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Abstract

Smoothing approaches to the Simultaneous Local-
ization and Mapping (SLAM) problem in robotics
are superior to the more common filtering ap-
proaches in being exact, better equipped to deal
with non-linearities, and computing the entire robot
trajectory. However, while filtering algorithms that
perform map updates in constant time exist, no
analogous smoothing method is available. We aim
to rectify this situation by presenting a smoothing-
based solution to SLAM using Loopy Belief Prop-
agation (LBP) that can perform the trajectory and
map updates in constant time except when a loop
is closed in the environment. The SLAM prob-
lem is represented as a Gaussian Markov Ran-
dom Field (GMRF) over which LBP is performed.
We prove that LBP, in this case, is equivalent to
Gauss-Seidel relaxation of a linear system. The in-
ability to compute marginal covariances efficiently
in a smoothing algorithm has previously been a
stumbling block to their widespread use. LBP
enables the efficient recovery of the marginal co-
variances, albeit approximately, of landmarks and
poses. While the final covariances are overconfi-
dent, the ones obtained from a spanning tree of the
GMRF are conservative, making them useful for
data association. Experiments in simulation and us-
ing real data are presented.

1 Introduction
The problem of Simultaneous Localization and Mapping
(SLAM) is a core competency of robotics which has at-
tracted a large amount of attention. The classical solution to
the SLAM problem uses an Extended Kalman Filter (EKF)
[Smith and Cheeseman, 1987] that maintains the joint distri-
bution on the current robot pose and the landmarks in the map
in the form of a Gaussian distribution. Since updating the co-
variance matrix of this distribution requires O(n2) time, the
EKF algorithm does not scale to large maps. Recent work
on the SLAM problem has focussed on improving the time
complexity of the solutions. One commonly used technique
is to update the information form of the Gaussian distribu-
tion. Though the information matrix becomes dense through

Figure 1: The Gaussian Markov Random Field (GMRF) correspond-
ing to an illustrative Smoothing and Mapping (SAM) problem with
30 poses in the robot trajectory. Poses in the graph are shown as
circles and landmarks as squares.

repeated marginalization of poses, recently introduced tech-
niques such as the Sparse Extended Information Filter (SEIF)
[Thrun et al., 2004] and the Thin Junction Tree Filter (TJTF)
[Paskin, 2003] present approximations to keep the informa-
tion matrix sparse. The sparsity of the representation allows
for a constant time update of the filter.

In contrast to the above filtering approaches which only
compute the current robot pose with the map, a smoothing
approach recovers the complete robot trajectory and the map.
The smoothing information matrix naturally stays sparse over
time without the need for any approximations. Further,
smoothing can incorporate new information about past robot
poses as opposed to filtering approaches that cannot update
a pose after it has been marginalized out. Even though the
number of variables increases continuously for smoothing, in
many real-world scenarios, especially those involving explo-
ration, this larger matrix still contains far less entries than in
filter-based methods [Dellaert, 2005] [Eustice et al., 2005].
Filters are more efficient then smoothing only when a limited
number of structure points is observed repeatedly. However,
even in this case the inability to correct previous poses may
lead to poor results.

The crucial limitation of all the above approaches based on
the information form of the Gaussian is that recovering an es-
timate of the map and robot pose involves a matrix inversion,
and hence, is computationally infeasible for large systems.
Indeed, in the case of the filtering approaches such as the
SEIF, obtaining even the mean involves a matrix inversion.



The solution is obtained in these cases through an iterative
process that solves a linear system wherein only a constant
number of iterations is performed at each step so as to main-
tain the runtime bounds of the algorithm. This approximation
is based on the assumption that the SLAM solution evolves
only slowly over time so that a relinearization of the problem
at each time step is not required. The iterative method, how-
ever, still does not yield the covariance, which is needed for
maximum-likelihood data association and also as an estimate
of the uncertainty in the landmark locations and pose.

