
iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree

Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John Leonard, and Frank Dellaert

Abstract

We present a novel data structure, the Bayes tree, that provides an algorithmic foundation enabling a better understanding of
existing graphical model inference algorithms and their connection to sparse matrix factorization methods. Similar to a clique
tree, a Bayes tree encodes a factored probability density, but unlike the clique tree it is directed and maps more naturally to the
square root information matrix of the simultaneous localization and mapping (SLAM) problem. In this paper, we highlight three
insights provided by our new data structure. First, the Bayes tree provides a better understanding of the matrix factorization in
terms of probability densities. Second, we show how the fairly abstract updates to a matrix factorization translate to a simple
editing of the Bayes tree and its conditional densities. Third, we apply the Bayes tree to obtain a completely novel algorithm
for sparse nonlinear incremental optimization, named iSAM2, which achieves improvements in efficiency through incremental
variable re-ordering and fluid relinearization, eliminating the need for periodic batch steps. We analyze various properties of
iSAM2 in detail, and show on a range of real and simulated datasets that our algorithm compares favorably with other recent
mapping algorithms in both quality and efficiency.

Keywords: graphical models, clique tree, junction tree, probabilistic inference, sparse linear algebra, nonlinear opti-
mization, smoothing and mapping, SLAM

1 Introduction

Probabilistic inference algorithms are important in robotics
for a number of applications, ranging from simultaneous lo-
calization and mapping (SLAM) for building geometric mod-
els of the world, to tracking people for human robot interac-
tion. Our research is mainly in large-scale SLAM and hence
we will use this as an example throughout the paper. SLAM
is a core competency for autonomous robots, as it provides
the necessary data for many other important tasks such as
planning and manipulation, in addition to direct applications
such as navigation, exploration, and 3D modeling. The un-
certainty inherent in sensor measurements makes probabilis-
tic inference algorithms the favorite choice for SLAM. Online
operation is essential for most real applications, therefore our
work focuses on efficient incremental online algorithms.

Taking a graphical model perspective to probabilistic infer-
ence in SLAM has a rich history (Brooks, 1985) and has es-
pecially led to several novel and exciting developments in the
last years (Paskin, 2003; Folkesson and Christensen, 2004;
Frese et al., 2005; Frese, 2006; Folkesson and Christensen,

Draft manuscript, April 6, 2011. Submitted to IJRR.
M. Kaess, H. Johannsson, and J. Leonard are with the Computer Sci-

ence and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute
of Technology (MIT), Cambridge, MA 02139, USA {kaess, hordurj,
jleonard}@mit.edu.

R. Roberts, V. Ila, and F. Dellaert are with the School of Interac-
tive Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
{richard, vila, frank}@cc.gatech.edu.

This work was presented in part at the International Workshop on the
Algorithmic Foundations of Robotics, Singapore, December 2010, and in
part at the International Conference on Robotics and Automation, Shanghai,
China, May 2011.

2007; Ranganathan et al., 2007). Paskin (2003) proposed the
thin junction tree filter (TJTF), which provides an incremental
solution directly based on graphical models. However, filter-
ing is applied, which is known to be inconsistent when ap-
plied to the inherently nonlinear SLAM problem (Julier and
Uhlmann, 2001), i.e., the average taken over a large number
of experiments diverges from the true solution. In contrast,
full SLAM (Thrun et al., 2005) retains all robot poses and can
provide an exact solution, which does not suffer from incon-
sistency. Folkesson and Christensen (2004) presented Graph-
ical SLAM, a graph-based full SLAM solution that includes
mechanisms for reducing the complexity by locally reducing
the number of variables. More closely related, Treemap by
Frese (2006) performs QR factorization within nodes of a tree.
Loopy SAM (Ranganathan et al., 2007) applies loopy belief
propagation directly to the SLAM graph.

The sparse linear algebra perspective has been explored in
Smoothing and Mapping (SAM) (Dellaert, 2005; Dellaert and
Kaess, 2006; Kaess et al., 2007, 2008). The matrices as-
sociated with smoothing are typically very sparse, and one
can do much better than the cubic complexity associated
with factorizing a dense matrix (Krauthausen et al., 2006).
Kaess et al. (2008) proposed incremental smoothing and map-
ping (iSAM), which performs fast incremental updates of the
square root information matrix, yet is able to compute the full
map and trajectory at any time. New measurements are added
using matrix update equations (Gill et al., 1974; Gentleman,
1973; Golub and Loan, 1996), so that previously calculated
components of the square root information matrix are reused.
However, to remain efficient and consistent, iSAM requires
periodic batch steps to allow for variable reordering and relin-

2 iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree

earization, which is expensive and detracts from the intended
online nature of the algorithm.

To combine the advantages of the graphical model and
sparse linear algebra perspectives, we propose a novel data
structure, the Bayes tree, first presented in Kaess et al. (2010).
Our approach is based on viewing matrix factorization as
eliminating a factor graph into a Bayes net, which is the
graphical model equivalent of the square root information ma-
trix. Performing marginalization and optimization in Bayes
nets is not easy in general. However, a Bayes net result-
ing from elimination/factorization is chordal, and it is well
known that a chordal Bayes net can be converted into a tree-
structured graphical model in which these operations are easy.
This data structure is similar to the clique tree (Pothen and
Sun, 1992; Blair and Peyton, 1993; Koller and Friedman,
2009), also known as the junction tree in the AI literature
(Cowell et al., 1999), which has already been exploited for
distributed inference in SLAM (Dellaert et al., 2005; Paskin,
2003). However, the new data structure we propose here, the
Bayes tree, is directed and corresponds more naturally to the
result of the QR factorization in linear algebra, allowing us to
analyze it in terms of conditional probability densities in the
tree. We further show that incremental inference corresponds
to a simple editing of this tree, and present a novel incremen-
tal variable ordering strategy.

Exploiting this new data structure and the insights gained,
we propose iSAM2, a novel incremental exact inference
method that allows for incremental reordering and just-in-
time relinearization. iSAM2, first presented in Kaess et al.
(2011), extends our original iSAM algorithm by leveraging
these insights about the connections between graphical model
and sparse linear algebra perspectives. To the best of our
knowledge this is a completely novel approach to providing
an efficient and exact solution to a sparse nonlinear optimiza-
tion problem in an incremental setting, with general applica-
tions beyond SLAM. While standard nonlinear optimization
methods repeatedly solve a linear batch problem to update
the linearization point, our Bayes tree-based algorithm allows
fluid relinearization of a reduced set of variables, which trans-
lates into higher efficiency, while retaining sparseness and full
accuracy. Fig. 1 shows an example of the Bayes tree for a
small SLAM sequence. As a robot explores the environment,
new measurements only affect parts of the tree, and only those
parts are re-calculated.

A detailed evaluation of iSAM2 and comparison with other
state-of-the-art SLAM algorithms is provided. We explore the
impact of different variable ordering strategies on the perfor-
mance of iSAM2. Furthermore, we evaluate the effect of the
relinearization and update thresholds as a trade-off between
speed and accuracy, showing that large savings in computa-
tion can be achieved while still obtaining an almost exact so-
lution. Finally, we present a detailed comparison with other
SLAM algorithms in terms of computation and accuracy, us-
ing a range of 2D and 3D, simulated and real-world, pose-only
and landmark-based datasets.

Fig. 2: Factor graph (Kschischang et al., 2001) formulation of the SLAM
problem, where variable nodes are shown as large circles, and factor nodes
(measurements) as small solid circles. The factors shown are odometry mea-
surements u, a prior p, loop closing constraints c and landmark measurements
m. Special cases include the pose-graph formulation (without l and m) and
landmark-based SLAM (without c). Note that the factor graph can represent
any cost function, involving one, two or more variables (e.g. calibration).

2 Problem Statement

This work focuses on how to efficiently solve a nonlinear esti-
mation problem in an incremental and real-time approach. In-
cremental means that an updated estimate has to be obtained
whenever new measurements are added, to reflect the most ac-
curate model of the environment that can be derived from all
measurements gathered so far. Online means that the estimate
has to become available during robot operation, and not from
a batch computation after the robot’s task is finished, as the
estimate is needed by the robot for navigation and planning to
achieve a given goal.

We use a factor graph (Kschischang et al., 2001) to repre-
sent a given estimation problem in terms of graphical models.
Formally, a factor graph is a bipartite graph G = (F ,Θ,E)
with two node types: factor nodes fi ∈F and variable nodes
θ j ∈ Θ. Edges ei j ∈ E are always between factor nodes and
variables nodes. A factor graph G defines the factorization of
a function f (Θ) as

f (Θ) = ∏
i

fi(Θi) (1)

where Θi is the set of variables θ j adjacent to the factor fi,
and independence relationships are encoded by the edges ei j:
each factor fi is a function of the variables in Θi. Our goal is
to find the variable assignment Θ∗ that maximizes (1)

Θ
∗ = argmax

Θ

f (Θ) (2)

The general factor graph formulation of the SLAM problem
is shown in Fig. 2, where the landmark measurements m, loop
closing constraint c and odometry measurements u are exam-
ples of factors. Note that this formulation allows our work to
support general probability distributions or cost functions of
any number of variables, allowing the inclusion of calibration
parameters or spatial separators as used in T-SAM (Ni et al.,
2007) and cooperative mapping (Kim et al., 2010).

