
Abstract
This paper presents an approach to learning an optimal
behavioral parameterization in the framework of a Case-Based
Reasoning methodology for autonomous navigation tasks. It is
based on our previous work on a behavior-based robotic system
that also employed spatio-temporal case-based reasoning [3] in
the selection of behavioral parameters but was not capable of
learning new parameterizations. The present method extends the
case-based reasoning module by making it capable of learning
new and optimizing the existing cases where each case is a set of
behavioral parameters. The learning process can either be a
separate training process or be part of the mission execution. In
either case, the robot learns an optimal parameterization of its
behavior for different environments it encounters. The goal of this
research is not only to automatically optimize the performance of
the robot but also to avoid the manual configuration of behavioral
parameters and the initial configuration of a case library, both of
which require the user to possess good knowledge of robot
behavior and the performance of numerous experiments. The
presented method was integrated within a hybrid robot
architecture and evaluated in extensive computer simulations,
showing a significant increase in the performance over a non-
adaptive system and a performance comparable to a non-learning
CBR system that uses a hand-coded case library.

Index terms: Case-Based Reasoning, Behavior-Based Robotics,
Reactive Robotics.

I. INTRODUCTION

Behavior-based control for robotics is known to
provide good performance in unknown or dynamic
environments. Such robotic systems require li ttle a priori
knowledge and are very fast in response to changes in the
environment, as they advocate a tight coupling of
perceptual data to an action. At any point of time, based on
incoming sensory data, a robot selects a subset of behaviors
(called a behavioral assemblage) from the set of predefined
behaviors and then executes them. One of the problems,
however, of this approach is that as the surrounding
environment gradually changes, the parameterization of the
selected behaviors should also be adjusted correspondingly.

* This research is supported by DARPA/U.S. Army SMDC
contract #DASG60-99-C-0081. Approved for Public
Release; distribution unlimited.

Using a constant, non-adaptive, parameterization for most
of the non-trivial cases results in robot performance far
from being optimal. Also, choosing the "right" set of
parameters even in the case of constant parameterization is
a diff icult task requiring both knowledge of robot behaviors
and a number of preliminary experiments. It is desirable to
avoid this manual configuration of behavioral parameters in
order to make mission specification as user-friendly and
rapid as possible.

As one of the possible solutions to these problems,
we previously proposed the use of Case-based Reasoning
methodology for the automatic selection of behavioral
parameters [3] for navigational tasks. This approach
resulted in significant robot performance improvement and
also made the manual configuration of parameters
unnecessary. This method, however, required manual
creation of a case library, where each case is indexed by
environmental features and defines a set of behavioral
parameters. Even though the creation of the library of cases
needed to be performed only once for a given robot
architecture, it is still very tedious work.

The idea behind this new research is to full y
automate the creation of a library of cases, so that the case-
based reasoning (CBR) unit automatically creates and
optimizes cases in the library as the result of an automatic
experimental procedure. At the training stage the system
starts off with a completely empty library. As training
proceeds new cases are created whenever there are no close
enough matches already present in the library. Whenever a
case is selected for the application, it goes through an
adaptation step that, based on the previous performance of
the case, adapts the case in the direction that resulted in the
performance improvement. The case is then applied and its
performance is re-evaluated and stored for the use by the
adaptation routine the next time the case is selected. Thus,
in effect, the CBR unit performs a gradient descent search
in the space of behavioral parameters for each of the cases
in the library. Once the training is over and a robot exhibits
a good performance in the training session, the library is
"frozen" and can be used in real missions. It is important to
note, however, that the training does not need to be
separated from actual mission execution. That is, an
alternative to the above procedure is to have the robot learn
the cases as it executes missions. In this case, even though

Learning Behavioral Parameterization Using
Spatio-Temporal Case-Based Reasoning*

Maxim Likhachev, Michael Kaess, Ronald C. Arkin
 Mobile Robot Laboratory

 College of Computing, Georgia Institute of Technology
maxim+@cs.cmu.edu, kaess@cc.gatech.edu, arkin@cc.gatech.edu

the performance in the first robot missions would be far
from optimal, as more and more missions are executed the
robot's performance would consistently improve.

In section III , we demonstrate how a simulated robot
learns new cases during training and compare its
performance with both non-adaptive and non-learning CBR
systems. The results show that the learning system
significantly outperforms a non-adaptive system while it is
comparable to a non-learning CBR system for which the
library of cases was manually created as a result of
extensive experimentation. Moreover, if the library of cases
for the non-learning CBR system was not well optimized
for actual environments that are similar to the test
environments then the learning CBR system outperforms
even the non-learning CBR as well .