This paper deals with the use of Loopy Belief Propagation
(LBP) [Weiss and Freeman, 1999] to obtain an approximate
solution to the SLAM problem, including the marginal co-
variances on the map and pose. We consider the case wherein
the map consists of a set of features, and build on the Smooth-
ing and Mapping (SAM) approach as introduced in [Dellaert,
2005], which updates the joint distribution on the robot tra-
jectory and the map using the square root information form
of the Gaussian distribution. Our approach is based on the
fact that the SAM problem can be treated from the graph-
ical model viewpoint as a Gaussian Markov Random Field
(GMRF) [Winkler, 1995] on which inference can be per-
formed using LBP.

We provide a constant time update algorithm, which we
call the Wildfire algorithm, for estimating the map and robot
trajectory, including the marginal covariances. While a naive
implementation of LBP requires O(n) time to update the
marginal distributions, where n is the number of nodes in the
graph, the Wildfire algorithm discards negligibly small mes-
sages between nodes. Subsequently, only those nodes which
have either received or sent significant messages get updated.
We show that the number of nodes involved in a significant
message exchange is O(1) unless a significant event (such as
loop closing) occurs when the complete graph may get up-
dated, increasing the time bound to O(n).

Relinearization of the GMRF graph, which is required
since the SAM problem is non-linear in general, is performed
in constant time using a technique similar to the Wildfire al-
gorithm in that only nodes that have changed are relinearized.
Moreover, it need only be done periodically when the differ-
ence between the current estimate and the linearization point
exceeds a specified threshold. As before, relinearization may
take linear time after a significant update of the GMRF graph.

We prove that LBP on a GMRF is equivalent to Gauss-
Seidel relaxation and provides the exact MAP estimates of
the nodes. The covariances are, however, overconfident due
to the approximate nature of the inference. As a conservative
approximation, the covariances obtained by restricting infer-
ence to a spanning tree of the GMRF graph can be used to
perform data association.

In terms of related work, closest are the relaxation based
approaches given in [Duckett et al., 2000; Frese and Duckett,
2003]. However, these are unable to compute the marginal
covariances on the poses and landmarks. Graphical SLAM
[Folkesson and Christensen, 2004] is another method that
builds a graphical model of the smoothing problem. Our ap-
proach shares many common features with Graphical SLAM,
including the ability to modify data association on the fly,
and increase efficiency by eliminating variables judiciously.

In addition, our algorithm is incremental and largely runs in
O(1) time, which are advantages over Graphical SLAM.

2 Smoothing and Mapping
We begin by reviewing the SAM framework as given in [Del-
laert, 2005]. In the smoothing framework, our aim is to re-
cover the maximum a posteriori (MAP) estimate for the entire

trajectory X
∆
= {xi : i ∈ 0 . . .M} and landmark locations

(the map) L
∆
= {lj : j ∈ 1 . . . N}, given the landmark mea-

surements Z
∆
= {zk : k ∈ 1 . . .K} and odometry U

∆
= {ui}.

This can be computed by maximizing the joint posterior on
the trajectory and landmark locations P (X,L|Z)

Θ∗ ∆
= argmax

Θ

P (X,L|Z,U) (1)

where Θ
∆
= {X,L} is the set of unknown variables, i.e the

robot trajectory and landmark locations. The posterior can be
factorized using Bayes law as

P (X,L|Z,U) ∝ P (Z,U |X,L)P (X,L)

∝
P (x0)

∏M
i=1

P (xi|xi−1, ui)
∏K

k=1
P (zk|xik

, ljk
)

(2)

Here P (xi|xi−1, ui) is the motion model, parameterized by
the odometry ui, and P (zk|xik

, ljk
) is the landmark measure-

ment model, assuming that the correspondences (ik, jk) are
known. The prior on the initial pose P (x0) is taken to be a
constant, usually the origin, while the priors on the remaining
poses and landmark locations are assumed to be uniform.

We assume Gaussian motion and measurement models, as
is standard in the SLAM literature. The motion model is
given as xi = fi(xi−1, ui)+wi, wherewi is zero-mean Gaus-
sian noise with covariance matrixQi. Similarly, the measure-
ment equation is given as zk = hk(xik

, ljk
) + vk where vk is

normally distributed zero-mean measurement noise with co-
variance Rk.

