Calculate the corresponding reverse move(m′,u′).
4) Compute the acceptance ratio

a =
π(J′)

π(J(r))
bm′(J′)
bm(J(r))

gm′(u′)
gm(u)

∣∣∣∣ ∂(J′,u′)
∂(J(r),u)

∣∣∣∣ (14)

where the Jacobian factor corrects for the change in
variables (see below).

5) AcceptJ(r+1)← J′ with probability min(a,1), other-
wise J(r+1)← J(r).

The generated sequence of states{J(r)} will be a sample
from π(J) if the sampler is run sufficiently long, and one
discards the samples in the initial “burn-in” period of the
sampler to avoid dependence on the chosen start state.

One possible set of move types for loop closing consists
of “Merge” and “Split” for combining two sets of tracks
and separating them again. Care has to be taken to ensure
that the move from(J(r),u) to (J′,u′) is reversible and
therefore a diffeomorphism. One requirement is that the
dimensions on both sides have to match. Note that in our
case the Jacobian of the diffeomorphism

∣∣∣ ∂(J′,u′)
∂(J(r),u)

∣∣∣ is always
1 because we integrate out the continuous part of the space.

VI. EXPERIMENTS AND RESULTS

We have applied the algorithm to corner features ex-
tracted from laser range data. The corners are obtained by
a modified version of the incremental line fitting algorithm
[7] by extracting intersections between neighboring line
segments. An example of a processed laser scan is shown
in Figure 1, with detected corners indicated as diamonds.

As every optimization technique, EM can easily get
stuck in local minima. To avoid this problem, we have
applied an annealing scheme as is commonly used in
the context of EM. Starting from a multiple of the real
measurement sigma, the value is decreased linearly in each
iteration.

We have applied our algorithm to two sets of laser
data. The first was recorded in our research facility, while

Fig. 2. Evidence grid plot of the raw laser data of our sequence covering
parts of the 3rd floor of the Technology Square Research Building
(TSRB).

Fig. 3. Evidence grid plot after loop closing (TSRB). Better local
alignment of scans can be achieved by other methods, but is not done here
to show the result based on sparse features only. The trajectory covers
approximately 40 meters by 15 meters.

the second data set is part of the Intel Oregon sequence
that was obtained from the Robotics Data Set Repository
[11]. Thanks go to Maxim Batalin for providing this data.
Evidence grid plots of the original data sets are shown in
Figure 2 and Figure 4. After applying our algorithm, we
obtain the corrected maps as shown in Figure 3 and Figure
5. Please note that with a sparse set of features, as is used
here, not all frames are perfectly aligned. However, the loop
is closed, and local alignment can be improved by other
methods [13].



Fig. 4. Evidence grid plot of the raw laser data of parts of the Intel
Oregon sequence.

Fig. 5. Evidence grid plot after loop closing (Intel Oregon). Better local
alignment of scans can be achieved by other methods, but is not done
here to show the result based on sparse features only.

VII. C ONCLUSION

In this paper we have presented a novel approach to
solving the loop closing problem in range-based SLAM.
Within an MCEM framework, we iterate between estimat-
ing virtual structure and improving the motion estimate.
Since the number of structure points is not known, we are
faced with a model selection problem, which is addressed
by using a reversible jump MCMC sampler to estimate the
virtual structure. It is important to note that our algorithm
never commits to a specific combination of tracks or even a
specific number of structure points, but yields a probability
distribution over all possible maps.

The approach has been implemented and successfully
applied to real data. We are investigating the extension of
our loop closing algorithm to the domain of visual SLAM,
for which this feature based method seems especially
suitable. In this more complex domain the algorithm would

especially benefit from a more intelligent proposal function.
Future work also includes the extension of the algorithm
to multi-robot mapping.
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