A case-based reasoning methodology is not new to
the field of robotics. It was successfull y used to help in
solving such problems as path planning based on past
routes, high-level action-selection based on environment
similarities, place learning, and acceleration of complex
problem solving based on past problem solutions [4, 5, 6, 7,
8, 14]. Previous work has also been performed on the
incorporation of case-based reasoning in the selection of
behavior parameters by our group [1, 2, 3] (upon which this
present research is partiall y based) as well as a few other
groups [e.g., 13]. The approach described in this paper
extends our previous work by learning new cases from
scratch either during a training step or while executing a
mission. The method has also been incorporated within a
complete hybrid robot architecture and extensively
evaluated in computer simulations. Extensive research has
also been conducted on learning robot behaviors using other
methods such as neural networks, genetic algorithms, Q-
learning, and others [15, 16, 17]. In contrast to some of
these methods, this research concentrates on the automatic
learning of an optimal parameterization of the behaviors
rather than the behaviors themselves. It also incorporates
some prior knowledge using the case-based reasoning
methodology during learning and thus decreases the
number of experiments required for obtaining a good
behavioral parameterization function as defined by a library
of cases.

II. METHODOLOGY

A. Framework

The CBR unit operates within the MissionLab
system [9], which is a version of AuRA (Autonomous
Robot Architecture) [10]. It is a hybrid architecture that
consists of a schema-based reactive system coupled with a
high-level deliberative planning system. The reactive
component consists of primitive behaviors called motor
schemas [11] grouped into sets called behavioral
assemblages. Each individual primitive behavior is driven
by its perceptual input (perceptual schema) producing its
own motor response. The vectorial responses from each of
the active schemas are added together resulting in an
overall behavior output. The weighted sum of the vectors,
after normalization, defines the final vector that is sent to
the motor actuators. Hence, each motor schema affects the
overall behavior of the robot.

It is the reactive level that the CBR unit operates at.
In particular, it selects the set of parameters for a currently
chosen behavioral assemblage that is best suited to the
current environment. As the robot executes its mission, the
CBR unit controls the switching between different sets of
behavioral parameters in response to changes in the
environmental type. Each such set of parameters constitutes
a case in the CBR system and is indexed by environmental
features. The adaptation step in the case-based reasoning
subsequently fine-tunes the parameters to a specific type of
environment, allowing the library of cases to be small. The
overall control flow is shown in Figure 1.

The CBR unit was evaluated on the behavioral
assemblage of type GOTO that is used for goal-directed
navigation (Figure 2). The assemblage contains the
following four primiti ve motor schemas: MoveToGoal,
Wander, AvoidObstacles and BiasMove. The
MoveToGoal schema produces a vector directed towards a
specified goal location from the robot's current position.
The Wander schema generates a random direction vector,
adding an exploration component to the robot's behavior.
The AvoidObstacles schema produces a vector repelling
the robot from all of the obstacles that lie within some
given distance from the robot. The BiasMove schema
produces a vector in a certain direction in order to bias the
motion behavior of the robot. The CBR module controls the
following parameters:

Behavior 1

Behavior N

Behavior
corresponding
to the robot’s
current goal

1st Set
of Parms

Library of
Cases

Behavior roughly
adjusted

to the robot’s
current

environment

Adaptation
Process
of the

Selected Case

Behavior
fine tuned

to the robot’s
current

environment
KthSet
of Parms

Behavior 1

Behavior N

Behavior
corresponding
to the robot’s
current goal

1st Set
of Parms

Library of
Cases

Behavior roughly
adjusted

to the robot’s
current

environment

Adaptation
Process
of the

Selected Case

Behavior
fine tuned

to the robot’s
current

environment
KthSet
of Parms

Figure 1. Behavioral selection process with case-based reasoning
unit incorporated.

M oveToGoal behavior

Behavioral Control M odule

A voidObstacles behavior

Wander behavior

V 1

V 2

V 3

BiasM ove behavior

M otor
V ector

�

V 4

CBR M odule

Set of behavioral
parameters

Case L ibrary
Index

Case

Sensor
Data

w4

w3

w2

w1

Figure 2. Interaction between behavioral control module
running a GOTO behavioral assemblage and CBR unit.

