Computing Nearest-Neighbor Fields via Propagation-Assisted KD-Trees

Kaiming He and Jian Sun
Microsoft Research Asia

e Computing Nearest-Neighbor Fields (NNF) is to densely match e Basic Algorithm e Performance in VidPairs Benchmark [2] (Accuracy vs. Time, 133 image pairs)
patches between two images.

1. Build a kd-tree using all the patches in the Candidate Set. Each leaf o ‘ ‘ |
contains no more than m candidates. \ 2Mp images, 8x8 patches —=-PM
60 —+—CSH
2. Scan the image A in raster order. For each patch p,(X, ¥) in A, do \ Ours (no re-ranking)
propagation-assisted kd-tree search as follows: 55 \ \ —e-Ours (re-ranking)
%; —-%-Traditional kd-tree
i. Descend the tree to a leaf (Leaf #0); ~ 50 %\”* G
. : --- Ground Truth
ii. Propagate a leaf from left/upper, using the already matched \M —
result of pA(X_]-’ y) and pA(Xl y_l); s : e ————— ——— - o
iii. Find the NN of p,(X, y) in all the above leaves. ——
Yo s w0 5 ox s w s 0 s 50

Propagation-Assisted KD-tree

Observations:

1. 10-20x faster vs. PatchMatch [1], 2-5x faster vs. CSH [2], at the same accuracy.

2. 70% smaller error vs. PatchMatch, 50% smaller error vs. CSH, at the same running time.
3. Traditional kd-trees can be comparable with PatchMatch.

 The applications of NNF: image inpainting/retargeting [1], texture
synthesis, super-resolution, denoising, etc.

e Contributions: a fast and accurate method for computing NNF. Il % Visual Comparisons

T T e N R ”)’)

image A image B

NNFs and error maps

~~

e QOur perspective: ANN search for multiple but dependent queries.
. Method Comparison: PatchMatch [1]

Propagation in PatchMatch [1]

Patches in A Patches in B
® F L3
[_ | »
hiff: \ l—){,ﬂ)_"““— \\\\\\\ TR w RS
' . B 1Y) > Bt g Wond
. CSH’serror * R TR
I — I B .(’,)’) e - 3"'_'~ L g ‘} fas Ll {,.'—
Query Set Candidate Set (-Ly o e Y
v a7 i .o ;
A e " v v L
image A image B P

e Methodology comparisons: PM CSH ours GT

. Method Comparisons: kd-tree

Our error

Strategy Strategy
Method . : :
In Query Set in Candidate Set (a) Standard search (b) Priority search (c) Randomized kd-trees (d) Propagation from GT (e) Our propagation search
L. (err: 11.13) (err: 10.71) » (err: 7.80) » (err: 2.77) . (err: 3.04)
Tr'adltlo'n'a/ LSH, None Data-independent :
(Locality Sensitive Hashing)
Traditional kd-tree None Data-adaptive 0 e 0
1 1 1
PatchMatch [1] Propagation Random Sampling e
CSH [2] . Data-independent | | g | il _J
(Coherency Sensitive Hashing) AT (LSH) % i € i ® ’ € i 3 Nl Maed S o’
. Data-adaptive PM CSH Ours GT
Ours Propagation Voot
(kd-tree) ey: error of Leaf #0; e;: error of Leaf #1. References
Leaf #1 is given by backtracking (standard/priority search), another
e Our advantage: better utilizes both the dependency of the patches random tree (randomized kd-tree), or propagation (ours). [1] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman. Patchmatch: a randomized correspondence algorithm for
in A and the dependency of the patches in B. structural image editing. In SIGGRAPH, 2009

[2] S. Korman and S. Avidan. Coherency sensitive hashing. In ICCV, 2011.

	Slide Number 1

