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Introduction Results 

• Computing Nearest-Neighbor Fields (NNF) is to densely match 
patches between two images. 

Overview 

Source Image A Target Image B 

Nearest-Neighbor Field 

• The applications of NNF: image inpainting/retargeting [1], texture 
synthesis, super-resolution, denoising, etc. 
 

• Contributions: a fast and accurate method for computing NNF. 

[1] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman. Patchmatch: a randomized correspondence algorithm for 
structural image editing. In SIGGRAPH, 2009 
[2] S. Korman and S. Avidan. Coherency sensitive hashing. In ICCV, 2011. 

• Our perspective: ANN search for multiple but dependent queries. 

Patches in A 

Query Set 

Patches in B 

Candidate Set 

• Methodology comparisons: 

Method Strategy 
in Query Set 

Strategy 
in Candidate Set 

Traditional LSH 
(Locality Sensitive Hashing) 

None Data-independent 

Traditional kd-tree None Data-adaptive 

PatchMatch [1] Propagation Random Sampling 

CSH [2] 
(Coherency Sensitive Hashing) 

Propagation Data-independent 
(LSH) 

Ours Propagation Data-adaptive 
(kd-tree) 

• Our advantage: better utilizes both the dependency of the patches 
in A and the dependency of the patches in B. 

Algorithm 

• Basic Algorithm 
 

1. Build a kd-tree using all the patches in the Candidate Set. Each leaf 
contains no more than m candidates. 
 

2. Scan the image A in raster order. For each patch pA(x, y) in A, do 
propagation-assisted kd-tree search as follows: 
 

i. Descend the tree to a leaf (Leaf #0); 
ii. Propagate a leaf from left/upper, using the already matched 

result of pA(x-1, y) and pA(x, y-1); 
iii. Find the NN of pA(x, y) in all the above leaves. 
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•     Method Comparison: PatchMatch [1] 

• Performance in VidPairs Benchmark [2] (Accuracy vs. Time, 133 image pairs) 
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Observations: 
1. 10-20x faster vs. PatchMatch [1], 2-5x faster vs. CSH [2], at the same accuracy. 
2. 70% smaller error vs. PatchMatch, 50% smaller error vs. CSH, at the same running time. 
3. Traditional kd-trees can be comparable with PatchMatch. 

• Visual Comparisons 
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•     Method Comparisons: kd-tree 

(a) Standard search
(err: 11.13)
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(b) Priority search
(err: 10.71)
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(d) Propagation from GT
(err: 2.77)
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(c) Randomized kd-trees
(err: 7.80)
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(e) Our propagation search
(err: 3.04)
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e0: error of Leaf #0; e1: error of Leaf #1. 
Leaf #1 is given by backtracking (standard/priority search), another 
random tree (randomized kd-tree), or propagation (ours). 
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