<Noise_Gain, Noise_Persistence,
 Obstacle_Sphere Obstacle_Gain,
 MoveToGoal_Gain, Bias_Vector_Gain,
 Bias_Vector_X, Bias_Vector_Y >

The gain parameters are the multipli cative weights of the
corresponding schemas. The Noise_Persistence parameter
controls the frequency with which the random noise vector
changes its direction. Obstacle_Sphere controls the distance
within which the robot reacts to obstacles with the
AvoidObstacles schema. Bias_Vector_X and
Bias_Vector_Y specify the direction of the vector produced
by BiasMove schema. Thus, a case in a library is a set of
values for the above parameters.

B. Overview of non-learning CBR module

This section gives a high-level overview of the non-
learning CBR module. The technical detail s can be found in
[3]. The following section then provides the details of the
extensions that were made to the CBR module that make it
capable of both learning new and optimizing old cases (the
learning CBR module).

The overall structure of the non-learning CBR unit is
similar to a traditional non-learning case-based reasoning
system [5] (Figure 3). First, the sensor data and goal
information are supplied to the Feature Identification sub-
module of the CBR unit. This sub-module computes a
spatial features vector representing the relevant spatial
characteristics of the environment and a temporal features
vector representing relevant temporal characteristics. The
spatial feature vector is used to compute a traversability
vector F of size k. A space around the robot is broken into k
equal angular regions and each element of the vector F
represents the degree to which the corresponding region can
be traversed. The number of angular regions is configurable
and depends on the type of sensors used (i.e., it is
resolution-limited) and the allowed computational
overhead. For all the experiments reported here, there were
four angular regions used. The details of how the
traversability vector is computed appear in [3]. In short, the
traversability of a particular region decreases as the size of
the largest cluster of sensor readings (readings appearing
sufficiently close to each other) in this region increases, and
increases as the distance between the robot and this cluster
increases. The temporal features vector consists of just two
elements: short-term and long-term robot velocities
normalized by the robot maximum velocity. Both spatial

and temporal vectors are passed forward for a best
matching case selection.

Case selection is done in three steps. During the
first stage of case selection, all the cases from the library
are searched, and the weighted Euclidean distances between
their traversability vectors (derived from their spatial
feature vectors) and the environmental traversability vector
are computed. These distances define spatial similarities of
cases with the environment. The case with the highest
spatial similarity is the best spatially matching case.
However, all the cases with a spatial similarity within some
delta from the similarity of the best spatially matching case
are also selected for the next stage selection process. The
resulting set consists of the spatially matching cases. At the
second stage of selection, all of the spatiall y matching cases
are searched, and the weighted Euclidean distances between
their temporal feature vectors and the environmental
temporal feature vector are computed. These distances
define temporal similarities of cases with the environment.
The case with the highest temporal similarity is deemed the
best temporally matching case. Again, all the cases with a
temporal similarity within some delta from the similarity
value of the best temporally matching case are selected for
the next stage in the selection process. These cases are
spatially and temporally matching cases, and they are all
the cases with close spatial and temporal similarity to the
current environment. This set usually consists of only a
few cases and is often just one case, but it is never empty.
At the last selection stage, a case from the set of spatially
and temporally matching cases is selected at random.
Randomness in case selection is introduced in order to
exercise the exploration of cases with similar features but
different output parameters.

The case switching decision tree is then used to
decide whether the currently applied case should still be
applied or the case selected as the best matching one
shoould be used instead. This protects against thrashing
and overuse of cases. If the selected case is to be applied,
then it goes through the adaptation and application steps.
At the adaptation step, a case is fine-tuned by slightly
readjusting the behavioral assemblage parameters contained
in the case to better fit the current environment. At the
application step these parameters are passed to the
behavioral control module, which uses these parameters in
the evaluation of the current behavioral assemblage.

C. Learning CBR module

This section provides an overview of the learning
CBR module (Figure 4), emphasizing the extensions that
were made to the non-learning CBR algorithm described
previously. First, as before the sensor data and goal
information are provided to the Feature Identification sub-
module that operates identically to the Feature
Identification sub-module in the non-learning CBR module.
The resulting spatial and temporal feature vectors are then
passed to the best matching case selection process.