Gaussian Case

When assuming Gaussian measurement models

fi(Θi) ∝ exp
(
−1

2
‖hi(Θi)− zi‖2

Σi

)
(3)

M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert 3

x398,x399,x400

x396,x397

x395 x394

x159 x387,x388,x389,x390,x391,x392,x393 x234

x386 x275,x276 x142 x358

x384,x385

x383 x288

x382 x289

x381 x292

x379,x380 x308

x378 x303

x377 x309

x376 x311

x374,x375 x316

x373 x338 x298

x372 x346

x371

x369

x368 x359

x367

x366

x351

x319

x317 x299

x283 x254

x282

x256

x255 x370

x315

x312

x310

x314

x313

x307 x304

x306

x305

x287

x302 x296 x300

x297 x295

x294

x293

x291 x279

x281

x280 x278

x277

x286 x290

x285

x284

x274 x365 x356

x273 x233

x272 x270

x271 x135

x248,x249,x251,x257,x258,x259,x260,x261,x262,x265

x245,x246,x247 x98 x128 x114 x104

x244 x230

x241,x242,x243

x238,x239,x240 x227,x228,x229

x237 x122 x208

x236 x140

x235

x123

x226

x225 x207

x121

x224 x218

x223 x209 x132

x222

x221

x220 x161

x219 x162

x210

x204 x157,x158

x203

x164

x163

x156 x150 x144

x155 x151

x154

x153

x152

x147

x149

x143

x170 x136

x217 x213

x216 x172

x214 x100

x212

x206 x94

x205 x137

x131 x91

x130 x202

x126 x201 x95

x124,x199,x200 x92

x195,x196,x197 x120 x119

x194 x166 x215

x192

x191

x190

x189 x211

x188 x173

x187

x186

x185

x181

x180

x179

x178

x177

x176

x175

x174

x169

x198

x165

x134

x125

x193 x118

x93

x90

x96

x184 x81

x183

x182

x89 x117

x116

x115

x97 x168

x167 x148 x171

x80 x127

x78

x77

x76

x75

x74

x73

x72

x71

x70

x69

x67,x68

x65,x66

x52,x63,x64 x16 x15

x51 x27 x61,x62

x31 x22

x28

x30

x29

x21

x20

x19

x18

x0

x26

x17

x60 x59 x55 x1

x11

x10

x9 x4

x8

x7

x6

x5

x3

x2

x58 x54

x57 x50

x56 x49

x41

x40

x39

x38

x37

x36

x35

x34

x33

x32

x53

x48 x14

x47 x42

x46

x45

x44

x43

x13

x12

x25

x24

x23

x146 x101

x145 x99

x129 x106

x105

x103

x102

x84

x83

x82

x113

x112

x111 x85

x110

x109

x108

x107

x88

x87

x86

x79

x269 x349,x350

x268 x348

x347 x344

x345 x264

x320 x263

x343

x342

x341

x340 x321

x339

x337 x322

x335,x336 x323

x334

x333

x332

x331

x330 x324

x329

x328 x325

x327

x326

x266

x364 x355

x363 x354

x362 x357

x361 x360 x253 x250

x267 x301

x141

x133

x353

x252

x139 x160

x352 x318

x138

x232

x231

Fig. 1: An example of the Bayes tree data structure, showing step 400 of the Manhattan sequence (see Extension 1 in Appendix A for an animation of the
full sequence together with the map). Our incremental nonlinear least-squares estimation algorithm iSAM2 is based on viewing incremental factorization as
editing the graphical model corresponding to the posterior probability of the solution, the Bayes tree. As a robot explores the environment, new measurements
often only affect small parts of the tree, and only those parts are re-calculated.

as is standard in the SLAM literature (Smith et al., 1987;
Castellanos et al., 1999; Dissanayake et al., 2001), the fac-
tored objective function to maximize (2) corresponds to the
nonlinear least-squares criterion

argmin
Θ

(− log f (Θ)) = argmin
Θ

1
2 ∑

i
‖hi(Θi)− zi‖2

Σi
(4)

where hi(Θi) is a measurement function and zi a measure-

ment, and ‖e‖2
Σ

∆
= eT Σ−1e is defined as the squared Maha-

lanobis distance with covariance matrix Σ.
In practice one typically considers a linearized version of

problem (4). For nonlinear measurement functions hi in (3),
nonlinear optimization methods such as Gauss-Newton itera-
tions or the Levenberg-Marquardt algorithm solve a succes-
sion of linear approximations to (4) in order to approach the
minimum. At each iteration of the nonlinear solver, we lin-

earize around a linearization point Θ to get a new, linear least-
squares problem in ∆

argmin
∆

(− log f (∆)) = argmin
∆

‖A∆−b‖2 (5)

where A ∈Rm×n is the measurement Jacobian consisting of m
measurement rows, and ∆ is an n-dimensional vector. Note
that the covariances Σi have been absorbed into the corre-
sponding block rows of A, making use of

‖∆‖2
Σ
= ∆

T
Σ
−1

∆ = ∆
T

Σ
− T

2 Σ
− 1

2 ∆ =
∥∥∥Σ
− 1

2 ∆

∥∥∥2
(6)

Once ∆ is found, the new estimate is given by Θ⊕∆, which is
then used as linearization point in the next iteration of the non-
linear optimization. The operator ⊕ is often simple addition,
but for over-parameterized representations such as Quater-
nions for 3D orientations or homogeneous point representa-

4 iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree

 X

 X X

X X

 X X

X X

 X X

(a)

X X X

 X
 X X
 X X
 X X

(b)

X

X X

X

X X

X

X X X

(c)

Fig. 3: (a) The factor graph and the associated Jacobian matrix A for a small
SLAM example, where a robot located at successive poses x1, x2, and x3
makes observations on landmarks l1 and l2. In addition there is an absolute
measurement on the pose x1. (b) The chordal Bayes net and the associated
square root information matrix R resulting from eliminating the factor graph
using the elimination ordering l1, l2, x1, x2, x3. The last variable to be elimi-
nated, here x3, is called the root. (c) The Bayes tree and the associated square
root information matrix R describing the clique structure in the chordal Bayes
net. A Bayes tree is similar to a junction tree, but is better at capturing the
formal equivalence between sparse linear algebra and inference in graphical
models. The association of cliques and their conditional densities with rows
in the R factor is indicated by color.

tions in computer vision, an exponential map based on Lie
group theory (Hall, 2000) is used instead.

The matrix A above is a sparse block-matrix, and its graph-
ical model counterpart is a Gaussian factor graph (i.e. the
original factor graph linearized at Θ) with exactly the same
structure as the nonlinear factor graph, see the small SLAM
example in Fig. 3a. The probability density on ∆ defined by
this factor graph is the normal distribution

P(∆) ∝ e− log f (∆) = exp
{
−1

2
‖A∆−b‖2

}
(7)

The minimum of the linear system A∆−b can be obtained
directly either by Cholesky or QR matrix factorization. By
setting the derivative in ∆ to zero we obtain the normal equa-
tions AT A∆ = AT b. Cholesky factorization yields AT A =
RT R, and a forward and backsubstitution on RT y = AT b and
R∆ = y first recovers y, then the actual solution, the update ∆.
Alternatively we can skip the normal equations and apply QR
factorization, yielding R∆ = d, which can directly be solved
by backsubstitution. Note that Q is not explicitly formed; in-
stead b is modified during factorization to obtain d, see Kaess

Alg. 1 General structure of the smoothing solution to SLAM with a direct
equation solver (Cholesky, QR). Steps 3-6 can optionally be iterated and/or
modified to implement the Levenberg-Marquardt algorithm.
Repeat for new measurements in each step:

1. Add new measurements.

2. Add and initialize any new variables.

3. Linearize at current estimate Θ.

4. Factorize with QR or Cholesky.

5. Solve by backsubstitution to obtain ∆.

6. Obtain new estimate Θ′ = Θ⊕∆.

et al. (2008) for details. Alg. 1 shows a summary of the nec-
essary steps to solve the smoothing formulation of the SLAM
problem with direct methods.

Incremental and online smoothing can be achieved by our
original iSAM algorithm (Kaess et al., 2008), but relineariza-
tion is only performed during periodic batch reordering steps.
A batch solution, as proposed above, performs unnecessary
calculations, because it solves the complete problem at ev-
ery step, including all previous measurements. New measure-
ments often have only a local effect, leaving remote parts of
the map untouched. iSAM exploits that fact by incrementally
updating the square root information matrix R with new mea-
surements. The updates are performed with Givens rotations
and often only affect a small part of the matrix, therefore be-
ing much cheaper than batch factorization. However, as new
variables are appended, the variable ordering is far from op-
timal, and fill-in may occur. iSAM performs periodic batch
steps, in which the variables are reordered, requiring a batch
factorization. That solution is not optimal as linearization is
only performed during batch steps, and because the frequency
of the periodic batch steps is determined heuristically.

3 The Bayes Tree

In this section we describe how the estimation problem can be
solved by directly operating on the graphical models, without
converting the factor graph to a sparse matrix and then apply-
ing sparse linear algebra methods.

3.1 Inference and Elimination

A crucial insight is that inference can be understood as con-
verting the factor graph to a Bayes net using the elimina-
tion algorithm. Variable elimination (Blair and Peyton, 1993;
Cowell et al., 1999) originated in order to solve systems of lin-
ear equations, and was first applied in modern times by Gauss
in the early 1800s (Gauss, 1809).

In factor graphs, elimination is done via a bipartite elimina-
tion game, as described by Heggernes and Matstoms (1996).
This can be understood as taking apart the factor graph and
transforming it into a Bayes net (Pearl, 1988). One proceeds
by eliminating one variable at a time, and converting it into
a node of the Bayes net, which is gradually built up. After

M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert 5

(a) (b) (c)

(d) (e) (f)

Fig. 4: Steps in the variable elimination process starting with the factor graph of Fig. 3a and ending with the chordal Bayes net of Fig. 3b. Following Alg. 2,
in each step one variable is eliminated (dashed red circle), and all adjacent factors are combined into a joint distribution. By applying the chain rule, this joint
density is transformed into conditionals (dashed red arrows) and a new factor on the separator (dashed red factor). This new factor represents a prior that
summarizes the effect of the eliminated variables on the separator.

Alg. 2 Eliminating a variable θ j from the factor graph.

1. Remove from the factor graph all factors fi(Θi) that are adjacent to
θ j . Define the separator S j as all variables involved in those factors,
excluding θ j .

2. Form the (unnormalized) joint density f joint(θ j,S j) = ∏i fi(Θi) as the
product of those factors.

3. Using the chain rule, factorize the joint density f joint(θ j,S j) =
P(θ j|S j) fnew(S j). Add the conditional P(θ j|S j) to the Bayes net and
the factor fnew(S j) back into the factor graph.

eliminating each variable, the reduced factor graph defines a
density on the remaining variables. The pseudo-code for elim-
inating a variable θ j is given in Alg. 2. After eliminating all
variables, the Bayes net density is defined by the product of
the conditionals produced at each step:

P(Θ) = ∏
j

P(θ j|S j) (8)

where S j is the separator of θ j, that is the set of variables that
are directly connected to θ j by a factor. Fig. 3 shows both the
factor graph and the Bayes net resulting from elimination for
a small SLAM example.