In practice, only linearized versions of the motion and mea-
surement models are considered, for example for use in the
Extended Kalman Filter (EKF) approach to SLAM [Smith et
al., 1990], with multiple iterations being used to obtain con-
vergence to the minimum. In the following, we will assume
that either a good linearization point is available or that we are
working on one iteration of a non-linear optimization method.
It can be shown [Dellaert, 2005] that this results in a sparse
linear least squares problem in δΘ

δΘ∗ = argmin
δΘ

{

M
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2
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+
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k δljk
− ck‖
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(3)

where F i−1

i is the sparse Jacobian of fi(.) at the lineariza-

tion point x0
i−1

and ai
∆
= x0

i − fi(x
0
i−1

, ui) is the odome-
try prediction error. Analogously, H ik

k and Jjk

k are respec-
tively the sparse Jacobians of hk(.) with respect to a change



in xik
and ljk

, evaluated at the linearization point (x0
ik
, l0jk

),

and ck
∆
= zk − hk(x0

ik
, l0jk

) is the measurement prediction
error. ||.||Σ is the Mahalanobis distance with respect to the
covariance matrix Σ and we use the matrix Gi

i = −Id×d , d
being the dimension of xi, to avoid treating δxi specially.

The solution to the least squares problem (3) is given by
the linear system AδΘ − b = 0 where A = JTJ is the
Hessian matrix, J being the system Jacobian matrix obtained
by assembling the individual measurement Jacobians, and
b = JT e where e is the vector of all the measurement errors.

SAM as a Markov Random Field
We now show that inference on the posterior (2) can be per-
formed by placing the SAM problem in a Markov Random
Field (MRF) framework. The graph of an MRF is undi-
rected and its adjacency structure indicates which variables
are linked by a common factor (a measurement or constraint).

A pairwise MRF is described by a factored probability den-
sity given as

P (X,L) ∝
∏

i

φ(yi)
∏

{i,j}

ψ(yi, yj) (4)

where the second product is over the pairwise cliques {i, j},
counted once. The posterior (2) can be modeled as a pair-
wise MRF where the singleton cliques correspond to marginal
prior distributions or singleton measurements (such as GPS)
on the unknown variables and the edge cliques correspond to
the motion and measurement likelihoods respectively.

For the linear case considered in the previous section, these
equations translate to

− lnφ(yi) ∝
1

2
‖xi − µi‖

2
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1

2
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(5)
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2
‖Hik

k δxik
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k δljk
− ck‖

2
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where yi ∈ {X,L}. This gives us a Gaussian Markov Ran-
dom Field (GMRF) corresponding to the linearized SAM
problem. Note that in the context of the SAM problem, the
singleton clique factors are most often set to unity except for
the first pose, which is clamped to the origin.

3 Loopy Belief Propagation for SAM
We use Loopy Belief propagation (LBP) on the SAM GMRF
to solve the linear system (3) and obtain not only the MAP
values of the unknown variables but also the covariances.
For ease of computation, we use the information form of the
Gaussian to specify the single and pairwise clique potentials
in the GMRF given by (5), wherein these are expressed using
the information vector η and the information matrix Λ, and
we define the information form as

N−1(x; η,Λ)
∆
= exp

{

C + ηTx−
1

2
xT Λx

}

(6)

where C is an additive constant. If Λ is full-rank, equation
(6) corresponds to a Gaussian density as

N (x; Λ−1η,Λ−1) = N (x;µ, P ) (7)

where K is a constant of proportionality.
Using this formulation, we can write the edge potentials

from (5) as ψ(xi, lj) ∝ N−1(yij ; ηij ,Λij) , where yij is the
vector [ xi lj ]T , and we have dropped the index k from the
corresponding pair {ik, jk} for convenience. The distribution
parameters are then given as

ηij
∆
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and the potentials on the edges linking two poses are defined
analogously.