Current
environment

Feature
Identification

Spatial Features &
Temporal Features

vectors

Spatial Features Vector
Matching

(1st stage of Case Selection)

Temporal Features Vector
Matching

(2nd stage of Case Selection)

Set of
Spatially
Matching

cases

Set of
Spatially and Temporally

Matching cases

Case switching
Decision tree

Case
Adaptation

Case Library

All the cases
in the library

Best Matching or
currently used case

Case
Application

Case ready
for application

Case Output Parameters
(Behavioral Assemblage

Parameters)

CBR Module
Random Selection

Process
(3rd stage of Case Selection)

Best Matching
case

Figure 3. High-level structure of the CBR Module

1) Case Selection
As before, at the spatial case selection step the

spatial similarity between each case in the library and the
current environment is computed as the weighted Euclidean
distance between the case and environmental traversability
vectors. Now, however, instead of selecting all the cases
that have a spatial similarity within some delta from the
similarity of the best spatially matching case, the cases are
selected at random, with their probabilit y of being selected
proportional (according to a Gaussian function) to the
difference between their spatial similarity and the spatial
similarity of the best spatially matching case. Figure 5
ill ustrates this case selection process. Case C1 is the best
spatially matching case and has a 100 percent probabilit y of
being selected to the set of spatiall y matching cases. Cases
C2 and C4 are also selected as a result of random case
selection biased by their spatial similarities. The idea
behind adding such randomness to the case selection
process is to bias the exploration of cases by their
similarities with the environment. Similarly, at the temporal
case selection stage, the cases that were selected as spatially
matching cases go through the random selection with the
probabilit y of being selected biased by the differences
between their temporal similarity and the temporal
similarity of the best temporally matching case. Thus, in the
example in Figure 5 case C4 is the best temporally matching
case and therefore is selected for the next selection step.
Case C1 is also selected at random for the next selection
step whereas C2 is not. The cases that pass these two
selection stages are also called spatially and temporally
matching cases and are forwarded to the last case selection
stage.

At the last selection step just one case is selected at
random with a probabilit y of being selected proportional to
the weighted sum of case spatial similarity, temporal
similarity and case success. The case success is a scalar

value that reflects the performance of the case, and is
described below. Thus, for the example shown in Figure 5,
C1 has a higher weighted sum of spatial and temporal
similarities and success, and therefore has a higher chance
of being selected than C4. In this particular example, C1 is
indeed selected as the best matching case.

 Once the case is selected, as before, the case
switching decision tree decides whether to continue to use
the currently applied case or switch onto the selected best
matching case. If the switching decision tree says that the
currently applied case should remain active, then nothing
else needs to be done in this cycle of the CBR unit.
Otherwise, the CBR unit continues its execution with the
evaluation of the currently applied case performance.

2) Old Case Performance Evaluation
The velocity of the robot relative to the goal (the

speed with which the robot is approaching its goal) is used
as the main criteria for the evaluation of case performance.
The pseudocode for the case (C) performance evaluation is
given below:

Compute velocity V(C) according to Equation (1)
If (V(C) ≤ 0 and C was applied last)
 //delayed reinforcement

Postpone the evaluation of C until another K-1
cases are applied or C is selected for
application (whichever comes first)

else
 if (V(C)> µ⋅Vmax(C) and V(C)>0) //µ=0.9
 I(C) = max(1, I(C) + 1);
 else
 I(C) = I(C) – 1;
 end
 I(C)=min(Imax, I(C)); //limit I(C);Imax=100
 Update Vmax(C) according to Equation (2)
 if(C was applied last)
 if(V(C)> µ⋅Vmax(C) and V(C)>0)
 Increase S(C) by ∆ proportional to I(C);
 else
 Decrease S(C) by ∆;
 end
 else
 if (Robot advanced towards its goal)
 Increase S(C) by ∆ proportional to I(C);
 else
 Decrease S(C) by ∆;
 end
 end
end

Since for some cases the task is to get the robot
closer to the goal, while for other cases the task is to get the
robot out of local minima such as “box canyons” created by
obstacles, the robot's velocity relative to the goal may not
always be the best evaluation function for case
performance. Instead, a delayed evaluation of the case
performance may be necessary. For this reason the
information on the last K applied cases is kept. K defines a
learning horizon and in this work is chosen to be 2. Thus,
when a new case is about to be applied, the performance
evaluation function is called on each of the following cases:

Current
Environment

Feature
Identification

Spatial & Temporal
Feature Vectors

Spatial Features
Vector Matching

Temporal Features
Vector Matching

Set of Spatially
Matching cases

Set of
Spatially & Temporal ly

Matching cases

Random Selection
biased by case success

and
spatial and temporal

similarities

Best Matching
case

Case Switching
Decision Tree

Case Memory

Old Case
Performance
Evaluation

Best Matching
case

Case
Adaptation

Case
Application

Case
ready
for

application

Behavioral
Assemblage
parameters

All the cases in the library

Last
K cases

Last
K cases

with adjusted
performance

history

New case creation
if needed

Best
Matching

case

New or
Best

Matching
case

Learning
CBR Module

Current
Environment

Feature
Identification

Spatial & Temporal
Feature Vectors

Spatial Features
Vector Matching

Temporal Features
Vector Matching

Set of Spatially
Matching cases

Set of
Spatially & Temporal ly

Matching cases

Random Selection
biased by case success

and
spatial and temporal

similarities

Best Matching
case

Case Switching
Decision Tree

Case Memory

Old Case
Performance
Evaluation

Best Matching
case

Case
Adaptation

Case
Application

Case
ready
for

application

Behavioral
Assemblage
parameters

All the cases in the library

Last
K cases

Last
K cases

with adjusted
performance

history

New case creation
if needed

Best
Matching

case

New or
Best

Matching
case

Learning
CBR Module

 Figure 4. High-level structure of the Learning CBR Module.

Spatial
Similarity

1.00.0

1.0

P(selection)

C2 C1C4C3C5

Spatiall y
matching

cases:
C1, C2, C4

Temporal
Similarity

1.00.0

1.0

P(selection)

C1 C4C2

Spatiall y &
temporall y
matching

cases:
C1and C4

0.0

1.0

P(selection)

C1C4

Weighted sum of
Spatial, temporal

Similarities and success

Best
matching

case:
C1

Spatial
Similarity

1.00.0

1.0

P(selection)

C2 C1C4C3C5

Spatiall y
matching

cases:
C1, C2, C4

Temporal
Similarity

1.00.0

1.0

P(selection)

C1 C4C2

Spatiall y &
temporall y
matching

cases:
C1and C4

0.0

1.0

P(selection)

C1C4

Weighted sum of
Spatial, temporal

Similarities and success

Best
matching

case:
C1

 Figure 5. Case selection process.

the case that was applied last; the case that was applied K
cases ago and was not yet evaluated (the evaluation was
postponed); and the case that was applied some time
previously, that was not yet evaluated and is the very case
selected for a new application. At the very beginning of the
performance evaluation a check is done: if a case C was just
applied and the robot did not advance towards its goal as a
result of the case application (V(C) ≤ 0, where V(C) denotes
the average velocity of the robot relative to its goal from the
time just before case C was applied up until the current
time), then the case performance evaluation is postponed.
Otherwise, the performance evaluation proceeds further.

Each case has a number of variables that represent
the recent performance of the case and need to be updated
in the performance evaluation routine. The average velocity
of the robot relative to the goal for case C is computed as
given:

)(
)(

)(

Ctt

gg
CV

bcurr

tCt currb

−

−
= (1)

where tb(C) is the time before the application of case C, tcurr

is the current time and gt is the distance to the goal at time t.
One of the variables maintained by each case describing
case performance is Vmax(C) : the maximum average
velocity of the robot relative to the goal as a result of the
application of case C. This velocity is updated after every
performance evaluation of case C. Equation 2 is a form of
“maximum tracker” in which Vmax(C) very slowly decreases
whenever it is larger than V(C) and instantaneously jumps
to V(C) whenever Vmax(C) is smaller than V(C):

))()1()(),(max()(maxmax CVCVCVCV ⋅−+⋅= ηη (2)

where η is a large time constant (0.99 for this work).
However, before Vmax(C) is updated a decision is

made on whether the case resulted in performance
improvement or not. The performance is considered to
improve if V(C)> µ⋅Vmax(C) and V(C)>0, where µ is close
to 1. Thus, the case performance is considered to be an
improvement not only when the velocity is higher than it
has ever been before but also when the high velocity is
reasonably sustained as a result of the case's application.
The variable I(C) maintains the number of the last case
performance improvements and is used in the adaptation
step to search for the adaptation vector direction.

Finally, the case success, S(C), is also updated. If
the performance evaluation is not postponed, then the case
success is increased if the case performance improved (the
performance improvement is defined by the same formula
as before) and is decreased otherwise. If, however, the case
evaluation was postponed, then the case success is
increased if the robot advanced suff iciently towards its goal
after the case was applied and is decreased if the robot has
not advanced at all. In either case the increase in the case
success is proportional to the number of times the
application of the case resulted in its performance
improvement, I(C). This adds momentum to the
convergence of case success. The more there are recent

case improvements, the faster the case success approaches
its maximum value (1.0) indicating full convergence of the
case. The case success is used in case selection to bias the
selection process, and in case adaptation to control the
magnitude of the adaptation vector. It will be discussed
further below.