For illustration, the intermediate steps of the elimination
process are shown in Fig. 4, and we explain the first step here
in detail. The factor graph in Fig. 4(a) contains the follow-
ing six factors: f (x1), f (x1,x2), f (x2,x3), f (l1,x1), f (l1,x2),
f (l2,x3). The first variable to be eliminated is the first land-
mark l1. Following Alg. 2, first we remove all factors involv-
ing this landmark (f (l1,x1), f (l1,x2)), and define the sepa-
rator S = {x1,x2}. Second, we combine the removed factors
into a joint factor f joint(l1,x1,x2). Third, we apply the chain
rule to split the joint factor into two parts: The first part is
a conditional density P(l1|x1,x2) over the eliminated variable
given the separator, which shows up as two new arrows in

Fig. 4(b). The second part created by the chain rule is a new
factor f (x1,x2) on the separator as shown in the figure. Note
that this factor can also be unary as is the case in the next
step when the second landmark l2 is eliminated and the sepa-
rator is a single variable, x3. In all intermediate steps we have
both an incomplete factor graph and an incomplete Bayes net.
The elimination is complete after the last variable is elimi-
nated and only a Bayes net remains. Speaking in terms of
probabilities, the factors ∏i fi(Θi) have been converted into
an equivalent product of conditionals ∏ j P(θ j|S j).

Gaussian Case

In Gaussian factor graphs, elimination is equivalent to sparse
QR factorization of the measurement Jacobian. The chain-
rule-based factorization f joint(θ j,S j) = P(θ j|S j) fnew(S j) in
step 3 of Alg. 2 can be implemented using Householder re-
flections or a Gram-Schmidt orthogonalization, in which case
the entire elimination algorithm is equivalent to QR factoriza-
tion of the entire measurement matrix A. To see this, note that,
for ∆ j ∈R and s j ∈Rn j (the set of variables S j combined in a
vector of length n j), the factor f joint(∆ j,s j) defines a Gaussian
density

f joint(∆ j,s j) ∝ exp
{
−1

2

∥∥a∆ j +ASs j−b
∥∥2
}

(9)

where the dense, but small matrix A j = [a|AS] is obtained by
concatenating the vectors of partial derivatives of all factors
connected to variable ∆ j. Note that a ∈ Rm j , AS ∈ Rm j×n j

and b ∈ Rm j , with m j the number of measurement rows of all
factors connected to ∆ j. The desired conditional P(∆ j|s j) is
obtained by evaluating the joint density (9) for a given value
of s j, yielding

P(∆ j|s j) ∝ exp
{
−1

2
(∆ j + rs j−d)2

}
(10)

6 iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree

with r ∆
= a†AS and d ∆

= a†b, where a† ∆
=

(
aT a

)−1 aT is the
pseudo-inverse of a. The new factor fnew(s j) is obtained by
substituting ∆ j = d− rs j back into (9):

fnew(s j) = exp
{
−1

2

∥∥A′s j−b′
∥∥2
}

(11)

where A′ ∆
= AS−ar and b′ ∆

= b−ad.
The above is one step of Gram-Schmidt, interpreted in

terms of densities, and the sparse vector r and scalar d can
be recognized as specifying a single joint conditional density
in the Bayes net, or alternatively a single row in the sparse
square root information matrix. The chordal Bayes net result-
ing from variable elimination is therefore equivalent to the
square root information matrix obtained by variable elimina-
tion, as indicated in Fig. 3b. Note that alternatively an incom-
plete Cholesky factorization can be performed, starting from
the information matrix AT A.

Solving the least squares problem is finally achieved by cal-
culating the optimal assignment ∆

∗ in one pass from the leaves
up to the root of the tree to define all functions, and then one
pass down to retrieve the optimal assignment for all frontal
variables, which together make up the variables ∆. The first
pass is already performed during construction of the Bayes
tree, and is represented by the conditional densities associ-
ated with each clique. The second pass recovers the optimal
assignment starting from the root based on (10) by solving

∆ j = d− rs j (12)

for every variable ∆ j, which is known as backsubstitution in
sparse linear algebra.

3.2 Creating the Bayes Tree

In this section we introduce a new data structure, the Bayes
tree, derived from the Bayes net resulting from elimination,
to better capture the equivalence with linear algebra and en-
able new algorithms in recursive estimation. The Bayes net
resulting from elimination/factorization is chordal, and it can
be converted into a tree-structured graphical model, in which
optimization and marginalization are easy. A Bayes tree is
a directed tree where the nodes represent cliques Ck of the
underlying chordal Bayes net. Bayes trees are similar to junc-
tion trees (Cowell et al., 1999), but a Bayes tree is directed
and is closer to a Bayes net in the way it encodes a factored
probability density. In particular, we define one conditional
density P(Fk|Sk) per node, with the separator Sk as the in-
tersection Ck ∩Πk of the clique Ck and its parent clique Πk,
and the frontal variables Fk as the remaining variables, i.e.
Fk

∆
=Ck \Sk. We write Ck = Fk : Sk. This leads to the follow-

ing expression for the joint density P(Θ) on the variables Θ

defined by a Bayes tree,

P(Θ) = ∏
k

P(Fk|Sk) (13)

Alg. 3 Creating a Bayes tree from the chordal Bayes net resulting from elim-
ination (Alg. 2).

For each conditional density P(θ j|S j) of the Bayes net, in reverse elimination
order:
If no parent (S j = {})

start a new root clique Fr containing θ j
else

identify parent clique Cp that contains the first eliminated variable of S j as
a frontal variable

if nodes Fp ∪ Sp of parent clique Cp are equal to separator nodes S j of
conditional

insert conditional into clique Cp
else

start new clique C′ as child of Cp containing θ j

where for the root Fr the separator is empty, i.e., it is a sim-
ple prior P(Fr) on the root variables. The way Bayes trees
are defined, the separator Sk for a clique Ck is always a sub-
set of the parent clique Πk, and hence the directed edges in
the graph have the same semantic meaning as in a Bayes net:
conditioning.

Every chordal Bayes net can be transformed into a tree
by discovering its cliques. Discovering cliques in chordal
graphs is done using the maximum cardinality search algo-
rithm by Tarjan and Yannakakis (1984), which proceeds in
reverse elimination order to discover cliques in the Bayes net.
The algorithm for converting a Bayes net into a Bayes tree is
summarized in Alg. 3.

Gaussian Case

In the Gaussian case the Bayes tree is closely related to the
square root information factor. The Bayes tree for the small
SLAM example in Fig. 3a is shown in Fig. 3c. Each clique
of the Bayes tree contains a conditional density over the vari-
ables of the clique, given the separator variables. All con-
ditional densities together form the square root information
matrix shown on the right-hand side of Fig. 3c, where the as-
signment between cliques and rows in the matrix are shown
by color. Note that one Bayes tree can correspond to several
different square root information factors, because the children
of any node can be ordered arbitrarily. The resulting change in
the overall variable ordering neither changes the fill-in of the
factorization nor any numerical values, but just their position
within the matrix.

3.3 Incremental Inference

We show that incremental inference corresponds to a simple
editing of the Bayes tree, which also provides a better expla-
nation and understanding of the otherwise abstract incremen-
tal matrix factorization process. In particular, we will now
store and compute the square root information matrix R in the
form of a Bayes tree T . When a new measurement is added,
for example a factor f ′(x j,x j′), only the paths between the
cliques containing x j and x j′ (respectively) and the root are
affected. The sub-trees below these cliques are unaffected, as
are any other sub-trees not containing x j or x j′ . The affected

M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert 7

x24,x25

x22,x23 : x24

x21 : x22,x23

x20 : x21,x22

x19 : x20,x22

x18 : x19,x22

x17 : x18,x22

x16 : x17,x22 x15 : x17,x22

x14 : x22,x15 x9 : x15

x13 : x14,x15

x12 : x13,x15

x11 : x12,x15

x10 : x11,x15

x8 : x9

x6,x7 : x8

x5 : x6,x7

x4 : x5,x6

x3 : x4,x6

x2 : x3,x6

x1 : x2,x6

x0 : x1,x6

x22,x23,x24

x21 : x22,x23

x20 : x21,x22

x19 : x20,x22

x18 : x19,x22

x17 : x18,x22

x16 : x17,x22 x15 : x17,x22

x14 : x22,x15 x9 : x15

x13 : x14,x15

x12 : x13,x15

x11 : x12,x15

x10 : x11,x15

x8 : x9

x6,x7 : x8

x5 : x6,x7

x4 : x5,x6

x3 : x4,x6

x2 : x3,x6

x1 : x2,x6

x0 : x1,x6

x22,x23

x21 : x22

x20 : x21

x19 : x20

x18 : x19

x16,x17 : x18

x15 : x16,x17 x9 : x16

x14 : x15,x16

x13 : x14,x16

x12 : x13,x16

x11 : x12,x16

x10 : x11,x16

x8 : x9

x6,x7 : x8

x5 : x6,x7

x4 : x5,x6

x3 : x4,x6

x2 : x3,x6

x1 : x2,x6

x0 : x1,x6

x21,x22

x20 : x21

x19 : x20

x18 : x19

x16,x17 : x18

x15 : x16,x17 x9 : x16

x14 : x15,x16

x13 : x14,x16

x12 : x13,x16

x11 : x12,x16

x10 : x11,x16

x8 : x9

x6,x7 : x8

x5 : x6,x7

x4 : x5,x6

x3 : x4,x6

x2 : x3,x6

x1 : x2,x6

x0 : x1,x6

x25,x26

x24 : x25

x22,x23 : x24

x21 : x22,x23

x20 : x21,x22

x19 : x20,x22

x18 : x19,x22

x17 : x18,x22

x16 : x17,x22 x15 : x17,x22

x14 : x22,x15 x9 : x15

x13 : x14,x15

x12 : x13,x15

x11 : x12,x15

x10 : x11,x15

x8 : x9

x6,x7 : x8

x5 : x6,x7

x4 : x5,x6

x3 : x4,x6

x2 : x3,x6

x1 : x2,x6

x0 : x1,x6

x0

x1

x2x3x4

x5

x6 x7 x8

x9

x10 x11 x12

x13

x14x15x16

x17

x18x19

x0

x1

x2x3x4

x5

x6 x7 x8

x9

x10 x11 x12

x13

x14x15x16

x17

x18x19x20

x21

x22 x23

x0

x1

x2x3x4

x5

x6 x7 x8

x9

x10 x11 x12

x13

x14x15x16

x17

x18x19x20

x21

x22 x23 x24

x0

x1

x2x3x4

x5

x6 x7 x8

x9

x10 x11 x12

x13

x14x15x16

x17

x18x19x20

x21

x22 x23 x24

x25

x0

x1

x2x3x4

x5

x6 x7 x8

x9

x10 x11 x12

x13

x14x15x16

x17

x18x19x20

x21

x22 x23 x24

x25

x26

x20

x21

x22

Fig. 5: Evolution of the Bayes tree: The columns represent five time steps for a small SLAM example. The top row shows the map with individual robot
poses, with loop closures indicated in dashed blue. The bottom row depicts the Bayes tree, with modified cliques shown in red. Note the loop closure in
the center that affects a subset of the variables, while two sub-trees remain unchanged. Also see Extension 1 in Appendix A for an animation for the full
Manhattan sequence.

part of the Bayes tree is turned into a factor graph and the
new factors are added to it. Using a new elimination order-
ing, a new Bayes tree is formed and the unaffected sub-trees
are reattached. Fig. 6 shows how these incremental factoriza-
tion/inference steps are applied to our small SLAM example
in Fig. 3 for adding a new factor between x1 and x3, affecting
only the left branch of the tree. The entire process of updating
the Bayes tree with a new factor is described in Alg. 4.