The GMRF potentials on the singleton cliques are similarly
defined as φ(yi) = N−1(yi; ηi,Λi) where yi ∈ {X,L}, and
ηi = Λiµi, Λi = P−1

i follows from (5) and (7). The poten-
tials φ(yi) represent the beliefs on the unknowns and if only
a uniform prior exists on an MRF node yi, both ηi and Λi can
be set to zero. Note that setting Λi to zero is equivalent to
having a Gaussian prior with infinite covariance.

Belief Propagation
The goal of belief propagation in our case is to find the
marginal probability, or the belief, P (yi) of a node yi ∈ Θ =
{X,L} in the SAM graph. A complete characterization of
the belief propagation algorithm for GMRFs is beyond the
scope of this paper, but we provide the high-level equations
and data flow below. Details can be found in [Weiss and Free-
man, 1999].

The beliefs are computed using a message passing algo-
rithm wherein each node passes messages to its neighbors
and in turn uses its incoming messages to compute its belief.
While belief propagation is guaranteed to compute the correct
beliefs only if the graphical model does not contain loops, it
has been proven that it finds the correct MAP solution for
Gaussian graphical models even in the presence of loops, i.e
the means of the beliefs are correct while the covariances are
incorrect in general [Weiss and Freeman, 1999].

LBP works by repeatedly computing the messages and be-
liefs for every node in the graph starting with constant mes-
sages [Weiss and Freeman, 1999], either in synchronous or
asynchronous fashion. This sweep over the graph is iterated
until the beliefs converge. Denoting the current iteration by
a discrete time superscript t, the belief parameters (the infor-
mation vector and matrix) for node yi are given as

mt
i = ηi +

∑

j∈Ni

mt−1

ji (10)

M t
i = Λi +

∑

j∈Ni

M t−1

ji (11)

and the parameters of the message Mij(yj) from node yi to
node yj as

mt
ij = η

j
ij − Λji

ij

(

Λii
ij +M t

i −M t−1

ji

)−1

(

ηi
ij +mt

i −mt−1

ji

)

(12)

M t
ij = Λjj

ij − Λji
ij

(

Λii
ij +M t

i −M t−1

ji

)−1
Λij

ij (13)
where use has been made of the definitions in (8) and (9).



Algorithm 1 The Wildfire algorithm for LBP
1. Push the most recently added nodes and their neighbors in the

SAM graph G(V,E) onto the queue Q

2. Do until Q is empty

(a) Pop node y from Q and compute messages Mt
yk for all

k ∈ Ny using (12-13)
(b) If Mt

yk −M
t−1

yk > ε , push k onto Q

(c) Update the belief B(y) using (10-11)

Figure 2: The Wildfire algorithm only updates nodes with signif-
icant message deviations, starting from the most recently added
node. In normal operation (left) only the frontier of the graph is
updated. However, during loop closings (right) most of the graph
is updated. Updated poses are shown in brown (dark) while the un-
changed nodes are in yellow (light). The robot is moving counter-
clockwise starting at the bottom.

4 Constant Time Loopy SAM
Each iteration of LBP as defined above isO(n) where n is the
number of nodes in the graph. This is too slow to be useful,
especially since the trajectory is included in the node count.
We can, however, improve this bound to O(1) for incremen-
tal operation, i.e. when new nodes or edges are added to the
GMRF.

The key observation to getting a constant time algorithm is
that at each step only a few of the nodes get updated, i.e. ex-
perience an actual change in their values, and these nodes
are the ones that have been recently added to the graph. If
we commence the belief updation sweep in every iteration
of LBP from the most recently added node, the new mes-
sages are initially seen to deviate from their previous values
by large amounts. However, these deviations become smaller
as we move further back in the graph. Once the message de-
viations become negligible (smaller than some pre-specified
significance threshold), the beliefs no longer change and the
remaining nodes need not be updated.

The Wildfire algorithm, so called because the message de-
viations from the previous iteration spread like wildfire from
their point of origin and gradually become negligible, is illus-
trated in Figure 2. The algorithm implementation features a
queue onto which nodes with significant message deviations
on incoming edges are pushed. A summary of the algorithm
is given in Algorithm 1.