3) Case Creation Decision

At this step, a decision is made whether to create a
new case or keep and adapt the case that was selected for
the application. This decision is made based on the
weighted sum of the temporal and spatial similarities of the
selected case with the environment and on the success of
the selected case. If the success of the selected case is high
then it must be very similar to the environment, mainly
spatially, in order for this case to be adapted and applied.
This prevents making the case success diverge based on
environments that do not correspond to the case. If the case
success is low, then the case similarity may not be very
close to the environment and still the case is adapted and
applied. In any event, the size of the library is limited (for
this work a limit of 10 cases was used) and therefore if the
library is already full then the selected case is adapted and
applied.

If it is decided that a new case should be created,
then the new case is initialized with the same output
parameters (behavioral parameters) as the selected case but
input parameters (spatial and temporal feature vectors) are
initialized to the spatial and temporal feature vectors of the
current environment. The new case is saved to the library
and then passed to the adaptation step. If no new case is
created then the selected case is passed directly to the
adaptation step.

4) Case Adaptation

Independent of whether the case to be applied is an
old case or was just created, the case still goes through the
adaptation process. Every case C in the library also
maintains an adaptation vector, A(C) that was last used to
adapt the case output parameters. If the case was just
created then the adaptation vector is set to a randomly
generated vector. The adaptation of a case happens in two
steps. First, based on the case's recent performance, the
adaptation vector is used to adapt the case C output
parameter vector, O(C):

if (I(C) ≤ 0)
 //change the adaptation direction
 A(C) = – λ⋅ A(C) + ν⋅ R;
end
//adapt
O(C) = O(C) + A(C);

If the case improvement I(C) does not show
evidence that the case was improved by the last series of
adaptations, then the adaptation vector direction is reversed,
decreased by a constant λ and a randomly generated vector

R scaled by a constant ν is added to assure exploration in
the search for optimal parameters.

At the second adaptation step, the output
parameters are altered based on the short-term and long-
term relative velocities of the robot (elements of the
temporal features vector). This adaptation step is similar to
the adaptation step performed in the non-learning CBR
module [3] and, in short, increases the Noise_Gain and
Noise_Persistence behavioral parameters inverse
proportionally to the short-term and long-term relative
velocities of the robot. The idea is that these two parameters
are increased more and more if the robot is stuck longer and
longer at one place (such can be the case with diff icult “box
canyons”).

Finally, the behavioral parameters of the case are
limited by their corresponding bounds. Also,
Obstacle_Gain is limited from below by the sum of
Noise_Gain, MoveToGoal_Gain and Bias_Vector_Gain.

This ensures that in any event the robot does not colli de
with obstacles.

After the case is adapted it is applied. The
application is simply extracting the behavioral assemblage
parameters from the adapted case and passing them to the
behavioral control unit within the MissionLab system.

III. EXPERIMENTS

A. Experimental Analysis

The performance of the system was evaluated in a
simulated environment. MissionLab provides a simulator
as well as logging capabili ties, allowing the collection of
the required statistical data easily.

Figures 6 and 7 demonstrate the training process of a
robot. In Figure 6 the training is done on heterogeneous
environments (the obstacle density and pattern change
within one robot mission), whereas in Figure 7 the training
is done on homogeneous environments (the obstacle density

Figure 6. Screenshots of training runs in a heterogeneous environment.
Top: initial run that starts off with an empty library; Bottom: a run after
fifty-four training runs.

 Figure 7. Screenshots of training runs in a homogeneous environment.
Top: initial run that starts off with an empty library; Bottom: a run after
fifty training runs.

and pattern remain constant throughout a robot mission).
These were two separate training processes resulting in two
different learned libraries. Figures 6(top) and 7(top) show
screenshots of MissionLab during the first robot runs. At
the beginning of both runs the libraries do not contain any
cases and are created as the robot proceeds with its mission.
Black dots of various sizes represent obstacles and the
curved line across the picture depicts the trajectory of the
robot after it completed its mission. In Figure 6 the mission
area is 350 by 350 meters, whereas in Figure 7 it is 150 by
150 meters. Since the library is being created from scratch,
the performance of the robot in these first runs is very poor.
The search for optimal parameterization has just started in
these runs and thus the robot behavior is very noisy. In
contrast, after about fifty training runs for both
heterogeneous and homogeneous environments, the robot
successfully learned more optimal parameterizations and
therefore the robot trajectory in final runs (Figures 6 and 7
bottom) is far better. A good example of learning an
optimal parameterization is in the last (rightmost) grid of
small obstacles in the heterogeneous environment. In order
for a robot to traverse such a dense but highly ordered
obstacle environment the robot has to apply what is called a
“squeezing” strategy. In this strategy Obstacle_Sphere is
decreased to its minimum while MoveToGoal_Gain has to
prevail over Noise_Gain. This makes the robot squeeze
between obstacles towards its goal. In the first run, this
strategy is not known to the robot and it takes a long time
for the robot to go through this area. In contrast, in Figure 6
(bottom) the robot successfull y “squeezes” through this
area along a straight line. The log files show that the robot

trajectory in the final run in the heterogeneous environment
is 36 percent shorter than in the initial run while in the
homogenous environment the final run is 23 percent shorter
than the initial run.

