
Computing Nearest-Neighbor Fields via Propagation-Assisted KD-Trees
Kaiming He and Jian Sun

Microsoft Research Asia

Introduction Results

• Computing Nearest-Neighbor Fields (NNF) is to densely match
patches between two images.

Overview

Source Image A Target Image B

Nearest-Neighbor Field

• The applications of NNF: image inpainting/retargeting [1], texture
synthesis, super-resolution, denoising, etc.

• Contributions: a fast and accurate method for computing NNF.

[1] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman. Patchmatch: a randomized correspondence algorithm for
structural image editing. In SIGGRAPH, 2009
[2] S. Korman and S. Avidan. Coherency sensitive hashing. In ICCV, 2011.

• Our perspective: ANN search for multiple but dependent queries.

Patches in A

Query Set

Patches in B

Candidate Set

• Methodology comparisons:

Method Strategy
in Query Set

Strategy
in Candidate Set

Traditional LSH
(Locality Sensitive Hashing)

None Data-independent

Traditional kd-tree None Data-adaptive

PatchMatch [1] Propagation Random Sampling

CSH [2]
(Coherency Sensitive Hashing)

Propagation Data-independent
(LSH)

Ours Propagation Data-adaptive
(kd-tree)

• Our advantage: better utilizes both the dependency of the patches
in A and the dependency of the patches in B.

Algorithm

• Basic Algorithm

1. Build a kd-tree using all the patches in the Candidate Set. Each leaf
contains no more than m candidates.

2. Scan the image A in raster order. For each patch pA(x, y) in A, do
propagation-assisted kd-tree search as follows:

i. Descend the tree to a leaf (Leaf #0);
ii. Propagate a leaf from left/upper, using the already matched

result of pA(x-1, y) and pA(x, y-1);
iii. Find the NN of pA(x, y) in all the above leaves.

image Bimage A

Propagation in PatchMatch [1]

(x-1, y)
(x, y)

(x’-1, y’)
(x’, y’)

image Bimage A

Leaf #1

Propagation-Assisted KD-tree

(x-1, y)
(x, y)

(x’-1, y’)
(x’, y’)

• Method Comparison: PatchMatch [1]

• Performance in VidPairs Benchmark [2] (Accuracy vs. Time, 133 image pairs)

References

40

45

50

55

60

65

0 5 10 15 20 25 30 35 40 45 50

L 2
di

st
.

seconds

PM
CSH
Ours (no re-ranking)
Ours (re-ranking)
Traditional kd-tree
Ground Truth

2Mp images, 8x8 patches

Observations:
1. 10-20x faster vs. PatchMatch [1], 2-5x faster vs. CSH [2], at the same accuracy.
2. 70% smaller error vs. PatchMatch, 50% smaller error vs. CSH, at the same running time.
3. Traditional kd-trees can be comparable with PatchMatch.

• Visual Comparisons

Image B

PM CSH GTOurs

Image A

PM’s NNF

CSH’s NNF

Our NNF

Groundtruth

PM’s error

CSH’s error

Our error

NNFs and error maps

CSH GTOursPM

PM CSH GTOurs

PM CSH GTOurs

Reconstructed Images

• Method Comparisons: kd-tree

(a) Standard search
(err: 11.13)

e0

e1

1200

120

(b) Priority search
(err: 10.71)

e0

e1

1200

120

(d) Propagation from GT
(err: 2.77)

e0

e1

1200

120

(c) Randomized kd-trees
(err: 7.80)

e0

e1

1200

120

(e) Our propagation search
(err: 3.04)

e0

e1

1200

120

e0: error of Leaf #0; e1: error of Leaf #1.
Leaf #1 is given by backtracking (standard/priority search), another
random tree (randomized kd-tree), or propagation (ours).

	Slide Number 1