In order to understand why only the top part of the tree is
affected, we look at two important properties of the Bayes
tree. These directly arise from the fact that it encodes the in-
formation flow during elimination. The Bayes tree is formed

from the chordal Bayes net following the inverse elimination
order. In this way, variables in each clique collect information
from their child cliques via the elimination of these children.
Thus, information in any clique propagates only upwards to
the root. Second, the information from a factor enters elimi-
nation only when the first variable of that factor is eliminated.
Combining these two properties, we see that a new factor can-
not influence any other variables that are not successors of the
factor’s variables. However, a factor on variables having dif-
ferent (i.e. independent) paths to the root means that these
paths must now be re-eliminated to express the new depen-
dency between them.

8 iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree

x2,x3

l1,x1 : x2 l2 : x3

x1

x2

x3

l1

x1,x2,x3

l1 : x1,x2 l2 : x3

x1

x2

x3

l1

Fig. 6: Updating a Bayes tree with a new factor, based on the example in
Fig. 3c. The affected part of the Bayes tree is highlighted for the case of
adding a new factor between x1 and x3. Note that the right branch is not
affected by the change. (top right) The factor graph generated from the af-
fected part of the Bayes tree with the new factor (dashed blue) inserted. (bot-
tom right) The chordal Bayes net resulting from eliminating the factor graph.
(bottom left) The Bayes tree created from the chordal Bayes net, with the
unmodified right “orphan” sub-tree from the original Bayes tree added back
in.

Alg. 4 Updating the Bayes tree with new factors F ′.

In: Bayes tree T , new linear factors F ′

Out: modified Bayes tree T ’

1. Remove top of Bayes tree and re-interpret it as a factor graph:

(a) For each variable affected by new factors, remove the corre-
sponding clique and all parents up to the root.

(b) Store orphaned sub-trees Torph of removed cliques.

2. Add the new factors F ′ into the resulting factor graph.

3. Re-order variables of factor graph.

4. Eliminate the factor graph (Alg. 2) and create a new Bayes tree (Alg. 3).

5. Insert the orphans Torph back into the new Bayes tree.

3.4 Incremental Variable Ordering

Choosing a good variable ordering is essential for the effi-
ciency of the sparse matrix solution, and this also holds for
the Bayes tree approach. An optimal ordering of the vari-
ables minimizes the fill-in, which refers to additional entries
in the square root information matrix that are created during
the elimination process. In the Bayes tree, fill-in translates
to larger clique sizes, and consequently slower computations.
Fill-in can usually not be completely avoided, unless the orig-
inal Bayes net already is chordal. While finding the variable
ordering that leads to the minimal fill-in is NP-hard (Arnborg
et al., 1987) for general problems, one typically uses heuris-
tics such as the column approximate minimum degree (CO-
LAMD) algorithm by Davis et al. (2004), which provide close

t1

t3

t4

t5

t6

t2

t5t3

t4

t1

t2 t6

(a)

t1

t3

t4

t5

t6

t2

t4t2 t6

t5

t3

t1

(b)

Fig. 7: For a trajectory with loop closing, two different optimal variable or-
derings based on nested dissection are shown on the left-hand side, with the
variables to be eliminated marked in blue. For incremental updates the strate-
gies are not equivalent as can be seen from the corresponding Bayes tree on
the right-hand side. Adding factors connected to t6 will affect (a) the left sub-
tree and the root, (b) only the root. In the latter case incremental updates are
therefore expected to be faster.

to optimal orderings for many batch problems.
While performing incremental inference in the Bayes tree,

variables can be reordered at every incremental update, elim-
inating the need for periodic batch reordering. This was not
understood in (Kaess et al., 2008), because this is only obvi-
ous within the graphical model framework, but not for matri-
ces. The affected part of the Bayes tree, for which variables
have to be reordered, is typically small, as new measurements
usually only affect a small subset of the overall state space
represented by the variables of the estimation problem. Find-
ing an optimal ordering for this subset of variables does not
necessarily provide an optimal overall ordering. However, we
have observed that some incremental orderings provide good
solutions, comparable to batch application of COLAMD.

To understand how the local variable ordering affects the
cost of subsequent updates, consider a simple loop example
in Fig. 7. In the case of a simple loop, nested dissection (Lip-
ton and Tarjan, 1979) provides the optimal ordering. The first
cut can either (a) not include the loop closing, or (b) include
the loop closing, and both solutions are equivalent in terms
of fill-in. However, there is a significant difference in the in-
cremental case: For the vertical cut in (a), which does not
include the most recent variable t6, that variable will end up
further down in the tree, requiring larger parts of the tree to
change in the next update step. The horizontal cut in (b), on
the other hand, includes the most recent variable, pushing it
into the root, and therefore leading to smaller, more efficient
changes in the next step.

A similar problem occurs with applying COLAMD locally
to the subset of the tree that is being recalculated. In the
SLAM setting we can expect that a new set of measurements
connects to some of the recently observed variables, be it
landmarks that are still in range of the sensors, or the previ-
ous robot pose connected by an odometry measurement. The

M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert 9

expected cost of incorporating the new measurements, i.e. the
size of the affected sub-tree in the update, will be lower if
these variables are closer to the root. Applying COLAMD lo-
cally does not take this consideration into account, but only
minimizes fill-in for the current step.

To allow for faster updates in subsequent steps, we there-
fore propose an incremental variable ordering strategy that
forces the most recently accessed variables to the end of the
ordering. We use the constrained COLAMD (CCOLAMD)
algorithm (Davis et al., 2004) to both, force the most recently
accessed variables to the end and still provide a good over-
all ordering. Subsequent updates will then only affect a small
part of the tree, and can therefore be expected to be efficient
in most cases, except for large loop closures.

We evaluate the merit of our proposed constrained order-
ing strategy in Fig. 8, by comparing it to the naive way of
simply applying COLAMD. The top row of Fig. 8 shows a
color coded trajectory of the Manhattan simulated dataset (Ol-
son et al., 2006). The robot starts in the center, traverses the
loop counter clockwise, and finally ends at the bottom left.
The number of affected variables significantly drops from the
naive approach (left) to the constrained approach (right), as
red parts of the trajectory (high cost) are replaced by green
(low cost). Particularly for the left part of the trajectory the
number of affected variables is much smaller than before,
which one would expect from a good ordering, as no large
loops are being closed in that area. The remaining red seg-
ments coincide with the closing of the large loop in the right
part of the trajectory. The second row of Fig. 8 shows that the
constrained ordering causes a small increase in fill-in com-
pared to the naive approach, which itself is close to the fill-
in caused by the batch ordering. The bottom figure shows
that the number of affected variables steadily increases for
the naive approach, but often remains low for the constrained
version, though the spikes indicate that a better incremental
ordering strategy can likely be found for this problem.

4 The iSAM2 Algorithm

In this section we use the Bayes tree in a novel algorithm
called iSAM2 for online mapping in robotic applications. As-
suming Gaussian noise, the algorithm incrementally estimates
a set of variables (robot positions and/or landmarks in the en-
vironment) given a set of nonlinear factors, both sets growing
over time. We have already shown how the Bayes tree is up-
dated with new linear factors. That leaves the question of how
to deal with nonlinear factors and how to perform this process
efficiently by only relinearizing where needed, a process that
we call fluid relinearization. To further improve efficiency we
restrict the state recovery to the variables that actually change,
resulting in partial state updates.

4.1 Fluid Relinearization

The idea behind just-in-time or fluid relinearization is to keep
track of the validity of the linearization point for each vari-

Alg. 5 Fluid relinearization: The linearization points of select variables are
updated based on the current delta ∆.
In: linearization point Θ, delta ∆

Out: updated linearization point Θ, marked cliques M

1. Mark variables in ∆ above threshold β : J = {∆ j ∈ ∆|
∣∣∆ j

∣∣≥ β}.
2. Update linearization point for marked variables: ΘJ := ΘJ ⊕∆J .

3. Mark all cliques M that involve marked variables ΘJ and all their an-
cestors.

Alg. 6 Updating the Bayes tree inclusive of fluid relinearization by recalcu-
lating all affected cliques. Note that the algorithm differs from Alg. 4 as it
also includes the fluid relinearization; combining both steps is more efficient.
In: Bayes tree T , nonlinear factors F , affected variables J
Out: modified Bayes tree T ’

1. Remove top of Bayes tree:

(a) For each affected variable in J remove the corresponding
clique and all parents up to the root.

(b) Store orphaned sub-trees Torph of removed cliques.

2. Relinearize all factors required to recreate top.

3. Add cached linear factors from orphans Torph.

4. Re-order variables, see Section 3.4.

5. Eliminate the factor graph (Alg. 2) and create a new Bayes tree (Alg. 3).

6. Insert the orphans Torph back into the new Bayes tree.

able, and only relinearize when needed. This represents a
departure from the conventional linearize/solve approach that
currently represents the state-of-the-art for direct equation
solvers. For a variable that is chosen to be relinearized, all
relevant information has to be removed from the Bayes tree
and replaced by relinearizing the corresponding original non-
linear factors. For cliques that are re-eliminated we also have
to take into account any marginal factors that are passed up
from their sub-trees. Caching those marginal factors during
elimination allows restarting of the elimination process from
the middle of the tree, rather than having to re-eliminate the
complete system.