B. Experimental Results

Figures 8 through 11 show the statistical data
gathered in the simulations. Three systems were evaluated:
non-adaptive which did not use any adaptation of
behavioral parameters; a system that employed the non-
learning CBR module for the adaptation of behavioral
parameters; and a system with the learning CBR module.
Cases for the non-learning CBR module were created
manually by running preliminary experiments to configure
them optimally. Three libraries for the learning CBR
system were created automaticall y by running about 250
training runs. All three libraries were evaluated and the data
in the graphs contains average values over the three
libraries. For the runs with the non-adaptive system, the
optimal set of parameters was chosen for a given average
obstacle density. This was equivalent to a user specifying
the optimal parameters for a given mission.

Figures 8 and 9 show the performance of a
simulated robot on a navigational task in heterogeneous
environments (such as the one shown in Figure 6). Overall,
the results for 37 missions in different heterogeneous
environments were gathered. The performance of a robot is
represented by the time steps that it takes a robot to
complete its mission, as well as the percentage of
completed missions. Thus, the amount of time, on average,
it takes the learning CBR system to complete a mission is

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

non-learning CBR learning CBR Non-adaptive

Adaptation algorithm

Figure 8. Average number of steps of a simulated robot in
heterogeneous environments

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

non-learning CBR learning CBR Non-adaptive

Adaptation algorithm

Figure 9. Mission completion rate of a simulated robot in
heterogeneous environments

non-learning CBR
learning CBR

Non-adaptive

15% Obstacle density

20% Obstacle density
0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

Adaptation algorithm

Figure 10. Average number of steps of a simulated robot in
homogeneous environments

non-learning CBR
learning CBR

Non-adaptive

15% Obstacle density

20% Obstacle density
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Adaptation algorithm

Figure 8. Mission completion rate of a simulated robot in
homogeneous environments

better than for a non-adaptive system while worse than for a
non-learning one. This result is expected as the library for
the non-learning CBR system was manually well optimized
on the set of heterogeneous environments. The mission
completion rate (Figure 9) is about equal for both non-
learning and learning CBR systems. The non-adaptive
system has the lowest mission success rate.

Figures 10 and 11 report the results of tests in
homogeneous environments such as the one shown in
Figure 7. In each of the figures, the front row is for an
environment with a 15% obstacle density and the back row
is for an environment with 20% obstacle density. For each
environment, fifty runs were conducted for each algorithm
to establi sh statistical significance of the results. In these
tests, a system that employs learning CBR outperforms
even the non-learning CBR system not to mention the non-
adaptive one. This is true in terms of both criteria: the
average mission execution time and mission success rate.
The reason for this is that even though the non-learning
CBR system performs very well in homogeneous
environments it was manually optimized using a sub-set of
environments used for heterogeneous environment tests. As
a result, the learning CBR had an opportunity to learn cases
that were better suited for the homogeneous environments
than the ones that were in the library of the non-learning
CBR module. Non-adaptive, on the other hand, performs
far from optimally on these environments and even more
importantly exhibits only 46 percent mission completion
rate for denser environments (Figure 11, 20% density).

IV. CONCLUSION

This paper presents a robotic system that
incorporated learning into a previously developed case-
based reasoning module used for the selection of behavioral
parameters. Not only does it significantly improve the
performance of the robot in comparison to a non-adaptive
system but it also potentially improves the performance
over a non-learning CBR module if its library was not well
optimized for test environments, as was shown in the
experiments. Automatic learning of cases is also favored as
the process of manually creating a CBR case library is
tedious and requires knowledge of both robot behavior and
the operation of the CBR module as well as numerous
experiments. The case library also had to be manually re-
configured every time a new robot architecture is targeted.
In contrast, with the learning CBR module the process of
library configuration is fully automatic, namely through
training. This now makes unnecessary any configuration of
behavioral parameters even to create an initial case-based
reasoning library. Moreover, the robot can learn cases while
executing its missions, even avoiding the automatic training
process if the accompanying performance deterioration in
the initial first missions is acceptable. As more and more
missions are executed the better and better the
parameterization becomes, resulting in enhanced robot
performance.