The Wildfire algorithm has O(1) running time since in
most situations the number of edges with large message devi-
ations is O(1). However, this is not true when special events
such as loop closures occur as shown in Figure 2. In such
instances, the complete graph is updated resulting in O(n)
complexity. Note that no special clause is required to handle
these instances - the algorithm automatically updates all the
nodes in the graph as the message deviations do not die down.

Relinearization of the SAM graph, which involves comput-
ing the clique potentials at new linearization points, can also
be performed using the Wildfire algorithm, the only differ-
ence being that the deviations of the node beliefs from their
respective linearization points are now used instead of the
message deviations. In this case, however, two variants are
possible. One technique is to delay relinearization until the
belief deviations are greater than a certain threshold for some
given proportion of nodes in the graph. As this proportion
approaches unity, relinearization becomes O(n) but is per-
formed only very rarely. A second strategy is to perform re-
linearization at regular time intervals so that it remains O(1).
The choice between these strategies depends on the type of
application, the environment, and size of the SAM graph.

We now have all the components to describe the Loopy
SAM algorithm. At each step, a new pose node, new mea-
surement links and possibly new landmark nodes, are added
to the SAM GMRF. A fixed number of LBP iterations are
then performed using the Wildfire algorithm to update the be-
liefs on the nodes. Periodically, relinearization is performed,
again using a variant of the Wildfire algorithm. The means
of the pose and landmark nodes in the SAM GMRF, obtained
from the belief information vector and matrix at each node,
correspond to the MAP solutions for the trajectory and the
map respectively.

4.1 Marginal Covariances
We now show how to recover the approximate marginal co-
variances of the nodes from the LBP beliefs. An important
use of the covariances is to bound the search area for possible
correspondences in data association. This is usually done us-
ing the projection of the combined pose and landmark uncer-
tainty into the measurement space, the computation of which
requires knowledge of the marginal covariances of the poses
and landmarks.

The inverse of the belief information matrix at each node
in the SAM GMRF gives the marginal covariance. While in
general the belief obtained from LBP can be overconfident
or underconfident, it has been proven to be always overcon-
fident for Gaussian MRFs with pairwise cliques [Weiss and
Freeman, 1999]. Overconfident covariances cannot be used
for data association since this results in many valid corre-
spondences being rejected. A first conservative approxima-
tion would be to use the inverse of the diagonal blocks of the
system Hessian matrix as the marginal covariances. However,
this results in overly conservative estimates.

A better approximation can be obtained by restricting mes-
sage passing to a spanning tree of the SAM GMRF. Since the
spanning tree is obtained by deleting edges from the GMRF
and inference on it is exact, we get a conservative estimate of
the true marginal covariances that is also better than our first



Figure 3: (top) A spanning tree of the GMRF graph, with edges col-
ored blue (dark), for a linear simulation. (bottom) Covariances for
the same simulation - ground truth is shown in blue (thin dark), over-
confident LBP covariances are shown in green (light), and conserva-
tive covariance estimates obtained by restricting BP to the spanning
tree are shown in red (thick dark).

order approximation. Maintenance of the spanning tree and
message passing on it require extra work. However, the span-
ning tree can be extended at each step in O(1) so that, with
the use of the Wildfire algorithm, the overall scheme still re-
mains constant time. Figure 3 illustrates the nature of this
approximation.

5 Loopy SAM and Gauss-Seidel Relaxation
We prove in this section that computing the MAP solution
using LBP for a GMRF is equivalent to a modified form of
Gauss-Seidel relaxation, which is commonly used to solve
linear systems. Relaxation has previously been used in the
context of SLAM [Duckett et al., 2000] but is not capable of
recovering the marginal covariances, a short-coming that LBP
overcomes. The equivalence of the MAP portion of LBP and
relaxation is an interesting result that connects our technique
with a well-understood method from linear algebra.

Relaxation solves the linear systemAδΘ−b = 0 , encoun-
tered in Section 2, by iterating over a set of equations, each
of which updates the value of exactly one unknown using the
current estimate of all the others

Aiiyi = bi −
∑

j 6=i

Aijyj (14)

where the sum is over all the variables except yi, and yi ∈
Θ = {X,L} as before.