Our fluid relinearization algorithm is shown in Alg. 5. The
decision to relinearize a given variable is based on the devia-
tion of its current estimate from the linearization point being
larger than a threshold β . To be exact, the different units of
variables have to be taken into account, but one simple so-
lution is to take the minimum over all thresholds. For the
Manhattan dataset, a nearly exact solution is provided for a
threshold of 0.1, while the computational cost is significantly
reduced, as can be seen from Fig. 9. Note that because we
combine the relinearization and update steps for efficiency,
the actual changes in the Bayes tree are performed later, which
differs from the original algorithm in Kaess et al. (2010). The
modified update algorithm is presented in Alg. 6.

4.2 Partial State Updates

Computational cost can be reduced significantly by realizing
that recovering a nearly exact solution in every step does not

10 iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree

(a) (b)

 0

 50000

 100000

 150000

 200000

 250000

 0 500 1000 1500 2000 2500 3000 3500

N
u

m
.

n
o

n
-z

er
o

 e
n

tr
ie

s

Time step

constrained
naive
batch

iSAM1

(c)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500 3000 3500

N
u

m
.

v
ar

ia
b

le
s

af
fe

ct
ed

Time step

constrained
naive
batch

(d)

Fig. 8: Comparison of variable ordering strategies using the Manhattan world simulated environment (Olson et al., 2006). By color coding, the top row shows
the number of variables that are updated for every step along the trajectory. Green corresponds to a low number of variables, red to a high number. (a) The
naive approach of applying COLAMD to the affected variables in each step shows a high overall cost. (b) Forcing the most recently accessed variables to the
end of the ordering using constrained COLAMD (Davis et al., 2004) yields a significant improvement in efficiency. (c) Fill-in over time for both strategies as
well as the batch ordering and iSAM1. (d) Comparing the number of affected variables in each step clearly shows the improvement in efficiency achieved by
the constrained ordering.

require solving for all variables. Updates to the Bayes tree
from new factors and from relinearization only affect the top
of the tree, however, changes in variable estimates occurring
here can still propagate further down to all sub-trees. But
the effect of changes in the top is often limited, as new mea-
surements have only a local effect if no large loops are be-
ing closed, leaving spatially remote parts of the estimate un-
changed. Consider the example of mapping a large building
with many rooms: Measurements taken inside a room usu-
ally do not affect the estimates previously obtained for other
rooms. Solving only for variables that actually change should
therefore significantly reduce computational cost.

How do we update only variables that actually change,
i.e. perform a partial state update? Full backsubstitution starts
at the root and continues to all leaves, obtaining a delta vector
∆ that is used to update the linearization point Θ. The partial
state update starts by solving for all variables contained in the
modified top of the tree. As shown in Alg. 7, we continue
processing all sub-trees, stopping when a clique is encoun-
tered that does not refer to any variable for which ∆ changed
by more than a small threshold α . The running intersection
property guarantees that none of the variables that changed

Alg. 7 Partial state update: Solving the Bayes tree in the nonlinear case
returns an update ∆ to the current linearization point Θ.
In: Bayes tree T
Out: update ∆

Starting from the root clique Cr = Fr:

1. For current clique Ck = Fk : Sk
compute update ∆k of frontal variables Fk from the local conditional
density P(Fk|Sk).

2. For all variables ∆k j in ∆k that change by more than threshold α:
recursively process each descendant containing such a variable.

significantly can occur in any sub-tree of that clique. Note
that the threshold refers to a change in the delta vector ∆, not
the absolute value of the recovered delta ∆ itself. The absolute
values of the entries in ∆ can be quite large, because, as de-
scribed above, the linearization point is only updated when a
larger threshold β is reached. For simplicity we again use the
same threshold for all variables, though that could be refined.
For variables that are not reached by this process, the previ-
ous estimate ∆ is kept. A nearly exact solution is obtained
with significant savings in computation time, as can be seen
from Fig. 10.

M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert 11

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 500 1000 1500 2000 2500 3000 3500

D
if

f.
 n

o
rm

.
ch

i-
sq

u
ar

e

Time step

beta=0.5
beta=0.25

beta=0.1
beta=0.05

 0

 50000

 100000

 150000

 200000

 250000

 0 500 1000 1500 2000 2500 3000 3500

N
u

m
.

af
f.

 m
at

ri
x

 e
n

tr
ie

s

Time step

full relin
beta=0.1

beta=0.25

Fig. 9: How the relinearization threshold β affects accuracy (top) and com-
putational cost (bottom) for the Manhattan dataset. For readability of the top
figure, the normalized χ2 value of the least-squares solution was subtracted.
A threshold of 0.1 has no notable effect on the accuracy, while the cost sav-
ings are significant as can be seen in the number of affected nonzero matrix
entries. Note that the spikes extend beyond the curve for full relinearization,
because there is a small increase in fill-in over the batch variable ordering
(compare with Fig. 8).

4.3 Algorithm and Complexity

The iSAM2 algorithm is summarized in Alg. 8. The goal of
our algorithm is to obtain an estimate Θ for the variables (map
and trajectory), given a set of nonlinear constraints that ex-
pands over time, represented by nonlinear factors F . New
factors F ′ can arrive at any time and may add new variables
Θ′ to the estimation problem. Based on the current lineariza-
tion point Θ we solve a linearized system as a subroutine in an
iterative nonlinear optimization scheme. The linearized sys-
tem is represented by the Bayes tree T .

Here we provide some general complexity bounds for
iSAM2. The number of iterations needed to converge is typ-
ically fairly small, in particular because of the quadratic con-
vergence properties of Gauss-Newton iterations near the min-
imum. We assume here that the initialization of variables is
close enough to the global minimum to allow convergence -
that is a general requirement of any direct solver method. For
exploration tasks with a constant number of constraints per

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

D
if

f.
 n

o
rm

.
ch

i-
sq

u
ar

e

Time step

alpha=0.05
alpha=0.01

alpha=0.005
alpha=0.001

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000 2500 3000 3500

N
u

m
 a

ff
ec

te
d

 v
ar

ia
b

le
s

Time step

full backsub
alpha=0.005

alpha=0.05

Fig. 10: How the backsubstitution threshold α affects accuracy (top) and
computational cost (bottom) for the Manhattan dataset. For readability of
the top figure, the normalized χ2 value of the least-squares solution was sub-
tracted. A small threshold such as 0.005 yields a significant increase in speed,
while the accuracy is nearly unaffected.

pose, the complexity is O(1) as only a constant number of
variables at the top of the tree are affected and have to be re-
eliminated, and only a constant number of variables are solved
for. In the case of loop closures the situation becomes more
difficult, and the most general bound is that for full factor-
ization, O(n3), where n is the number of variables (poses and
landmarks if present). Under certain assumptions that hold for
many SLAM problems, batch matrix factorization and back-
substitution can be performed in O(n1.5) (Krauthausen et al.,
2006). It is important to note that this bound does not depend
on the number of loop closings. Empirically, complexity is
usually much lower than these upper bounds because most of
the time only a small portion of the matrix has to be refactor-
ized in each step, as we show below.

5 Comparison to Other Methods

We compare iSAM2 to other state-of-the-art SLAM algo-
rithms, in particular the iSAM1 algorithm (Kaess et al., 2008),
HOG-Man (Grisetti et al., 2010) and SPA (Konolige et al.,

12 iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree

(a) City20000 (b) W10000

(c) Intel (d) Killian Court

Fig. 11: 2D pose-graph datasets, including simulated data (City20000, W10000), and laser range data (Killian Court, Intel). See Fig. 8 for the Manhattan
sequence.

Alg. 8 One step of the iSAM2 algorithm, following the general structure of a
smoothing solution given in Alg. 1.
In/out: Bayes tree T , nonlinear factors F , linearization point Θ, update ∆

In: new nonlinear factors F ′, new variables Θ′

Initialization: T = /0, Θ = /0, F = /0

1. Add any new factors F := F ∪F ′.

2. Initialize any new variables Θ′ and add Θ := Θ∪Θ′.

3. Fluid relinearization with Alg. 5 yields marked variables M, see Sec-
tion 4.1.

4. Redo top of Bayes tree with Alg. 6 with J the union of M and all
variables affected by new factors.

5. Solve for delta ∆ with Alg. 7, see Section 4.2.

6. Current estimate given by Θ⊕∆.

2010). We use a wide variety of simulated and real-world

datasets shown in Figs. 11, 12 and 13 that feature different
sizes and constraint densities, both pose-only and with land-
marks. All timing results are obtained on a laptop with In-
tel 1.6 GHz i7-720 processor. For iSAM1 we use version
1.6 of the open source implementation available at http:
//people.csail.mit.edu/kaess/isam with standard pa-
rameters, i.e. solving in every step. For HOG-Man, we use
svn revision 14 available at http://openslam.org/ with
command line option “-update 1” to force solving in ev-
ery step. For SPA, we use svn revision 36438 of ROS at
http://www.ros.org/ with standard parameters.

For iSAM2 we use a research C++ implementation running
single-threaded, using the CCOLAMD algorithm by Davis
et al. (2004), with parameters α = 0.001 and β = 0.1. For im-
proved efficiency, relinearization is performed every 10 steps.
Source code for iSAM2 is available as part of the gtsam li-

M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert 13

(a) Sphere2500

(b) Torus10000

Fig. 13: Simulated 3D datasets (sphere2500 and torus10000, included in iSAM1 distribution). The left column shows the data based on noisy odometry, the
right column the estimate obtained from iSAM2. Note that a large range of orientations is traversed, as the robot is simulated to drive along the surface of the
sphere and torus, respectively.

brary at https://collab.cc.gatech.edu/borg/gtsam/.
For efficiency we use incomplete Cholesky instead of QR fac-
torization within each node of the tree. For optimization over
3D orientations, the ⊕ operator is implemented using expo-
nential maps based on the theory of Lie groups (Hall, 2000).
Our original SAM work (Dellaert and Kaess, 2006) used local
updates of Euler angles for visual SLAM. Here, as represen-
tation, we use rotation matrices in iSAM2 and Quaternions in
iSAM1 (Grassia, 1998). We have found that, depending on
the application, each representation has its own advantages.