Future work includes the evaluation of the system on
real robots (Nomad 150s and ATRV-JRs). This presented
research is part of a larger project involving the

incorporation of a range of different learning techniques
into MissionLab. It is planned to investigate how such
multiple techniques can help in learning cases more
efficiently.

V. ACKNOWLEDGMENTS

The authors of the paper would like to thank the following
people who were invaluable in the work with MissionLab:
Dr. Douglas MacKenzie, Yoichiro Endo, William Conrad
Halli burton, Mike Cramer, Alexander Stoytchev, and Dr.
Tom Collins.

REFERENCES
[1] A. Ram, R. C. Arkin, K. Moorman, and R. J. Clark, “Case-based

Reactive Navigation: a Method for On-line Selection and Adaptation
of Reactive Robotic Control Parameters,” IEEE Transactions on
Systems, Man and Cybernetics - B, 27(30), pp. 376-394, 1997.

[2] A. Ram, J. C. Santamaria, R. S. Michalski and G. Tecuci, “ A
Multistrategy Case-based and Reinforcement Learning Approach to
Self-improving Reactive Control Systems for Autonomous Robotic
Navigation,” Proceedings of the Second International Workshop on
Multistrategy Learning, pp. 259-275, 1993.

[3] M. Likhachev and R. C. Arkin, “Spatio-Temporal Case-Based
Reasoning for Behavioral Selection,” Proceedings of the 2001 IEEE
International Conference on Robotics and Automation, pp. 1627-
1634, 2001.

[4] C. Vasudevan and K. Ganesan, “Case-based Path Planning for
Autonomous Underwater Vehicles,” Autonomous Robots, 3(2-3), pp.
79-89, 1996.

[5] M. Kruusmaa and B. Svensson, “A Low-risk Approach to Mobile
Robot Path Planning,” Proceedings of the 11th International
Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, 2, pp. 132-141, 1998.

[6] P. Gugenberger, J. Wendler, K. Schroter, H. D. Burkhard, M.
Asada, and H. Kitano, “AT Humboldt in RoboCup-98 (team
description),” Proceedings of the RoboCup-98, pp. 358-363, 1999.

[7] M. M. Veloso and J. G. Carbonell, “Derivational Analogy in
PRODIGY: Automating Case Acquisition, Storage, and Util ization,”
Machine Learning, 10(3), pp. 249-278, 1993.

[8] S. Pandya and S. Hutchinson, “A Case-based Approach to Robot
Motion Planning,” 1992 IEEE International Conference on Systems,
Man and Cybernetics, 1, pp. 492-497, 1992.

[9] D. Mackenzie, R. Arkin, and J. Cameron, "Multiagent Mission
Specification and Execution," Autonomous Robots, 4(1), pp. 29-57,
1997.

[10] R. Arkin and T. Balch, "AuRA: Principles and Practice in
Review," Journal of Experimental and Theoretical Artificial
Intelligence, 9(2), pp. 175-189, 1997.

[11] R. Arkin, "Motor-Schema based Mobile Robot Navigation,"
International Journal of Robotics Research, 8(4), pp. 92-112, 1989.

[12] J. Kolodner, Case-Based Reasoning, Morgan Kaufmann
Publishers, San Mateo, 1993.

[13] N. Chalmique Chagas and J. Hallam, “A Learning Mobile Robot:
Theory, Simulation and Practice,” Proceedings of the Sixth Learning
European Workshop, pp.142-154, 1998.

[14] P. Langley, K. Pfleger, A. Prieditis, and S. Russel, “Case-based
Acquisition of Place Knowledge,” Proceedings of the Twelfth
International Conference on Machine Learning, pp. 344-352, 1995.

[15] R.P.N. Rao and O. Fuentes, "Hierarchical Learning of
Navigational Behaviors in an Autonomous Robot using a Predictive
Sparse Distributed Memory," Autonomous Robots, 5, pp. 297-316,
1998.

[16] A. Ram, R. Arkin, G. Boone, and M. Pearce, "Using Genetic
Algorithms to Learn Reactive Control Parameters for Autonomous
Robotic Navigation," Journal of Adaptive Behavior, 2(3), pp. 277-
305, 1994.

[17] S. Mahadevan and J. Connell, "Automatic Programming of
Behavior-Based Robots Using Reinforcement Learning,"
Proceedings of the Ninth National Conference of Artificial
Intell igence, pp. 768-773, 1991.

