Optimized Product Quantization for Approximate Nearest Neighbor Search Supplementary Material

Tiezheng Ge ${ }^{1}$
Kaiming He^{2}
Qifa Ke^{3}
Jian Sun ${ }^{2}$
${ }^{1}$ University of Science and Technology of China $\quad{ }^{2}$ Microsoft Research Asia $\quad{ }^{3}$ Microsoft Research Silicon Valley

In the paper we have shown the evaluations under certain metrics (c.f. Fig. 4, 5, and 6 in the paper). In this supplementary material, we append the evaluations under more metrics in the SIFT1M, GIST1M, and MNIST datasets. We evaluate (i) recall vs. N, i.e., the number of top ranked neighbors, and (ii) precision vs. recall. We evaluate using the code length $B=$ 32, 64, or 128 bits, and use both Symmetric Distance Computation (SDC) and Asymmetric Distance Computation (ADC). The results are as follows.

1. SIFT1M

1.1. SIFT1M Recall $v s . \mathbf{N}$

1.2. SIFT1M Precision $v s$. Recall

2. GIST1M

2.1. GIST1M Recall vs. \mathbf{N}

2.2. GIST1M Precision $v s$. Recall

3. MNIST

3.1. MNIST Recall vs. \mathbf{N}

3.2. MNIST Precision $v s$. Recall