Comparing the computational cost of different algorithms
is not a simple task. Tight complexity bounds for SLAM al-
gorithms are often not available. Even if complexity bounds
are available, they are not necessarily suitable for compari-
son because the involved constants can make a large differ-
ence in practical applications. On the other hand, speed com-
parison for the implementations of the algorithms depend on
the implementation itself and any potential inefficiencies or

wrong choice of data structures. We will therefore discuss
not only the timing results obtained from the different imple-
mentations, but also compare some measure of the underlying
cost, such as how many entries of the sparse matrix have to be
recalculated. That again on its own is also not a perfect mea-
sure, as recalculating only parts of a matrix might occur some
overhead that cannot be avoided.

5.1 Timing

We compare execution speed of implementations of the vari-
ous algorithms on all datasets in Fig. 14, with detailed results
in Table 1. The results show that a batch solution using sparse
matrix factorization (SPA, SAM) quickly gets expensive, em-
phasizing the need for incremental solutions. iSAM1 per-
forms very well on sparse datasets, such as Manhattan, Killian
Court and City20000, while performance degrades on datasets
with denser constraints (number of constraints at least 5 times
the number of poses), such as W10000 and Intel, because of

14 iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 0 5000 10000 15000 20000
-5
-4.5
-4
-3.5
-3
-2.5
-2
-1.5
-1
-0.5
 0
 0.5

It
er

at
io

n
 t

im
e

(s
)

C
o
u
n
t

Time step

iSAM1
iSAM2

SPA
HOG-Man

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 5000 10000 15000 20000

C
u
m

u
la

ti
v
e

ti
m

e
(s

)

Time step

iSAM1
iSAM2

SPA
HOG-Man

(a) City20000

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 2000 4000 6000 8000 10000
-5
-4.5
-4
-3.5
-3
-2.5
-2
-1.5
-1
-0.5
 0

It
er

at
io

n
 t

im
e

(s
)

C
o
u
n
t

Time step

iSAM1
iSAM2

SPA
HOG-Man

 0

 200

 400

 600

 800

 1000

 1200

 0 2000 4000 6000 8000 10000

C
u
m

u
la

ti
v
e

ti
m

e
(s

)

Time step

iSAM1
iSAM2

SPA
HOG-Man

(b) W10000

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 200 400 600 800

C
u
m

u
la

ti
v
e

ti
m

e
(s

)

Time step

iSAM1
iSAM2

SPA
HOG-Man

(c) Intel

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500

C
u
m

u
la

ti
v
e

ti
m

e
(s

)

Time step

iSAM1
iSAM2

SPA
HOG-Man

(d) Killian Court

 0

 5

 10

 15

 20

 25

 0 1000 2000 3000 4000 5000 6000 7000

C
u
m

u
la

ti
v
e

ti
m

e
(s

)
Time step

iSAM1
iSAM2

(e) Victoria Park

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 500 1000 1500 2000 2500 3000 3500

C
u
m

u
la

ti
v
e

ti
m

e
(s

)

Time step

iSAM1
iSAM2

SPA
HOG-Man

(f) Manhattan

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 500 1000 1500 2000 2500

C
u
m

u
la

ti
v
e

ti
m

e
(s

)

Time step

iSAM1
iSAM2

HOG-Man

(g) Sphere2500

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 2000 4000 6000 8000 10000

C
u
m

u
la

ti
v
e

ti
m

e
(s

)

Time step

iSAM1
iSAM2

HOG-Man

(h) Torus10000

Fig. 14: Timing comparison between the different algorithms for all datasets, see Fig. 11. The left column shows per iteration time and the right column
cumulative time. The bottom row shows cumulative time for the remaining datasets.

Table 1: Runtime comparison for the different approaches (P: number of poses, M: number of measurements, L: number of landmarks). Listed are the
average time per step together with standard deviation and maximum in milliseconds, as well as the overall time in seconds (fastest result shown in red).

Algorithm iSAM2 iSAM1 HOG-Man SPA

Dataset P M L avg/std/max [ms] time [s] avg/std/max [ms] time [s] avg/std/max [ms] time [s] avg/std/max [ms] [s]

City20000 20000 26770 - 16.1 / 65.6 / 1125 323 7.05 / 14.5 / 308 141 27.4 / 27.8 / 146 548 48.7 / 32.6 / 140 977

W10000 10000 64311 - 22.4 / 64.6 / 901 224 35.7 / 58.8 / 683 357 16.4 / 14.9 / 147 164 108 / 75.6 / 287 1081

Manhattan 3500 5598 - 2.44 / 7.71 / 133 8.54 1.81 / 3.69 / 57.6 6.35 7.71 / 6.91 / 33.8 27.0 11.8 / 8.46 / 28.9 41.1

Intel 910 4453 - 1.74 / 1.76 / 9.13 1.59 5.80 / 8.03 / 48.4 5.28 9.40 / 12.5 / 79.3 8.55 4.89 / 3.77 / 14.9 4.44

Killian Court 1941 2190 - 0.59 / 0.80 / 12.5 1.15 0.51 / 1.13 / 16.6 0.99 2.00 / 2.41 / 11.8 3.88 3.13 / 1.89 / 7.98 6.07

Victoria Park 6969 10608 151 2.34 / 7.75 / 316 16.3 2.35 / 4.82 / 80.4 16.4 N/A N/A N/A N/A

Trees10000 10000 14442 100 4.24 / 6.52 / 124 42.4 2.98 / 6.70 / 114 29.8 N/A N/A N/A N/A

Sphere2500 2500 4950 - 30.4 / 25.5 / 158 76.0 21.7 / 31.3 / 679 54.3 56.7 / 40.8 / 159 142 N/A N/A

Torus10000 10000 22281 - 35.2 / 45.7 / 487 352 86.4 / 119 / 1824 864 99.0 / 82.9 / 404 990 N/A N/A

M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert 15

(a) Trees10000

(b) Victoria Park

Fig. 12: 2D datasets with landmarks, both simulated (Trees10000), and laser
range data (Victoria Park).

local fill-in between the periodic batch reordering steps (see
Fig. 8 center). Note that the spikes in the iteration time plots
are caused by the periodic variable reordering every 100 steps,
which is equivalent to a batch Cholesky factorization as per-
formed in SPA, but with some overhead for the incremental
data structures. The performance of HOG-Man is between
SPA and iSAM1 and 2 for most of the datasets, but performs
better on W10000 than any other algorithm. Performance is
generally better on denser datasets, where the advantages of
hierarchical operations dominate their overhead.

iSAM2 consistently performs better than SPA, and simi-
lar to iSAM1. While iSAM2 saves computation over iSAM1
by only performing partial backsubstitution, the fluid relin-
earization adds complexity. Relinearization typically affects
many more variables than a linear update (compare Figs. 8
and 9), resulting in larger parts of the Bayes tree having to be

relinearize

21%

reorder

8%

solve

20%

other

5%

eliminate

46%

Fig. 15: How time is spent in iSAM2: Percentage of time spent in various
components of the algorithm for the W10000 dataset.

recalculated. Interesting is the fact that the spikes in iSAM2
timing follow SPA, but are higher by almost an order of mag-
nitude, which becomes evident in the per iteration time plots
for City20000 and W10000 in Fig. 14ab. That difference
can partially be explained by the fact that SPA uses the well
optimized CHOLMOD library (Chen et al., 2008) for batch
Cholesky factorization, while for the algorithms underlying
iSAM2 no such library is available yet and we are using our
own research implementation. Fig. 15 shows how time is
spent in iSAM2, with elimination being the dominating part.

5.2 Number of Affected Entries

We also provide a computation cost measure that is more in-
dependent of specific implementations, based on the number
of variables affected, and the number of entries of the sparse
square root information matrix that are being recalculated in
each step. The bottom plots in Figs. 10 and 9 show the num-
ber of affected variables in backsubstitution and the number
of affected non-zero entries during matrix factorization. The
red curve shows the cost of iSAM2 for thresholds that achieve
an almost exact solution. When compared to the batch solu-
tion shown in black, the data clearly shows significant savings
in computation of iSAM2 over Square Root SAM and SPA.

In iSAM2 the fill-in of the corresponding square root in-
formation factor remains close to that of the batch solution as
shown in Fig. 8. The same figure also shows that for iSAM1
the fill-in increases significantly between the periodic batch
steps, because variables are only reordered every 100 steps.
This local fill-in explains the higher computational cost on
datasets with denser constraints, such as W10000. iSAM2
shows no significant local variations of fill-in owing to the
incremental variable ordering.

5.3 Accuracy

We now focus on the accuracy of the solution of each SLAM
algorithm. There are a variety of different ways to evaluate ac-
curacy. We choose the normalized χ2 measure that quantifies
the quality of a least-squares fit. Normalized χ2 is defined as

1
m−n ∑i ‖hi(Θi)− zi‖2

Λi
, where the numerator is the weighted

sum of squared errors of (4), m is the number of measure-
ments and n the number of degrees of freedom. Normalized
χ2 measures how well the constraints are satisfied, approach-

16 iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree

0.00

0.05

0.10

0.15

 1000 1500 2000 2500 3000 3500

D
if

f.
 n

o
rm

.
ch

i-
sq

u
ar

e

Time step

iSAM1
iSAM2

SPA
HOG-Man

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.50

1.50

2.50

3.50

4.50

0.00

0.05

0.10

0.15

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
if

f.
 n

o
rm

.
ch

i-
sq

u
ar

e

Time step

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.50

1.00

1.50

2.00

2.50

 iSAM1
iSAM2

SPA
HOG-Man

Fig. 16: Step-wise quality comparison of the different algorithms for the
Manhattan world (top) and W10000 dataset (bottom). For improved read-
ability, the difference in normalized χ2 to the least squares solution is shown
(i.e. ground truth given by y = 0).

ing 1 for a large number of measurements sampled from a
normal distribution.

The results in Fig. 16 show that the iSAM2 solution is very
close to the ground truth. The ground truth is the least-squares
estimate obtained by iterating until convergence in each step.
Small spikes are caused by relinearizing only every 10 steps,
which is a trade-off with computational speed. iSAM1 shows
larger spikes in error that are caused by relinearization only
being done every 100 steps. HOG-Man is an approximate
algorithm exhibiting consistently larger errors, even though
visual inspection of the resulting map showed only minor dis-
tortions. Accuracy improves for more dense datasets, such as
W10000, but is still not as good as iSAM2.