We begin our proof by noting that the message from yj to
yi given by (12) can be re-written as

mt
ji = JT

kiek −Aijy
−i
j (15)

where y−i
j is the estimate of yj without considering the node

yi, k is the index of the measurement linking yi and yj in the
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Figure 4: Runtime for a simulation consisting of 5000 steps. The
times for the message and belief computation, and the total update
step are shown. All times were obtained on a 1.8GHz Linux machine
using an implementation of the algorithm in Ocaml. Note the two
spikes (one at the very end) corresponding to loop closures.

system Jacobian J , and e is the corresponding measurement
error. This result is true since we have

mt
j −mt−1

ij = ηj +
∑

k∈Nj\i

mt−1

kj = m−i
j

where m−i
j is the estimate of mj without considering node

yj , and similarly M t
j − M t−1

ij = M−i
j . Since M−i

j y−i
j =

m−i
j holds by the definition of the information form of the

Gaussian, substituting these identities and the definitions of η
and Λ from (8-9) into the message equation (12) gives us the
result (15).

Using (15) in the belief equation (10), we get

mt
i = ηi +

∑

j∈Ni

JT
kjiekj

−
∑

j∈Ni

Aijy
−i
j

= ηi + bi −
∑

j∈Ni

Aijy
−i
j (16)

which closely corresponds to the relaxation equation (14).
Hence, the MAP computation in LBP is simply a modified
version of Gauss-Seidel relaxation.

6 Results
Linear Gaussian Simulations
We first present the results of applying our approach in a con-
trolled simulation devoid of non-linearities. The simulation
consisted of an environment with randomly placed, uniformly
distributed landmarks. The robot followed a large 8-shaped
figure in this environment and the run included two loop clo-
sures at the “waist” of the 8-figure.

Figure 4 gives the results for a linear simulation consist-
ing of 5000 steps, i.e. a trajectory of length 5000. The total
number of nodes in the SAM GMRF was 6742. It can be
verified that the algorithm is O(1), and the two spikes in the
graph corresponding to the loop closures are also clearly vis-
ible. The spikes occur since the LBP update makes a sweep
through the whole graph in these instances.



Figure 5: Trajectory and map computed from the Victoria Park
dataset overlaid on satellite imagery of the park.

6.1 Victoria Park Dataset
We applied our algorithm to the Sydney Victoria Park
dataset (available at http://www.acfr.usyd.edu.
au/homepages/academic/enebot), a popular test
dataset in the SLAM community. The trajectory consists of
6968 poses along an approximately 4 kilometer long trajec-
tory. Landmarks were obtained by running a simple tree-
detection algorithm on the laser range data, yielding 158 tree-
like features and a total of 3631 measurements.

Figure 5 shows the resulting computed trajectory and map,
where the landmarks are shown using crosses, overlaid on an
image of the park. The GPS trajectory, which was not used in
the estimation, is also shown for reference. This demonstrates
the applicability of our technique to real-world data.

7 Conclusion
We presented an algorithm to perform smoothing-based
SLAM using Loopy Belief Propagation (LBP). We provide a
flavor of LBP that makes map and trajectory updates constant
time except when closing loops in the environment. In this
case, LBP is equivalent to a modified version of Gauss-Seidel
relaxation, a result that we proved here.

While our technique has advantages over existing state-of-
the-art in that we can recover the marginal covariances in
O(1) time, these are a heuristic approximation to the true
covariances. It is our experience that the LBP covariances
are of good quality when the robot is exploring new areas
in the environment but become highly overconfident when it
revisits previously visited areas. In general, the more loopy
the GMRF, the more overconfident the covariances from LBP.
This observation can be intuitively explained by appealing to

the fact that the covariances become incorrect due to multiple
use of the same evidence when it is propagated around a loop
in the graph.

It is future work to define rigorous bounds on the covari-
ance obtained from LBP, and also investigate avenues to re-
cover the exact covariance using related techniques, an exam-
ple being [Sudderth et al., 2004].
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