6 Related Work

The first smoothing approach to the SLAM problem was pre-
sented by Lu and Milios (1997), where the estimation prob-
lem is formulated as a network of constraints between robot
poses. The first solution was implemented using matrix in-
version (Gutmann and Nebel, 1997). A number of improved
and numerically more stable algorithms have since been de-
veloped, based on well known iterative techniques such as re-
laxation (Duckett et al., 2002; Bosse et al., 2004; Thrun et al.,
2005), gradient descent (Folkesson and Christensen, 2004,
2007), preconditioned conjugate gradient (Konolige, 2004;
Dellaert et al., 2010), multi-level relaxation (Frese et al.,

2005), and belief propagation (Ranganathan et al., 2007).
Direct methods, such as QR and Cholesky matrix factor-

ization, provide the advantage of faster convergence, at least
if a good initialization is available. They have initially been
ignored, because a naive dense implementation is too expen-
sive. An efficient sparse factorization for SLAM has first been
proposed by Dellaert (2005), but is now widely used (Dellaert
and Kaess, 2006; Frese, 2006; Folkesson et al., 2007; Kaess
et al., 2008; Mahon et al., 2008; Grisetti et al., 2010; Konolige
et al., 2010; Strasdat et al., 2010). Square Root SAM (Del-
laert, 2005; Dellaert and Kaess, 2006) performs smoothing by
Cholesky factorization of the complete, naturally sparse infor-
mation matrix in every step using the Levenberg-Marquardt
algorithm. Konolige et al. (2010) recently presented Sparse
Pose Adjustment (SPA) using Cholesky factorization, that in-
troduces a continuable Levenberg-Marquardt algorithm and
focuses on a fast setup of the information matrix, often the
most costly part in batch factorization.

Smoothing is closely related to structure from motion
(Hartley and Zisserman, 2000) and bundle adjustment (Triggs
et al., 1999) in computer vision. Both bundle adjustment and
the smoothing formulation of SLAM keep all poses and land-
marks in the estimation problem (pose-graph SLAM is a spe-
cial case that omits landmarks). The key difference between
bundle adjustment and SLAM is that bundle adjustment is
typically solving the batch problem, while for robotics appli-
cations online solutions are required because data is continu-
ously collected. Our iSAM2 algorithm achieves online bun-
dle adjustment, at least up to some reasonable size of datasets.
The question of creating a “perpetual SLAM engine” to run
indefinitely remains open. Note that the number of landmarks
per frame is typically much lower for laser range-based appli-
cations than for visual SLAM applications (Eade and Drum-
mond, 2007; Konolige and Agrawal, 2008; Paz et al., 2008;
Strasdat et al., 2010). However, smoothing has recently also
been shown to be the method of choice for visual SLAM in
many situations (Strasdat et al., 2010).

In an incremental setting, the cost of batch optimization can
be sidestepped by applying matrix factorization updates, with
the first SLAM applications in (Kaess et al., 2007; Folkesson
et al., 2007; Wang, 2007; Mahon et al., 2008). The iSAM
algorithm (Kaess et al., 2007) performs incremental updates
using Givens rotations, with periodic batch factorization and
relinearization steps. (Folkesson et al., 2007) only keeps a
short history of robot poses, avoiding the reordering problem.
Wang (2007) mentions Cholesky updates as an option for the
D-SLAM information matrix that only contains landmarks.
iSAM2 is similar to these methods, but has the advantage that
both reordering and relinearization can be performed incre-
mentally in every step. Note that iSAM2 does not simply ap-
ply existing methods such as matrix factorization updates, but
introduces a completely novel algorithm for solving sparse
nonlinear least-squares problems that grow over time.

The relative formulation in Olson et al. (2006) expresses
poses relative to previous ones, replacing the traditional

M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert 17

global formulation. The resulting Jacobian has significantly
more entries, but is solved efficiently by stochastic gradi-
ent descent. The relative formulation avoids local minima
in poorly initialized problems. A hierarchical extension by
Grisetti et al. (2007) called TORO provides faster conver-
gence by significantly reducing the maximum path length be-
tween two arbitrary nodes. However, the separation of trans-
lation and rotation leads to inaccurate solutions (Grisetti et al.,
2010) that are particularly problematic for 3D applications.

Relative formulations have also been used on a different
level, to split the problem into submaps, for example Atlas
(Bosse et al., 2004) or Tectonic SAM (Ni et al., 2007; Ni and
Dellaert, 2010). In some way, iSAM2 provides a separation
into submaps represented by different sub-trees, even though
they are not completely separated in a way, as new measure-
ments can change that topology at any time, so that the com-
plexity is not explicitly bounded.

Sibley et al. (2009) couples the relative formulation with
locally restricted optimization, operating on a manifold sim-
ilar to Howard et al. (2006). Restricting optimization to a
local region allows updates in constant time. The produced
maps are locally accurate, but a globally metric map can only
be obtained offline. While such maps are sufficient for some
applications, we argue that tasks such as planning require an
accurate globally metric map to be available at every step: For
example, to detect/decide if an unexplored direct path (such as
a door) might exist between places A and B requires globally
metric information. In iSAM2 we therefore focus on making
online recovery of globally metric maps more efficient - how-
ever, our update steps are not constant time, and for large loop
closings can become as expensive as a batch solution.

Grisetti et al. (2010) recently presented HOG-Man, a hier-
archical pose graph formulation using Cholesky factorization
that represents the estimation problem at different levels of
detail. Computational effort is focused on affected areas at the
most detailed level, while any global effects are propagated to
the coarser levels. In particular for dense sequences, HOG-
Man fares well when compared to iSAM2, but only provides
an approximate solution.

The thin junction tree filter (TJTF) by Paskin (2003) pro-
vides an incremental solution directly based on graphical
models. A junction tree is maintained incrementally for the
filtering version of the SLAM problem, and data is selectively
omitted in order to keep the data structure sparse (filtering
leads to fill-in) and the complexity of solving manageable.
iSAM2 in contrast solves the full SLAM problem, and does
not omit any information. Furthermore, construction of the
Bayes tree differs from the junction tree, which first forms a
clique graph and then finds a spanning tree. The Bayes tree,
in contrast, is based on a given variable ordering, similar to
the matrix factorization. Though it gains some flexibility be-
cause the order of the sub-trees of a clique can be changed
comparing to the fixed variable ordering of the square root
information matrix.

Treemap by Frese (2006) performs QR factorization within

nodes of a tree, which is balanced over time. Sparsification
prevents the nodes from becoming too large, which intro-
duces approximations by duplication of variables. Treemap is
also closely related to the junction tree, though the author ap-
proached the subject “from a hierarchy-of-regions and linear-
equation-solving perspective” Frese (2006). Our work for-
malizes this connection in a more comprehensive way through
the Bayes tree data structure.

7 Conclusion

We have presented a novel data structure, the Bayes tree,
which provides an algorithmic foundation that enables new
insights into existing graphical model inference algorithms
and sparse matrix factorization methods. These insights have
led us to iSAM2, a fully incremental algorithm for nonlinear
least-squares problems as they occur in mobile robotics. Our
new algorithm is completely different from the original iSAM
algorithm as both variable reordering and relinearization are
now done incrementally. In contrast, iSAM can only update
linear systems incrementally, requiring periodic batch steps
for reordering and relinearization. We have used SLAM as an
example application, even though the algorithm is also suit-
able for other incremental inference problems, such as object
tracking and sensor fusion. We performed a systematic eval-
uation of iSAM2 and a comparison with three other state-of-
the-art SLAM algorithms. We expect our novel graph-based
algorithm to also allow for better insights into the recovery of
marginal covariances, as we believe that simple recursive al-
gorithms in terms of the Bayes tree are formally equivalent to
the dynamic programming methods described in (Kaess and
Dellaert, 2009). The graph based structure is also suitable for
exploiting parallelization that is becoming available in newer
processors.

Acknowledgments

M. Kaess, H. Johannsson and J. Leonard were partially sup-
ported by ONR grants N00014-06-1-0043 and N00014-10-1-
0936. F. Dellaert and R. Roberts were partially supported by
NSF, award number 0713162, “RI: Inference in Large-Scale
Graphical Models”. V. Ila has been partially supported by the
Spanish MICINN under the Programa Nacional de Movilidad
de Recursos Humanos de Investigación.

We thank E. Olson for the Manhattan dataset, E. Nebot and
H. Durrant-Whyte for the Victoria Park dataset, D. Haehnel
for the Intel dataset and G. Grisetti for the W10000 dataset.

References

Arnborg, S., Corneil, D., and Proskurowski, A. (1987). Complex-
ity of finding embeddings in a k-tree. SIAM J. on Algebraic and
Discrete Methods, 8(2):277–284.

Blair, J. and Peyton, B. (1993). An introduction to chordal graphs
and clique trees. In George, J., Gilbert, J., and Liu, J.-H., editors,

18 iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree

Graph Theory and Sparse Matrix Computations, volume 56 of
IMA Volumes in Mathematics and its Applications, pages 1–27.
Springer-Verlag, New York.

Bosse, M., Newman, P., Leonard, J., and Teller, S. (2004). Simulta-
neous localization and map building in large-scale cyclic environ-
ments using the Atlas framework. Intl. J. of Robotics Research,
23(12):1113–1139.

Brooks, R. (1985). Visual map making for a mobile robot. In IEEE
Intl. Conf. on Robotics and Automation (ICRA), volume 2, pages
824 – 829.

Castellanos, J., Montiel, J., Neira, J., and Tardós, J. (1999). The
SPmap: A probabilistic framework for simultaneous localization
and map building. IEEE Trans. Robot. Automat., 15(5):948–953.

Chen, Y., Davis, T., Hager, W., and Rajamanickam, S. (2008). Al-
gorithm 887: CHOLMOD, supernodal sparse Cholesky factoriza-
tion and update/downdate. ACM Trans. Math. Softw., 35(3):22:1–
22:14.

Cowell, R., Dawid, A., Lauritzen, S., and Spiegelhalter, D. (1999).
Probabilistic Networks and Expert Systems. Statistics for Engi-
neering and Information Science. Springer-Verlag.

Davis, T., Gilbert, J., Larimore, S., and Ng, E. (2004). A column
approximate minimum degree ordering algorithm. ACM Trans.
Math. Softw., 30(3):353–376.

Dellaert, F. (2005). Square Root SAM: Simultaneous location and
mapping via square root information smoothing. In Robotics: Sci-
ence and Systems (RSS).

Dellaert, F., Carlson, J., Ila, V., Ni, K., and Thorpe, C. (2010).
Subgraph-preconditioned conjugate gradient for large scale slam.
In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

Dellaert, F. and Kaess, M. (2006). Square Root SAM: Simultaneous
localization and mapping via square root information smoothing.
Intl. J. of Robotics Research, 25(12):1181–1203.

Dellaert, F., Kipp, A., and Krauthausen, P. (2005). A multifrontal QR
factorization approach to distributed inference applied to multi-
robot localization and mapping. In Proc. 22nd AAAI National
Conference on AI, Pittsburgh, PA.

Dissanayake, M., Newman, P., Durrant-Whyte, H., Clark, S., and
Csorba, M. (2001). A solution to the simultaneous localization
and map building (SLAM) problem. IEEE Trans. Robot. Au-
tomat., 17(3):229–241.

Duckett, T., Marsland, S., and Shapiro, J. (2002). Fast, on-line learn-
ing of globally consistent maps. Autonomous Robots, 12(3):287–
300.

Eade, E. and Drummond, T. (2007). Monocular SLAM as a graph of
coalesced observations.

Folkesson, J. and Christensen, H. (2004). Graphical SLAM - a self-
correcting map. In IEEE Intl. Conf. on Robotics and Automation
(ICRA), volume 1, pages 383–390.

Folkesson, J. and Christensen, H. (2007). Closing the loop with
Graphical SLAM. IEEE Trans. Robotics, 23(4):731–741.

Folkesson, J., Leonard, J., Leederkerken, J., and Williams, R.
(2007). Feature tracking for underwater navigation using sonar.
In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
pages 3678–3684.

Frese, U. (2006). Treemap: An O(logn) algorithm for indoor
simultaneous localization and mapping. Autonomous Robots,
21(2):103–122.

Frese, U., Larsson, P., and Duckett, T. (2005). A multilevel relax-
ation algorithm for simultaneous localisation and mapping. IEEE
Trans. Robotics, 21(2):196–207.

Gauss, C. (1809). Theoria Motus Corporum Coelestium in Sec-
tionibus Conicis Solem Mabientium [Theory of the Motion of
the Heavenly Bodies Moving about the Sun in Conic Sections].
Perthes and Besser, Hamburg, Germany. English translation avail-
able at http://name.umdl.umich.edu/AGG8895.0001.001.

Gentleman, W. (1973). Least squares computations by Givens trans-
formations without square roots. IMA J. of Appl. Math., 12:329–
336.

Gill, P., Golub, G., Murray, W., and Saunders, M. (1974). Methods
for modifying matrix factorizations. Mathematics and Computa-
tion, 28(126):505–535.

Golub, G. and Loan, C. V. (1996). Matrix Computations. Johns
Hopkins University Press, Baltimore, third edition.

Grassia, F. S. (1998). Practical parameterization of rotations using
the exponential map. J. Graph. Tools, 3:29–48.

Grisetti, G., Kuemmerle, R., Stachniss, C., Frese, U., and Hertzberg,
C. (2010). Hierarchical optimization on manifolds for online 2D
and 3D mapping. In IEEE Intl. Conf. on Robotics and Automation
(ICRA), Anchorage, Alaska.

Grisetti, G., Stachniss, C., Grzonka, S., and Burgard, W. (2007). A
tree parameterization for efficiently computing maximum likeli-
hood maps using gradient descent. In Robotics: Science and Sys-
tems (RSS).

Gutmann, J.-S. and Nebel, B. (1997). Navigation mobiler Roboter
mit Laserscans. In Autonome Mobile Systeme, Berlin. Springer
Verlag.

Hall, B. (2000). Lie Groups, Lie Algebras, and Representations: An
Elementary Introduction. Springer.

Hartley, R. and Zisserman, A. (2000). Multiple View Geometry in
Computer Vision. Cambridge University Press.

Heggernes, P. and Matstoms, P. (1996). Finding good column order-
ings for sparse QR factorization. In Second SIAM Conference on
Sparse Matrices.

Howard, A., Sukhatme, G., and Matarić, M. (2006). Multi-robot
mapping using manifold representations. Proceedings of the IEEE
- Special Issue on Multi-robot Systems, 94(9):1360 – 1369.

Julier, S. and Uhlmann, J. (2001). A counter example to the theory of
simultaneous localization and map building. In IEEE Intl. Conf.
on Robotics and Automation (ICRA), volume 4, pages 4238–4243.

Kaess, M. and Dellaert, F. (2009). Covariance recovery from a
square root information matrix for data association. Journal of
Robotics and Autonomous Systems, 57:1198–1210.

Kaess, M., Ila, V., Roberts, R., and Dellaert, F. (2010). The Bayes
tree: An algorithmic foundation for probabilistic robot mapping.
In Intl. Workshop on the Algorithmic Foundations of Robotics,
pages 157–173, Singapore.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., and
Dellaert, F. (2011). iSAM2: Incremental smoothing and mapping

M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert 19

with fluid relinearization and incremental variable reordering. In
IEEE Intl. Conf. on Robotics and Automation (ICRA), Shanghai,
China. To appear.

Kaess, M., Ranganathan, A., and Dellaert, F. (2007). Fast incremen-
tal square root information smoothing. In Intl. Joint Conf. on AI
(IJCAI), pages 2129–2134, Hyderabad, India.

Kaess, M., Ranganathan, A., and Dellaert, F. (2008). iSAM:
Incremental smoothing and mapping. IEEE Trans. Robotics,
24(6):1365–1378.

Kim, B., Kaess, M., Fletcher, L., Leonard, J., Bachrach, A., Roy,
N., and Teller, S. (2010). Multiple relative pose graphs for ro-
bust cooperative mapping. In IEEE Intl. Conf. on Robotics and
Automation (ICRA), pages 3185–3192, Anchorage, Alaska.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Mod-
els: Principles and Techniques. The MIT press, Cambridge, MA.

Konolige, K. (2004). Large-scale map-making. In Proc. 21th AAAI
National Conference on AI, San Jose, CA.

Konolige, K. and Agrawal, M. (2008). FrameSLAM: from bundle
adjustment to realtime visual mapping. IEEE Trans. Robotics,
24(5):1066–1077.

Konolige, K., Grisetti, G., Kuemmerle, R., Burgard, W., Benson, L.,
and Vincent, R. (2010). Sparse pose adjustment for 2D mapping.
In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS).

Krauthausen, P., Dellaert, F., and Kipp, A. (2006). Exploiting local-
ity by nested dissection for square root smoothing and mapping.
In Robotics: Science and Systems (RSS).

Kschischang, F., Frey, B., and Loeliger, H.-A. (2001). Factor graphs
and the sum-product algorithm. IEEE Trans. Inf. Theory, 47(2).

Lipton, R. and Tarjan, R. (1979). Generalized nested dissection.
SIAM Journal on Applied Mathematics, 16(2):346–358.

Lu, F. and Milios, E. (1997). Globally consistent range scan align-
ment for environment mapping. Autonomous Robots, pages 333–
349.

Mahon, I., Williams, S., Pizarro, O., and Johnson-Roberson, M.
(2008). Efficient view-based SLAM using visual loop closures.
IEEE Trans. Robotics, 24(5):1002–1014.

Ni, K. and Dellaert, F. (2010). Multi-level submap based SLAM
using nested dissection. In IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS).

Ni, K., Steedly, D., and Dellaert, F. (2007). Tectonic SAM: Ex-
act; out-of-core; submap-based SLAM. In IEEE Intl. Conf. on
Robotics and Automation (ICRA), Rome; Italy.

Olson, E., Leonard, J., and Teller, S. (2006). Fast iterative alignment
of pose graphs with poor initial estimates. In IEEE Intl. Conf. on
Robotics and Automation (ICRA).

Paskin, M. (2003). Thin junction tree filters for simultaneous local-
ization and mapping. In Intl. Joint Conf. on AI (IJCAI).

Paz, L., Pinies, P., Tardós, J., and Neira, J. (2008). Large scale 6DOF
SLAM with stereo-in-hand. IEEE Transactions on Robotics,
24(5):946–957.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann.

Pothen, A. and Sun, C. (1992). Distributed multifrontal factorization
using clique trees. In Proc. of the Fifth SIAM Conf. on Paral-

lel Processing for Scientific Computing, pages 34–40. Society for
Industrial and Applied Mathematics.

Ranganathan, A., Kaess, M., and Dellaert, F. (2007). Loopy SAM.
In Intl. Joint Conf. on AI (IJCAI), pages 2191–2196, Hyderabad,
India.

Sibley, G., Mei, C., Reid, I., and Newman, P. (2009). Adaptive rela-
tive bundle adjustment. In Robotics: Science and Systems (RSS).

Smith, R., Self, M., and Cheeseman, P. (1987). A stochastic map for
uncertain spatial relationships. In Int. Symp on Robotics Research.

Strasdat, H., Montiel, J., and Davison, A. (2010). Real-time monoc-
ular SLAM: Why filter? In IEEE Intl. Conf. on Robotics and
Automation (ICRA).

Tarjan, R. and Yannakakis, M. (1984). Simple linear-time algo-
rithms to test chordality of graphs, test acyclicity of hypergraphs
and selectively reduce acyclic hypergraphs. SIAM J. Comput.,
13(3):566–579.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics.
The MIT press, Cambridge, MA.

Triggs, B., McLauchlan, P., Hartley, R., and Fitzgibbon, A. (1999).
Bundle adjustment – a modern synthesis. In Triggs, W., Zisser-
man, A., and Szeliski, R., editors, Vision Algorithms: Theory and
Practice, LNCS, pages 298–375. Springer Verlag.

Wang, Z. (2007). Exactly Sparse Information Filters for Simulta-
neous Localization and Mapping. PhD thesis, The University of
Technology, Sydney.

A Index to Multimedia Extensions

The multimedia extensions to this article are at: http://www.ijrr.org.
Extension Type Description

1 Video The Bayes tree data structure and the
map as they evolve over time for the

Manhattan sequence.

